RADII OF UNIVALENCE, STARLIKENESS, AND CONVEXITY

Shinji Yamashita

Let a function $f(z) = z + \sum_{2}^{\infty} a_n z^n$ be regular in the disk |z| < 1. The radius of univalence 0.164 ... of the family of f with $|a_n| \le n$ $(n \ge 2)$ is, actually, the radius of starlikeness. The radius of univalence $1 - [K/(1+K)]^{\frac{1}{2}}$ of the family of f with $|a_n| \le K$ $(n \ge 2)$, where K > 0 is a

constant, is, actually, the radius of starlikeness. The radii of convexity of the two families are estimated from below.

1. Introduction

Let N be the family of functions f regular in $D = \{|z| < 1\}$ with the Taylor expansion

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

Let F be a non-empty subfamily of N. The largest number u(F) of r, $0 < r \le 1$, such that each $f \in F$ is univalent in $D(r) = \{|z| < r\}$, is called the radius of univalence of F. The radius of starlikeness s(F) and that of convexity c(F) of F are defined on adding further the condition that the image f(D(r)) is star-shaped with respect to the origin, and the condition that f(D(r)) is convex, respectively.

Received 27 January 1982.

Evidently, $c(F) \leq s(F) \leq u(F)$. The determination of u(F), s(F) and c(F) has been one of the subjects in the theory of univalent functions; see, for example, [1]. It is well-known that $s(S) = \tanh(\pi/4)$ and $c(S) = 2 - \sqrt{3}$ for the family S of all univalent members of N.

Let *B* be the family of *f* of (1.1) with $|a_n| \le n$ for all $n \ge 2$. Let *K* > 0 be a constant and let *G(K)* be the family of *f* of (1.1) with $|a_n| \le K$ for all $n \ge 2$. Gavrilov [3, Theorems 1 and 1'] proved that $u(B) = r_0$, where r_0 is the root in the interval (0, 1) of the equation $2(1-r)^3 - (1+r) = 0$, and that $u(G(K)) = r_1 \equiv 1 - [K/(1+K)]^{\frac{1}{2}}$. Gavrilov's estimate $0.125 \le r_0 \le 0.130$ is erroneous because $r_0 = 0.164$ We first improve his results.

THEOREM 1. The identities u(B) = s(B) and u(G(K)) = s(G(K)) hold.

Next we investigate the lower bounds of c(B) and c(G(K)) .

THEOREM 2. Let $r_2 = 0.090 \dots$ be the root in (0, 1) of the equation $2(1-r)^4 - (1+4r+r^2) = 0$, and let r_3 be the root in (0, 1) of the equation $(1+K^{-1})(1-r)^3 - (1+r) = 0$. Then $c(B) \ge r_2$ and $c(G(K)) \ge r_3$.

We note that $(2-\sqrt{3})r_0 = 0.04 \dots < r_2$ and $(2-\sqrt{3})r_1 < r_3$. The latter inequality needs a proof.

2. Proofs

We shall make use of the following lemma due to Alexander and Remak; see [4, Theorem 1] and [2, Theorem 3].

LEMMA AR. If
$$h(z) = z + \sum_{n=2}^{\infty} b_n z^n$$
 is a member of N and if
$$\sum_{n=2}^{\infty} n |b_n| \le 1$$
,

then h is univalent and starlike in D, while ij

$$\sum_{n=2}^{\infty} n^2 |b_n| \le 1,$$

then h is univalent and convex in D.

Proof of Theorem 1. Since $s(B) \leq u(B) = r_0$, it suffices to observe that $r_0 \leq s(B)$. For this purpose let $0 < r \leq r_0$, and let f of (1.1) be a member of B. On applying Lemma AR to $h(z) = r^{-1}f(rz)$, together with

$$\sum_{n=2}^{\infty} n |a_n| r^{n-1} \leq \sum_{n=2}^{\infty} n^2 r^{n-1} \leq \sum_{n=2}^{\infty} n^2 r_0^{n-1} = (1+r_0)/(1-r_0)^3 - 1 = 1$$

one can conclude that h is univalent and starlike in D , or, f is starlike in the disk D(r) . Therefore $r_{\cap} \leq s(B)$.

For the proof of $s(G(K)) = u(G(K)) = r_1$ we note that $s(G(K)) \le r_1$. For the proof of the converse we let f of (1.1) be a member of G(K) and let $0 < r \le r_1$. On applying Lemma AR to $h(z) = r^{-1}f(rz)$, together with

$$\sum_{n=2}^{\infty} n |a_n| r^{n-1} \le K \sum_{n=2}^{\infty} n r_1^{n-1} = K \left[(1-r_1)^{-2} - 1 \right] = 1$$

one observes that h is univalent and starlike in D , or, f is starlike in D(r) . Therefore $r_1 \leq s\bigl(G(K)\bigr)$.

Proof of Theorem 2. For r, $0 < r \le r_2$, for $f \in B$ and for $z \in D$, we set $h(z) = r^{-1}f(rz)$. By Lemma AR, together with the estimate

$$\sum_{n=2}^{\infty} n^2 |a_n| r^{n-1} \leq \sum_{n=2} n^3 r_2^{n-1} = \left(1 + 4r_2 + r_2^2 \right) / \left(1 - r_2 \right)^4 - 1 = 1$$

one observes that h is univalent and convex in D , whence the same is true of f in D(r) . Therefore $r_{2}\leq c(B)$.

For r, $0 < r \le r_3$, for $f \in G(K)$ and for $z \in D$, we set $h(z) = r^{-1}f(rz)$. By Lemma AR, together with the estimate

$$\sum_{n=2}^{\infty} n^2 |a_n| r^{n-1} \leq K \sum_{n=2}^{\infty} n^2 r_3^{n-1} = K \left[(1+r_3) / (1-r_3)^3 - 1 \right] = 1 ,$$

one observes that h is univalent and convex in D, whence the same is true of f in D(r). Therefore $r_3\leq c\big(\mathcal{G}(K)\big)$.

REMARK. For f of (1.1) we set

$$f_n(z) = z + \sum_{k=2}^n a_k z^k \quad (n \ge 2)$$

If $f \in B$, then the partial sum $f_n \in B$ for all $n \ge 2$. Therefore Gavrilov's assertion on f_n in [3, Theorem 1] is superfluous. The same is true of f_n for $f \in G(K)$ in [3, Theorem 1'].

It remains to prove that

$$(2-\sqrt{3})(1-\alpha) = (2-\sqrt{3})r_1 < r_3$$
,

where $\alpha = [K/(1+K)]^{\frac{1}{2}}$. Since the function $\varphi(x) = (1-x)^3/(1+x)$ is decreasing for $0 \le x \le 1$, and since $\varphi(r_3) = \alpha^2$, it suffices to observe that

$$\varphi((2-\sqrt{3})(1-\alpha)) > \alpha^2$$
, or $\Phi(\alpha) > 0$,

where

$$\Phi(x) = (14-8\sqrt{3})x^3 + (-30+17\sqrt{3})x^2 + (21-12\sqrt{3})x + (-5+3\sqrt{3})$$

for $0 \le x \le 1$. As is easily checked, $\Phi'(x) = 0$ has only one solution λ in 0 < x < 1, and Φ is increasing (decreasing, respectively) in $[0, \lambda]$ ($[\lambda, 1]$, respectively). Since $\Phi(0) > 0 = \Phi(1)$, one can assert that $\Phi(\alpha) > 0$.

456

References

- [1] Ф.Г. Авхадиев, Л.А. Ансентьев, "Основные результаты в достаточных условиях однолистности аналитических функций", Uspehi Mat. Nauk 30 (1975) по. 4, 3-60. English translation: F.G. Avhadiev, L.A. Aksent'ev, "The main results on sufficient conditions for an analytic function to be schlicht", Russian Math. Surveys 30 (1975), по. 4, 1-63.
- [2] J. Clunie and F.R. Keogh, "On starlike and convex schlicht functions", J. London Math. Soc. 35 (1960), 229-233.
- [3] В.И. Гаврилов [V.I. Gavrilov], "Замечания о радиусе однолистности голоморфных функций" [Remarks on the radius of univalence of holomorphic functions", Mat. Zametki 7 (1970), 295-298.
- [4] A.W. Goodman, "Univalent functions and nonanalytic curves", Proc. Amer. Math. Soc. 8 (1957), 598-601.

Department of Mathematics, Tokyo Metropolitan University, Fukazawa, Setagaya, Tokyo 158, Japan.