therefore, as $v^{\prime}<v$, we have each term of the series for $\mathrm{A}_{x+n}-\mathrm{A}_{x}$ greater than the corresponding term of the series for $\mathrm{A}^{\prime}{ }_{x+n}-\mathrm{A}^{\prime}{ }_{x}$. But in the event of some of the terms being negative, which might easily be shown to be the case according to various mortality tables, we could not state which series is the greater. If the value of $\mathrm{A}_{x+n}-\mathrm{A}_{x}$ be written

$$
v\left(q_{x+n}-q_{x}\right)+v^{2}\left(p_{x+n} q_{x+n+1}-p_{x} q_{x+1}\right)+\ldots
$$

it becomes apparent that, when the mortality increases with the age,

$$
\begin{gathered}
\mathbf{A}_{x+n}-\mathbf{A}_{\boldsymbol{x}}>\mathbf{A}_{x+n}^{\prime}-\mathbf{A}_{x}^{\prime}, \\
\frac{\mathbf{A}_{x+n}-\mathbf{A}_{x}}{\mathbf{A}_{x_{+}+n}^{\prime}-\mathbf{A}_{\boldsymbol{x}}^{\prime}}>\text { unity } .
\end{gathered}
$$

But as $\quad \mathrm{A}_{x}>\mathrm{A}^{\prime}{ }_{x}, \frac{1-\mathrm{A}_{x}}{1-\mathrm{A}_{x}^{\prime}}<$ unity, $\quad \therefore{ }_{n} \mathrm{~V}_{x}>{ }_{n} \mathrm{~V}_{x}^{\prime}$.
In both of the demonstrations above referred to, the proof is founded on the assumption that $a_{x}>a_{x+1}$, and $>$ the annuity at all succeeding ages. Mr. Sprague, in vol. xxi, p. 94, referring to the theorem, investigates under what conditions $a_{x}<a_{x+1}$, and there proves that when such is the case we must have

$$
v q_{x}>\varpi_{x+1} .
$$

That is, the premium for a single year greater than the whole-life premium at the next higher age.

I am, Sir,	
Your obedient servant,	
Scottish Amicable Life Society,	WM. G. WALTON.

MR. GRAY'S METHODS OF CONSTRUCTING LIFE TABLES.

To the Editor of the Journal of the Institute of Actuaries.
Sir,-The example appended to my letter in your last number contained some errors (for which I am to blame), and it was not, as I now find, sufficiently explained.

Believing, as I do, that the process which I then sought to elucidate deserves more attention than it has hitherto gained, I should feel obliged by your permitting me to give a further illustration of it. For this purpose I will use the Institute H^{M} Table, which is accessible to all readers of the Journal.

The problem is to construct $\log \mathrm{N}_{x}$, the \log of D_{x} being given. This is Problem XXII, page 124 of Gray's Tables and Formula. Mr. Gray showed that the work brought out $\log a_{x}$ and $\log \left(1+a_{x}\right)$ as well as $\log \mathrm{N}_{x}$; but he did not specially notice the remarkable fact that, excepting the datum $\log \mathrm{D}_{x}$, not a figure besides appears in the process, and he did not mention any further uses of these quantities.

On inspection of the following example it will be seen that there
are two working columns, the respective contents of which will be best shown by a typical representation, thus :-

$\log \mathrm{N}_{x}$	$\begin{gathered} \log a_{x} \\ a_{x} \end{gathered}$
$\begin{aligned} & \log \mathrm{D}_{x} \\ & \log \left(1+a_{x}\right) \end{aligned}$	
$\log \mathrm{N}_{x-1}$)	
$\begin{aligned} & \log \mathrm{D}_{x-1} \\ & \log \left(1+a_{x-1}\right) \end{aligned}$	$\begin{gathered} \log a_{x-1} \\ a_{x-1} \end{gathered}$
$\log \mathrm{N}_{x-2}$	

Two complete steps are here exhibited.
The first portion of the work is the insertion of the initial value of $\log \mathrm{N}_{x}$, which at the oldest age is the same as $\log \mathrm{D}_{x+1}$, and of the successive values of $\log D_{x}$ in their proper places, in reversed order, on paper ruled in the form above shown.

The subsequent working consists of, first, the subtraction of log D_{x} from $\log \mathrm{N}_{x}$, setting the remainder (which is $\log a_{x}$), in the adjoining column in line with $\log \mathrm{D}_{x}$; second, the entering of the table of $\log (1+x)$ with this remainder, setting the result (which is $\left.\log \overline{1+a_{x}}\right)$, under $\log \mathrm{D}_{x}$; and third, the addition of this result to $\log D_{x}$. The sum is $\log N_{x-1}$, and so on.

Of the 27 values of $\log \mathrm{N}_{x}$ here formed with six figure logarithms, seven values differ by ± 1 from the corresponding values on page 28 of the Institute volume, which were found with seven figure logarithms. The annuities are all true in the last figure.

If $\log a_{x}$ only were wanted, $\log v p_{x}$ would take the place of \log D_{x} and the work would be shorter, the several quantities being additive. But the extra trouble in finding $\log \mathrm{N}_{x}$ is well repaid. Each value on the working sheet may be turned to good account in other processes. For example, $\log \mathrm{N}_{x+n}-\log \mathrm{D}_{x}$ gives the logarithm of a deferred annuity; and since the logarithms of a_{x} and $\left(1+a_{x}\right)$ are both in hand, the very useful result $\varpi_{x}=v-\frac{a_{x}}{1+a_{x}}$ can be found with peculiar facility.

I am indeed of opinion that Gray's Problem XXII is a memorable contribution to the practical valuation of life contingencies, and I think that Mr. Gray did not sufficiently appreciate his own incomparable process.

$$
\begin{aligned}
& \text { I am, Sir, } \\
& \text { Yours faithfully, } \\
& \text { J. HANNYNGTON. }
\end{aligned}
$$

London, 10 November 1879.

Calculation of $\log \mathrm{N}_{x}, \mathrm{H}^{\mathrm{M}}$ Table, at is per-cent.

