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Abstract

We consider an ordinary differential equation arising in the study of the Ricci flow on R2.
The existence and uniqueness of solutions of this equation are derived. We then study the
asymptotic behaviour of these solutions at ±oo.

1. Introduction

In this paper, we study the ordinary differential equation

'g
( ,+g-Yg' = 0> - o o < y < o o , (1.1)

where y is a positive constant, g = g(j) and the prime denotes differentiation with
respect to y. Equation (1.1) arises in the study of the Ricci flow on R2.

We recall that any metric on R2 can be expressed as

ds2 = u{dx\ + dx\),

where X\, x2 are standard coordinates in R2 and u is a function. The Ricci flow on R2

is described by

-ds2 =
dt

where R represents scalar curvature (cf. [6]). The function u = u(x, t) then satisfies
the equation

u, = AQnu), x € R2, t > 0, (1.2)
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where A is the standard Laplacian in R2.
The Cauchy problem for (1.2) has recently been the subject of extensive study (see

the list of references and the literature cited therein). We note that the Ricci flow on
R2 can be viewed as the limiting equation of the well-known porous medium equation

m

as m -> 0 (cf. [9]). Equation (1.2) also arises in the study of thin film dynamics
(c/. [4]).

It is well-known that some special solutions of (1.2) play important roles in studying
the existence and asymptotic behaviour of solutions of the Cauchy problem for (1.2)
(see [2,5,6,8,9]). For example, some special solutions, namely similarity solutions,
in the form

«(x,r) = r"*(|*|/n.

for some appropriate exponents a and er, have been found in [5]. Moreover, they are
stable in a certain sense (see [5] for details).

Given y > 0, we are looking for special solutions of (1.2) for t e (0,1) in the form

y = ln-^—, (1.3)

where g is smooth, positive, and integrable over R. Then g satisfies (1.1).
It is shown in [6] that given any a > fi > 0, there exists a y > 0 such that (1.1)

has a solution g(y) with the properties

asy ->• oo,

We are interested in the reverse question. That is, given any y > 0, can we solve
(1.1)? Moreover, what is the asymptotic behaviour of these solutions g(v)of(l . l)as
y -> ±oo? The purpose of this paper is to answer these two questions.

We organize this paper as follows. In Section 2, the existence and uniqueness of
solutions of (1.1) are treated. We then study their asymptotic behaviour in Section 3.

2. Existence and uniqueness

In this section, we study the existence and uniqueness of solutions of (1.1). Let
h = \ng. Then g satisfies (1.1) if and only if h satisfies

h" + e* - yehh! = 0, - c o < y < oo. (2.1)
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LEMMA 2.1. For any global solution h of (2.1), there exists a unique yo € R such
that h'(y0) = 0. Moreover, h'(y) > 0, Vy < y0 andh'(y) < 0, Vy > y0.

PROOF. If h' > 0 in R, then

h" + e* > 0 in R

and so

> 0 in R.

Recall that we are looking for solutions of (1.1) which are integrable over R. Hence
exp(/i(y)) = giy) ->• 0 as y ->• oo and so the limit

exists and is positive, a contradiction to the integrability of g over R.
Similarly, h! cannot be negative in R. Therefore there is a y0 e R such that

h'(yo) = O.
We claim that y0 is the only zero of h'. Indeed, let

ply) = exp { -y f eA(z) dz} , y € R. (2.2)

Then (2.1) is equivalent to

h 0 (2.3)

and so

P(y)h'(y) = - / p(z)€A(z) rfz. (2.4)/
/yo

This implies that A'Cy) > 0, Vy < y0 and AXy) < 0, Vv > y0. The lemma follows.

Since (2.1) is autonomous, without loss of generality we may assume that y0 = 0.
Therefore any solution h of (2.1) is monotone increasing for y < 0 and monotone
decreasing for y > 0. Also, from (2.2) we have p > 0 in R and

P'iy) = -YP(y)ehw < 0, Vy € R.

In order to derive the existence of a solution of (2.1), we consider the initial value
problem for (2.1) with the initial conditions

ft'(0) = 0, h(0) = a € R. (2.5)

The local existence and uniqueness of solution of (2.1) and (2.5) follows from the
standard theory of ordinary differential equations. Let h be the solution of (2.1) and
(2.5) defined in the maximal existence interval (zo, Zi) with zo < 0 < Z\-
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LEMMA 2.2. For the maximal existence interval (zo.Zi) with Zo < 0 < Z\,Zo = — o°
and z\ = oo.

PROOF. From (2.4), we have

YP(y)

h(y)-»

h'(y)^

)

,\ |-
>) 1.

—OO

—OO

1 ^ 1Y L

asy ->

a s y ->•

P(y)Y

p(y)\

Zi

z

VT [ 4T (2.6)
ypiy) Y L P G O J

If Zi < oo, then either

(2.7)

or

(2.8)

Since ft(y) < a, Vy e (0, zi) we have

p(y) > exp { - YZ\e"), Vy € (0, Zi).

From (2.6) we obtain

A'OO > - [ 1 " expiYZtS)], Vy e (0, z,).

Hence (2.8) is impossible. On the other hand,

h(y) = a+ I* h'{z) dz>a + -[l- exp(yz,O],
^o Y

a contradiction to (2.7). We conclude that z, = oo. Similarly, zo = —oo.

Hence we have proved the following existence and uniqueness theorem.

THEOREM 2.3. For any a 6 R, there is a unique global solution h of (2.1) with
h'(0) = 0 and h(0) = a. Conversely, any global solution of (2.1) with A'(0) = 0 must
be the solution of the initial value problem (2.1) and (2.5) with some a € R.

3. Asymptotic behaviour

Let g be the smooth positive integrable (over R) solution of (1.1) such that g'(0) = 0
and g(0) = b > 0. Indeed, g = e*, where h is the unique smooth global solution of
(2.1) with h'(0) = 0 and h(0) = hi b. In this section, we shall study the asymptotic
behaviour of g(y) as y -»• ±oo.
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Set

P=f g(z)dz, Q= [ g(z)dz. (3.1)
JO J-oo

Then from (2.2)

= expj-y /

from which we obtain that p(y) -»• exp(—yP) as y -*• co. Hence from (2.6) we
conclude that

lim 2 ^ = lim h'(y) = - [ 1 - exp(yP)]. (3.2)

Similarly, we have

g'(y) 1

Denote A = [exp(y P) - l ] /y and B = [1 - exp(-y Q)]/y. Note that A > 0, B > 0.

THEOREM 3.1. The limit

lim [gOOe**] = C+

exists and C+ > 0.

PROOF. From (3.2) it follows that

g(y) < Ce~Ay/2 (3.3)

for all y sufficiently large and for some positive constant C. We claim that for any
k>0

|_ g(y)

Indeed, from (2.6) we have

(3.4)

lim / r ^ g + / L Em 6XP{yP) 6XP ̂  K g(z) ^ = 0,
y-*oo |_ g(y) J y-*oo Yy~X

using L'Hopital's rule and (3.3). Hence the theorem follows by integrating (3.4).
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Similarly, the limit

lim [g(y)e~By] = C_

exists and C_ > 0. This gives the asymptotic behaviour of g(y) as y -*• ±oo.
We shall now study the dependence of functions P, Q, A, B on the initial value b.

PROPOSITION 3.2. As a function ofb, P is one-to-one from (0, oo) onto (0, oo) such
that P(0+) = 0 and P(oo) = oo. The same holds for Q.

PROOF. Integrating (1.1) from 0 to oo, we obtain

P = -yb-[l-exp(yP)]/y. (3.5)

Differentiating (3.5) with respect to b, we get

P'(b) = y > 0. (3.6)
exp(yP(fc)) 1

Since P is monotone in (0, oo), P(0+) exists and is nonnegative. From (3.5) it follows
that P(0+) satisfies the relation

yP(0+) = exp(yP(0 + ) ) - l .

Thus P(0+) = 0. Also, from (3.5) it is clear that P{b) -*• oo as b -*• oo.
Similarly, we have

Q = yb + [1- exp(-)/ Q)]/y. (3.7)

The same reasoning shows that Q has the same properties as P. Hence the proposition
follows.

The following corollary is a direct consequence of Proposition 3.2.

COROLLARY 3.3. As a function ofb, A is one-to-one from (0, oo) onto (0, oo) such
that A(0+) = 0 and A(oo) = oo. However, as a function ofb, B is one-to-one from
(0, oo) onto (0,1/y) such that B(0+) = 0 and 5(oo) = 1/y.
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