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Abstract

A nonzero ring R is said to be uniformly strongly prime (of bound n) if n is the smallest positive integer
such that for some n-element subset X of R we have xXy ^ 0 whenever 0 ^ x, y € R. The study of
uniformly strongly prime rings reduces to that of orders in matrix rings over division rings, except in the
case n = 1. This paper is devoted primarily to an investigation of uniform bounds of primeness in matrix
rings over fields. It is shown that the existence of certain n -dimensional nonassociative algebras over a
field F decides the uniform bound of the n x n matrix ring over F.

1991 Mathematics subject classification (Amer. Math. Soc): primary 16N60; secondary 17C55, 17C6O.

1. Introduction and preliminary results

Unless stated otherwise, all rings are associative, but do not necessarily have an
identity. A ring for which the associative law is not assumed to hold will always be
referred to as a nonassociative ring. We denote by Mnxm(R) the set of all n x m
matrices over a ring R. If n = m we write Mn(R) in place of Mnxm(R). We use /„ to
denote the identity matrix in Mn(R).

Let R be a ring and n, m positive integers. Let X = {At, A2,..., Am) be an
w-element subset of Mln(/?). For i = 1, 2 , . . . , « , let A, be the n x m matrix whose
columns are the i-th columns of At, A2, • • •, Am. We obtain an «-element subset
X = {A\, A2, • • •, An} of Mnxm(R). Note that if Y is an arbitrary ^-element subset of
Mnxm(/?) then it is possible to construct in the obvious fashion an w-element subset
X of Mn(R) such that Y = X.
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A ring R is said to be a right order in a ring S (with identity) if R is a subring of
S such that (1) every element of R which is not a zero divisor of R is a unit of 5, and
(2) if 0 # s G S then 0 ^ sr € R for some r e fl.

Following Handelman and Lawrence [ 1, p. 211 ], we call a nonempty subset X of a
ring /? a uniform insulator for /? if xX>> ^ 0 whenever 0 ^ x, y e R. A nonzero ring
/? is said to be uniformly strongly prime if R contains a finite uniform insulator, and
more specifically, uniformly strongly prime of bound n, if n is the smallest positive
integer such that R possesses a uniform insulator of cardinality n.

This paper continues the investigation started in [5]. We address a single problem:
determine the uniform bound of primeness of the matrix ring Mn(F) where F is a
given field and n a positive integer. Our focus on matrix rings over fields is not as
restrictive as it might appear, for every ring which is uniformly strongly prime of
bound greater than 1 is isomorphic to a right or left order in a matrix ring over a
division ring (see Theorem 1 below). Moreover, the uniform bound of primeness of
an order in a matrix ring is, in many instances, equal to the bound of the over matrix
ring (see Theorem 2 below). The task undertaken is also not as unambitious as it might
appear. Indeed, we shall see that the uniform bound of primeness of the matrix ring
Mln(F) is not determined solely by n, but also depends on subtle algebraic features of
the ground field F.

THEOREM 1 ([5, Theorem 3]). The following conditions are equivalent for a
ring R :

(i) R is uniformly strongly prime of bound greater than 1;
(ii) R is isomorphic to a right or left order in Mn(D) for some division ring D

and integer n > 1.

It follows from the above theorem that rings which are uniformly strongly prime
of bound greater than 1 are prime right or left Goldie. By contrast, rings which are
uniformly strongly prime of bound precisely 1 need not be prime Goldie; a domain
which is not Ore would be such an example.

THEOREM 2. (i) [4, Theorem 10] If R is a right order in S and S is uniformly
strongly prime of bound n then R is uniformly strongly prime of bound at most n.

(ii) [5, Corollary 7] If R is a right and left order in S then S is uniformly strongly
prime of bound n if and only if R is uniformly strongly prime of bound n.

Two sided orders do arise naturally as the following explanation shows. By the
Faith-Utumi Theorem (see [2, p. 114]) a ring R is a right order in Mn (D) (D a division
ring) if and only if there exists a ring embedding of R into Mn(D) and a right order
C in D such that Mn(C) is contained in the image of R. It is an obvious consequence
of the Faith-Utumi Theorem that if D is commutative then the right orders and left
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orders coincide in Ml,, (D). In this situation no ambiguity arises if we omit the prefixes
'right' and 'left' and speak simply of an order in Mn(D). It follows from Theorem
2 that // F is afield and R is an order in Mn(F) then R and M,,(F) share the same
uniform bound ofphmeness.

The next result is an extension of [5, Lemma 4].

THEOREM 3. Let D be a division ring and n, m positive integers. The following
assertions are equivalent for an m-element subset {Au A2,..., Am] ofMn(D) :

(i) {Au A2,..., Am} is a uniform insulator for M,,(D);

(ii) X\A\ + x2A2 + • • • + x,,An has trivial left annihilator in M,,(D) unless xx =

Xi = • • • = xn = 0;
(iii) X\A\ + x2A2 + • • • + x,,An has rank n unless x\ = x2 = • • • = xn = 0;
(iv) ifWD is the D-subspace ofMnxm(D) spanned by A,, A2,..., An then WD has

dimension n and every member of WD\{0} has rankn.

PROOF, (i) <$• (ii) We use x_ to abbreviate (xux2,... ,xn) e D" and a superscript
T to denote the transpose of a matrix. Suppose (i) holds, then:

(1) B A , x T = 0T f o r a l l / e { 1 , 2 , . . . , m ]

implies 6 = 0 whenever B e Mn(D) and x ^ 0. Equation (1) is equivalent to

(2) B[Alx
T\A2x

T\...\AmxT]=0 (in MH X m(D)) .

But [A\xJ A2XJ I . . . A m x r ] = x\A] + x2A2 + • • • +xnAn. Assertion (ii) follows.
Reversing the above argument establishes (ii)=>(i).

(ii)o(iii)4»(iv) is an immediate consequence of the fact that a matrix in Mnxm(D)
has trivial left annihilator in Mn (D) if and only if it has rank n. •

The next theorem follows from results in [5]. We include a direct proof for the sake
of completeness.

THEOREM 4. / / D is a division ring then Mn(D) is uniformly strongly prime of
bound m for some m satisfying n < m < 2n — 1.

PROOF. Ifw < « then no element of Mnxm(D) has rankn. It follows from Theorem
3(iii) that Mn(D) cannot possess a uniform insulator of cardinality m.

It remains to show that Mn(D) has a uniform insulator of cardinality 2n — 1. For
each k satisfying 1 < k < 2« — 1 define Ak e Mn{D) to be the matrix whose entry
in the /-th row and y'-th column is 1 whenever i + j = k + I, and is zero elsewhere.
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Take x e D" and put
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C = + x2A2 -I V x,,An =

0

0

AT

-X)

0

AT

-VI A T

A",, 0

V,, 0

A",, 0 •

0

0

0

Observe that C € Mnx{2n_l)(D). If rankC < n then the n x n submatrix of C
consisting of columns 1 to n must be singular. This entails X\ — 0. The « x n
submatrix of C consisting of columns 2 to n + 1 must also be singular which entails
x2 = 0; and so on. We thus obtain x^ = x2 = • • • = xn = 0. By Theorem 3,
{A\, A2,..., Aln-\] is a uniform insulator for Mn(D). •

Results of Section 2 show that the inequality n < m < 2« — 1 of the previous
theorem cannot be sharpened further.

We remind the reader that if D is a division ring and n a positive integer then
GL(n, D) denotes the set of all n x n matrices over D of rank n.

COROLLARY 5. The following assertions are equivalent for a division ring D and
positive integer n :

(i) Mn(D) is uniformly strongly prime of bound n;
(ii) GL(n, D) U {0} contains an n-dimensional D-subspace ofMn(D).

PROOF, (i) => (ii) follows from Theorem 3 taking m — n.
(ii)=>(i) Let WD be a D-subspace of M»(D) contained in GL(n, D) U {0}. Choose

a basis M\, M2,..., Mn for WD. Construct matrices Ax, A2, ..., A,, in M,,(D) such
that At = M, for all / e { 1 , 2 , . . . , n}. By Theorem 3, {A,, A2,..., A,,} is a uniform
insulator for Mn(D).

Assertion (i) follows since, by Theorem 4, Mn(D) cannot possess a uniform insu-
lator of cardinality less than n. •

If X is a uniform insulator for a ring ft and e an idempotent in R then eXe is a
uniform insulator for the ring eRe. If n, k are positive integers with n < k then it is
possible to choose an idempotent e e fMl̂ (ft) such that Mn(ft) = eMk{R)e. The next
result follows.

PROPOSITION 6. Let D be a division ring and n, k positive integers with n < k.
If Mk(D) is uniformly strongly prime of bound m then Mn(D) is uniformly strongly
prime of bound at most m.
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2. Matrix rings over fields

The following theorem shows that the upper bound In — 1 of Theorem 4, cannot
be lowered.

THEOREM 7 ([5, Proposition 8]). If F is an algebraically closed field then Mn(F)
is uniformly strongly prime of bound 2n — 1.

The main results of this section show that the existence of certain n -dimensional
nonassociative algebras over a field F decides the uniform bound of primeness of
the n x n matrix ring over F. We need to recall some basic facts on nonassociative
algebras.

Let F be a field. We call AF a nonassociative F-algebra if A is an F-vector
space endowed with a bilinear mapping from A x A to A with the property that
a{xy) = (ax)y = x(ay) whenever a e F and x, y e A. We emphasize the fact that
use of the term 'nonassociative' does not carry the assumption that the associative law
fails to hold, but only that it is not assumed to hold. We say AF has dimension n if
AF is an n-dimensional F-vector space.

Let AF be a nonassociative F-algebra. For each x e A let <f>x denote the F-linear
map on A defined by 0,(y) = xy (v e A). The association x H> 4>X defines an F-
linear map from AF into the (associative) F-algebra Endf A. This mapping has kernel
[x e A : xA = 0}. We call the F-subalgebra of Endf A generated by {cj>x : x e A} the
(left) enveloping algebra of AF, denoted <S"(AF). Clearly if AF has finite dimension n
then S(AF) may be interpreted as an F-subalgebra of fVDn(F).

We call a e AF completely left [respectively right] invertible if the equation ax = b
[respectively xa = b] has a unique solution for x whenever b e A. If A is associative
and possesses an identity element then the aforementioned notions coincide with that
of a unit. We call AF a division algebra if every nonzero a e A is completely left
and right invertible. We point out that if AF is finite dimensional then for A to be a
division algebra it is sufficient that every nonzero a e Abe completely left invertible.
We shall denote by U(AF) the set of all completely left invertible elements of AF.

THEOREM 8. The following assertions are equivalent for a field F and positive
integers n, m with n < m :

(i) GL(m, F) U {0} contains an n-dimensional F-subspace ofMm(F);
(ii) there exists a nonassociative F-algebra AF for which U{AF) U {0} contains

an n-dimensional F-subspace of AF, and whose enveloping algebra $(AF) is embed-
dablein Mm{F).

PROOF, (i) => (ii) Define AF = Mm(F). Inasmuch as Mm{F) is an associative
algebra with an identity element, U(AF) = GL(m, F) and AF is isomorphic (as
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an F-algebra) to its enveloping algebra £(AF). Therefore £(AF) is embeddable in

(ii)=^ (i)Let WF be an n-dimensional F-subspace of AF contained in U(AF)\J{Q}.
Let WF denote the image of WF in g(AF). Since the canonical mapping from AF

to £{AF) is F-linear, WF is an F-subspace of &(AF). Moreover, the kernel of
this mapping (which is [x e A : xA = 0}) has trivial intersection with WF, so
dim WF = n. It follows from the definition of U(AF) that the image of U(AF) in
£{AF) is contained in the set of units of & (AF). By hypothesis, S(AF) is embeddable
as an F-algebra in Mm(F). The image of WF in Mm(F) is thus an n-dimensional
F-subspace of Mm(F) contained in GL(m, F) U {0}. •

PROPOSITION 9. Let F be a field and n, m positive integers with n < m. If
GL(m, F) U {0} contains an n-dimensional F-subspace of Mm(F), then Mn(F)
is uniformly strongly prime of bound at most m.

PROOF. Let WF be an n-dimensional F-subspace of Mm(F) contained in
GL{m, F)U{0}. Consider the F-linear projection mapping of Mm{F) onto fMlnxm(F)
defined by

Mv+ ZM where Z = [/„ | 0] € Mnxm(F).

Observe that rankZAf = rankZ = n whenever M e GL(m, F). It follows that
under this projection mapping the image of every member of WV\{0} is a matrix with
rank n. The result follows from Theorem 3. •

Observe that the special case m = n of Proposition 9 is a consequence of Corol-
lary 5.

REMARK 1. If m and n are distinct then the statement that GL(m, F) U {0} contains
an n-dimensional F-subspace of Mm(F) is, in general, strictly stronger than the
statement that Mn(F) possesses a uniform insulator of cardinality m. Indeed, if F is
an algebraically closed field, A, B € GL(m, F) and x an eigenvalue of AB~\ then
A — xB £ GL(m, F). This shows that for every positive integer m, GL(m, F) U {0}
cannot contain a 2-dimensional F-subspace of Mm(F). Yet, fMln(F) is uniformly
strongly prime of bound In — 1 for every algebraically closed field F and positive
integer n (Theorem 7).

The following theorem follows from Corollary 5 and taking m = n in Theorem 8.

THEOREM 10. The following assertions are equivalent for afield F and positive
integer n :

(i) Mn (F) is uniformly strongly prime of bound n;
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(ii) GL(n, F) U {0} contains an n-dimensional F-subspace ofMn(F);
(iii) there exists a nonassociative F-algebra AF for which U(AF) U {0} contains

an n-dimensional F-subspace of AF, and whose enveloping algebra S(AF) is embed-
dablein M,,(F).

THEOREM 11. Let F be afield. If there exists a nonassociative division F-algebra
of dimension n, then M,,(F) is uniformly strongly prime of bound n.

PROOF. If AF is an ^-dimensional division F-algebra, then U(AF) U {0} = AF.
Moreover, since AF is n-dimensional, $(AF) is a subalgebra of Mn(F). The result
then follows from Theorem 10. •

REMARK 2. It would be interesting to know whether the converse to Theorem 11
is valid.

COROLLARY 12. Let F be a field which has an n-dimensional field extension E.
Then M,,(F) is uniformly strongly prime of bound n.

REMARK 3. We now describe a method for actually constructing a uniform insulator
for Mn (F) given the existence of an n-dimensional nonassociative division F-algebra.

Choose a basis U\, u2, • • • ,un for AF. For each / e {1, 2 , . . . , « } let <pu, de-
note the /-"-linear mapping on AF corresponding with left multiplication by «,-. Let
M, e Mn(F) be the matrix representation of </>„, relative to the (ordered) basis
Mi, u2, .. •, un. Choose a set of matrices X — {Au A2,..., An] in Mn(F) such
that X = {Mu Mi, ..., Mn}. Then X is a uniform insulator for Mn(F).

Consider now the special case where E = AF is a simple field extension of F.
Suppose E = F(a) where a has minimal polynomial f(x) = a<)+aix + - • -+x" over
F. If we choose 1, a, a2,..., a"~l as a basis for E and the matrices Mi, M2,..., Mn

are constructed as above, then it is easily shown that M, = C""' for all / e {1, 2 , . . . , n}
where

/~>

_ - a o —«

is the so-called companion matrix of the polynomial f(x).

THEOREM 13. If F is an arbitrary finite field and n a positive integer, then Mn(F)
is uniformly strongly prime of bound n.
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PROOF. If F is a finite field it must be a Galois field of order p' for some prime p
and positive integer /. The Galois field of order p1" is a field extension of dimension
n over F. The result follows from Corollary 12. •

We illustrate Theorem 13 with the following simple example.

EXAMPLE 1. Consider the two element field T2. By Theorem 13, fV02(Z2) is uni-
formly strongly prime of bound 2. We shall exhibit a uniform insulator for M2(Z2)
following the procedure described in Remark 3.

The four element Galois field is a simple field extension of Z2 with minimal

polynomial f{x) = 1 + x + x2 and corresponding companion matrix C - [: :]•
Define Mx = A, = I2 and M2 = A2 = C. Observe that if X = {A,, A2] then
X = {A/,, M2}. Thus X = {I2, C] is a uniform insulator for M2(Z2).

EXAMPLE 2. Let Z and Q denote the ring of integers and rational numbers respec-
tively. Consider the polynomial f(x) = x" — p in l[x] where n is an arbitrary
positive integer and p a prime integer. (In fact we only require that p has no «-th
root in Z.) By the Eisenstein Irreducibility Criterion, f(x) is irreducible in Q[jr].
If {f{x)) denotes the ideal of Q[jc] generated by fix), then F = Q.[x]/{f{x)) is a
(simple) field extension of dimension n over Q. Hence M,,(Q) is uniformly strongly
prime of bound n by Corollary 12. We exhibit a uniform insulator for h

The companion matrix of f{x) is

C =

Put Mi = C ' - 1 for / e { 1 , 2 , . . . , « } . Choose X = {Au A2, . . . , An] c M n ( Q ) such

that X = {Mu Mi,..., Mn}. The set X is a uniform insulator for M n ( Q ) . A routine

calculation shows that

A,=

0

0

D

1

0

0

0 •

1

• 0

• 0

1

• 0

1

0

0

0

0

0

p

p

0

0

p

0

• 0

0

A -
' 2~

0

1

0

0

0

1

0

0

0

0

p

P 0

0

0

0

p

0
A -

' ' ' ' ' "

0

1 0

1 0

1

1 0

0

0

This example shows that the lower bound n of Theorem 4 cannot be raised.
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The above example lends itself to the following generalization. Let D be a commu-
tative domain with field of quotients Q. Suppose Q admits a nonarchimedean valua-
tion (p. The Generalized Eisenstein Irreducibility Criterion asserts that if £?>v = [a €
Q : cp(a) < 1} and f(x) = Oo + a,x -I \-x" is such that {a,, a2, . . . , a n _ i} c ^
and a0 is not the product of two elements in &v, then f(x) is irreducible in Q[x]. (See
[7, Exercise 2, p. 250].) The existence of such a polynomial f(x) clearly implies that
Q has an n-dimensional field extension whence Mn(Q) is uniformly strongly prime
of bound n.

If, for example, D contains a prime element p such that fX?=\ (P)" = 0 ( t ni s *s t n e

case for any prime p in a commutative noetherian domain), then ^ can be chosen
to be the (p)-adic (nonarchimedean) valuation on Q. Relative to such a valuation
<p the polynomial f(x) = x" — p satisfies the Generalized Eisenstein Irreducibility
Criterion. We have thus proved the next theorem which extends [5, Proposition 9].

THEOREM 14. Let D be a commutative domain and Q its field of quotients. If D
contains a prime element p such that fXl i (P)" = 0> t n e n M« (Q) is uniformly strongly
prime of bound n for every positive integer n.

If F is an arbitrary field and F(x) the field of rational functions in x over F, then
choosing D = F[x] and p = x in the previous theorem we obtain Mn(F(x)) is
uniformly strongly prime of bound n for every positive integer n.

We investigate now uniform bounds of primeness in matrix rings over the reals R.
The problem we face here is a difficult one and the results obtained are sketchy.

The complex numbers C, the real quaternions H and the (nonassociative) octonions
O are division algebras with respective dimensions 2,4 and 8 over R. It follows from
Theorem 11 that M«(IR) is uniformly strongly prime of bound n for n e [2,4, 8}. We
provide some details on the construction of a uniform insulator for M18(1R). We again
follow the procedure described in Remark 3. Recall that the octonions © constitute
an 8-dimensional algebra over U. with basis u\, u2,..., u$ and multiplication induced
by the following table:

u2
«3

M4

"5

«6

"7

"8

«1

"1

"2

«3

M4

"5

"6

U-i

Us

U2

"2

-M]

-«4

"3

- M 6

«5

«8

- M 7

"3

«3

M4

-M|

-M2

-M7

-Ug

M5

"6

"4

M4

-M3

U2

~U\

-us
M7

-«6

"5

«5

"5

«6

U-i

"8

-Ml

-M2

-M3

-M4

«6

"6

-M5

«8

—«7

M2

-Mi

M4

-M3

U-i

Ul

-us
-us
"6

"3

-"4

-M|

M2

"8

«8

«7

~«6

- M 5

"4

«3

-M2

~U\

For each / e {1, 2, . . . , 8} let M, be the matrix representation of (j>Uj relative to the
b a s i s u\,u2,... ,us- T h e n Mx — /8,
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M,=

o
- i

o
0

0

0

0 0

0 0

0

0

0

- 1

0

0

0

0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 1 0

- 1 0 0

0 0 0 - 1

0 0 1 0

0 1 0

0 0 - 1

- 1 0 0

1 0

0 0

0 0

0 0

0 0

0

0

0

0

0

0

- 1

0

0 0

0 0

0 0

0 0

1 0

0 1

0 0

- 1 0 0

0

0

0

- 1

0

0

0

0

0

0

0

0

0

- 1

0

0

0

0

-1

0

0

0

0

0

0

0

0

0

- 1

0

0

0

0 1

1 0

0 0

0 0

0 0

0 0

0 0

0 0 - 1

0

0

0

0

0

- 1

0

0

0 1 0

1 0 0

0 0 1

0 0 0

0 0 0

0 0 0 - 1

- 1 0 0 0

0 0 0 0

0

0

0

0

- 1

0

0

0

0

0

0

0

0

0

- 1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

- 1

0

0

0

0

0

0

1

0

0

0

0

0

-

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

- 1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

- 1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

- 1

0

0

0

0

0

1

0

0

0

0

0

0

o

o
0

0

0

0

0

- 1

0

0

0

0

0

-1

0

0

0 0

0 0

0 1

1 0

- 1 0 0

0 0 0

0 0 0

0 0 0

0

- 1

0

0

0

0

0

0

All that remains is to construct a set of matrices X = {A], A2,
X = {M,,M2, . . . , M 8 } .

. . , A8} such that
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REMARK 4. Theorem 11 is unfortunately of limited value in determining the uni-
form bounds of primeness of matrix rings over R, for it was proved by Bott and Milnor
[3, Corollary 1] using deep results in algebraic topology that if A is an A?-dimensional
nonassociative division algebra over K then n = 1, 2, 4 or 8. It would be interesting
to know whether these same results from algebraic topology yield restrictions on the
dimensions of K-subspaces of Mlm(IR) which are contained in GL(m, R) U {0}. In
view of Corollary 5 and Proposition 9, this would clearly throw some light on the
uniform bounds of primeness of matrix rings over R.

The embedding of the 4-dimensional quaternion K-algebra into M4(R) yields a
uniform insulator for M4(!R) of cardinality 4. Uniform insulators are not unique,
however. Indeed, the following example shows that it is possible to construct a
uniform insulator for M4(R) of cardinality 4 which does not derive from the subalgebra
of quaternions.

EXAMPLE 3. Consider the matrices

/4, A =

0

0

-1

0

0

0

0

1

1

0

0

0

0

_ ,

0

0

D

0

1

0

0

0

0
„ 1

0

0

0

0

1

1

0

-1

0

, c =
0 1 0 0

1 0 i 0

0 0 0 1

- 1 0 0 0

Then xx I4 + x2A + x3B + x4C e GL(4, R) whenever (x\, x2, x3, x4) ^ 0, because
x4C) = x\ + 2x\x\ x\x\ \x\x\x\x\/4 + x2 A + x3B

x\xl - x\x\ + x\x\ + x\ = 0 if and only if *, = x2 = x3 = x4 = 0. If X c M4(R) is
chosen such that X = {/4, A, B, C] then X is a uniform insulator for M4(K). It can
be shown that the matrices /4, A, B, C do not generate a proper subalgebra of M4(IR).
In other words, /4, A, B, C generate an algebra of dimension 16 over R.

The following theorem is an assembly of all that is known on uniform bounds of
primeness in matrix rings over R.

THEOREM 15. (i) [5, p. 1162] Ifn is an odd integer then M,,(R) is uniformly
strongly prime of bound m for some m satisfying n < m < 2n — 1.

(ii) [5, Example 2] M2(R) is uniformly strongly prime of bound!.
(iii) [5, Example 2] M3(R) and M4(R) are uniformly strongly prime of bound 4.
(iv) M5(K) is uniformly strongly prime of bound m for some m satisfying

6 < m < 8.
(v) M6(R) is uniformly strongly prime of bound m for some m satisfying

6 < m < 8.
(vi) M7(K) and M8(K) are uniformly strongly prime of bound 8.
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PROOF, (i) In view of Theorem 4 it suffices to show that if n is odd then M,,(R)
does not have a uniform insulator of cardinality n. Suppose, on the contrary, that
{A\, A2, • • •, A,,} is a uniform insulator for fVD,,(IR). Put B = X\A\+x2A2 + - • •+.x,,An.

Observe that Det B is a degree n homogeneous form in the variables x,, x2, • • •, x,,.
Inasmuch as every polynomial of odd degree over K has a root, it is not difficult to
show that Det B = 0 for some x_ = {xx, x2,..., xn) ^ 0 (a detailed justification of
this is provided in [6, p. 154]). This contradicts Theorem 3(iii).

(ii) The complex numbers constitute a 2-dimensional division K-algebra. The result
follows from Theorem 11.

(iii) The quaternions constitute a 4-dimensional division K-algebra. By Theorem
11, MU(IR) is uniformly strongly prime of bound 4. This fact together with (i) above
and Proposition 6 imply that fV03(K) is uniformly strongly prime of bound 4.

(vi) The octonions constitute an 8-dimensional division IR-algebra. By Theorem
11, fV08(IR) is uniformly strongly prime of bound 8. This fact together with (i) above
and Proposition 6 imply that M7(K) is uniformly strongly prime of bound 8.

(iv) and (v) follow from arguments similar to those used in the proof of (iii) and

(vi). •
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