
J. Functional Programming 2 (2): 213-226, April 1992 © 1992 Cambridge University Press 213

Quantifier elimination and parametric
polymorphism in programming languages

HARRY G. MAIRSON*
Department of Computer Science, Brandeis University, Waltham, MA 02254, USA

Abstract

We present a simple and easy-to-understand explanation of ML type inference and parametric
polymorphism within the framework of type monomorphism, as in the first order typed lambda
calculus. We prove the equivalence of this system with the standard interpretation using type
polymorphism, and extend the equivalence to include polymorphic fixpoints. The mono-
morphic interpretation gives a purely combinatorial understanding of the type inference
problem, and is a classic instance of quantifier elimination, as well as an example of Gentzen-
style cut elimination in the framework of the Curry-Howard propositions-as-types analogy.

Capsule review

The core type system of ML, Haskell, and other functional languages, often called the
Hindley-Milner type system, is the fundamental source of parametric polymorphism in these
languages. The seminal papers on this topic explain the core type system essentially 'from
scratch'. Mairson's paper, however, gives an alternative and provably equivalent explanation,
based on the monomorphic first-order typed lambda calculus. That polymorphism can be
explained in terms of a monomorphic type system is at first surprising, until one realises that
the essential 'trick' is to type each instance of let-bound identifiers uniquely. This also explains
why this kind of parametric polymorphism is often called 'let-bound' polymorphism.

1 Introduction

In his influential paper 'A theory of type polymorphism in programming', Robin
Milner proposed an extension to the first-order typed ^.-calculus which has become
known as the core of the ML programming language (Milner, 1978; Harper et al.
1990). The extension augmented the monomorphic type language of the first-order
typed ^.-calculus with poly types (also known as type schemes) allowing a limited form
of quantification over type variables. The expression language was similarly expanded
by introducing the construct let x = E in B where, by typing E with a polytype, the
free occurrences of x in B could be typed differently (i.e. polymorphically) by varied
instantiations of the quantified variables in the polytype. The added expressiveness of
the type language then allowed let x = E in B to be typable where the ^.-calculus
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214 Harry G. Mair son

'equivalent' (Xx.B)E might not be; the classic example of this facility is that
let I = Xz.z in / / i s typable in ML, while (XI.II)(Xz.z) is not first-order typable.

Type polymorphism has since been incorporated into a variety of functional
programming languages (Turner, 1985; Hudak and Wadler, 1988). Among its virtues
are static typing, so that all typing is done at compile time, with the guarantee that
typechecked programs will not ' go wrong' at run time; parametric polymorphism, so
that polymorphically typed code can be reused (via let) on abstract data types; and
decidable type inference, where the compiler can automatically infer the most general
type information (the so-called principal type) for an expression, so that any typing
for the expression is a substitution instance of the principal type.

To what extent is Milner's proposal of type polymorphism necessary to achieve this
degree of parametric polymorphism? Surprisingly, the type language of the first-order
typed ^.-calculus is sufficient to support ML-style parametric polymorphism, as long
as we use the following inference rule for typing fef-expressions

r > £ : T 0 T\>[E/x]B:x1
K ' T\>letx

Any ML program without free variables that is typable in the standard
Milner-Damas inference system (Damas and Milner, 1982) is also typable using the
classical Curry inference system (Curry and Feys, 1958) augmented with the above
rule. Hence, parametric polymorphism as realized in ML may be achieved within the
framework of type monomorphism.

Observe that the above inference rule realizes parametric polymorphism ('code
reuse') explicitly through the expression [E/x]B: namely, each free occurrence of x
gets replaced with a separate copy of the program E. The example of typing let I =
Xz.z in //, for instance, is reduced to typing (Xz.z)(Xz.z), so each Xz.z may be typed
differently. The effect is the same as considering the expression to be a marked redex
(XI.II)(Xz.z)1 in the theory of labelled reductions (Barendregt, 1984).

The monomorphic realization of ML's parametric polymorphism is not new. A
recent survey of type systems in programming (Mitchell, 1990) attributes the
observation to Albert Meyer. An earlier appearance of the idea is found in the
dissertation of Luis Damas (1985), and in fact a question about it is found in the 1985
postgraduate examination in computing at Edinburgh University (Sannella, 1988).

In this paper we present a simple and easy-to-understand explanation of ML type
inference in the framework of type monomorphism, where we prove its equivalence
to the standard interpretation using type polymorphism. In addition, we analyze an
extension of the ML inference system proposed by Alan Mycroft (1984) allowing
fixpoints where the variable appearing in a recursion equation may have a
polymorphic type. While type inference for this system is not computable (Kfoury et
ah, 1990), we show that the inference system nonetheless has a purely monomorphic
interpretation.

We believe that the monomorphic interpretation is important because it gives a
purely combinatorial understanding of a significant fragment of the Girard/Reynolds
second-order polymorphic typed X-calculus (Girard, 1972; Reynolds, 1974). It also
provides a classic example of quantifier elimination, which in the context of the
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Curry-Howard propositions-as-types analogy serves as a sort of Gentzen-style cut
elimination. The simple combinatorics of the monomorphic interpretation, which
reduces the problem of type inference to first-order unification (Robinson, 1965), has
played a central role in a complete analysis of the computational complexity of ML
type inference (Kanellakis and Mitchell, 1989; Mairson, 1990; Kanellakis et al, 1991)
as well as providing insight into the first significant lower bounds on type inference
for higher-order typed X-calculi (Henglein and Mairson, 1991).

2 Preliminaries

2.1 Expressions

We consider ML expressions defined by the grammar

&••— x\SS\ Xx.S|let x = £ in S|fix*.8

where x ranges over a set ~f of expression variables. Excluding expressions of the form
fix x. E where EeS, the language considered is known as Core ML (see, for example,
Mitchell and Harper, 1988). The syntax of Core ML is just that of the .̂-calculus
augmented with the polymorphic let construct. We write FV(E) to denote the free
variables of E. We allow a-renaming and (3-reduction as in the ^.-calculus, as well as
reduction of fef-expressions following the rule

letx = E in B ->fcr [E/x] B

For more details concerning reductions in the ^.-calculus and ML, see Barendregt
(1984), Hindley and Seldin (1987), and Harper et al. (1990).

2.2 Types

The syntax of types is given by the grammar

where / ranges over a set 2TV of type variables. We refer to x e ST^ as monotypes, and
ce&~ as poly types (sometimes also called type schemes).

We define a partial order =̂  on ^"0 as TX =̂  x2 iff there exists a substitution Z: yv
-> ^"0 such that STJ = T2, where = denotes syntactic equivalence (overloaded for use
on expressions as well). We interpret polytypes as sets of monotypes, using the
following interpretation:

<a> = {a} where a is a monotype

<W.oc>= U <[t//]a>,

where [t/t] a denotes the substitution of T for free occurrences of t in a.
The interpretation of polytypes as sets of monotypes allows the definition of a

partial order E on 2T: we write CTX e CT2 iff<o-2> <=, <fs^). It is easy to see, for instance,
that Vr.a e [i/t]a for any polytype a and monotype x. Note the minimal element of
ST is V7. t, since <V7. t} = 2T0. We further define an equivalence relation on ST as cl

9 FPR 2
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= <52 iff <o2> = <(?!>, and write [a] to denote the equivalence class {a: a s a}. (This
equivalence class definition will be used when we wish to argue that the names and
order of bound variables in a polytype are not significant.) When a is a polytype,
we write a to dehote the monotype derived by removing all quantifiers from a; when T
is a monotype, we write V. T to denote the polytype derived by quantifying over some
subset of type variables in x.

2.3 Inference rules

Expressions are associated with types using a fixed set of inference rules. We describe
two such systems of rules: the first being the standard one given by Damas and Milner
(1982), which we call the polytype system, and the second one a variant called the
monotype systefti. As its name suggests, the monotype system associates expressions
with monotypes only. The major point of this paper is to show simply why this
limitation is riot truly a restriction.

The inference rules manipulate an expression called a type judgement, written F O
E:a, where Eei, ae&~, and T:FV{E)^$~. The type judgement is read as 'with
environment (context) F, expression E has type a.' In the ^.-calculus, environments
associate values to free variables in an expression, while in this case the environment
is used to associate types with the free variables. We write tvY O E:a (respectively,
tMF[> E;a) to mean that T\>E:c is a derivable judgement in the polytype
(respectively, monotype) system.

We give below the inference rules for the polytype and monotype systems. The
polytype system is due to Damas and Milner (1982), and the monotype system is
essentially due to Curry and Feys (1958) augmented with the rule for let. Observe the
use in rule (letP) of types with quantifiers (namely, the binding for x), requiring the
rules (genP) and (instP) for quantifier introduction and elimination. For more details
on type inference rules, we recommend Milner (1978), Cardelli (1984), Hancock
(1987), and Wand (1987).

2.3.1 Core ML inference rules for the polytype system

(varp) T[){x:a}t>x:a

, . . T\>E:Vt.a(t)
(instP)

(absP)

F > £ ' : C T r\J{x:a}\>B:z
T\>letx = E'mBw
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2.3.2 Core ML inference rules for the monotype system

{appM)
F [> MN: •

(absM)

rt>[E/x)B:
T[>letx = EmB:x1

3 Equivalence of the polytype and monotype systems

What should it mean when we say that the monotype system is 'equivalent' tp the
polytype system? A first guess might be that for any expression E, monotype t, a'pd
context F, \-pr$> E:x if£\-MT[> E:x. However, if F contains poly types, it is not a
valid context for a monotype judgement. Unfortunately, if we try I— P F O E: x iff \-M

T0[>E:x, where Fo are the monotype bindings of F, the statement is not true:
consider I-P {/: W. t -* t} p> / / : t -»-1 iff \~M 0 (>//:? -> t - the monotype judgement is
clearly false.

A second guess might be to insist that E be a closed term. A proof along these lines
can indeed be given, where we proceed by a double induction on the structure bf E
and the maximum number of fef-reductions needed to reduce E to fef-normal form
(see the Appendix of Kanellakis et al, 1991). However, the proof is overly tedious and
technical, and requires an understanding of minimal complete developments in the X-
calculus (Barendregt, 1984; Hindley and Seldin, 1987). But most of a|l, it contradicts
an overwhelming sentiment that the equivalence we want is something very simple
which should be easy to prove. What, then, should the equivalent of \-P{I:Vt.t-+t}
\>II:t^t be in the monotype system? (Note / / is not closed.) We propose the
following: the monotype equivalent should be V-M0 \> [E/I]H: t^t, where [E/I]II
is a closed term, and \-p 0\> E:Vt.t-*t. Of course, we are thinking in this case of
E=Xz.z.

What justifies this specification of equivalence? Polytypes are a kind of shorthand
in the spirit of 'code reuse' and the Gentzen 'cut'. In identifying an expression
variable with a polytype, there is an implicit assumption that a piece of code exists
with that type; what we have done in this example is simply to insert the code in place
of its variable representative.

Generalizing from the example, we propose the following as a reasonable definition
of 'equivalence'.

Definition 3.1
Let T = {w1: ax, w2; a2,..., wm: am} be any context of monotype bindings, and F ' =
{^i: Pi. y2 '• P2> • • •. yn '• Pn} be any context of polytype bindings. Let & = {Flt F2,..., Fn)
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be a set of terms where p, is the principal type of F}\ specifically, we insist that for
1 ^j^n,

where p̂  is P, with all quantifiers removed.
Given this framework, we can say precisely what is meant by equivalence. Let E be

any term and T be any monotype; then

\-pr\jT'\>E:x if and only if \-MT\>[Fl/y1\[FM...[FJyn\E:x (1)

It is clear, and indeed natural, that the equivalent monotype judgement should be
contingent on the explicit substitution of code represented at the type level by
polytypes. In the case of a closed term E with empty contexts, we have I— P 0 [> E:
x iff \-M0\> E:x, as in Kanellakis et al. (1991). However, inspired by the example
of Tait's (1967) strong normalization theorem for the first-order typed ^.-calculus, we
have facilitated the proof by strengthening the induction hypothesis of what is to be
a syntax-directed induction on E.

Before continuing with the proof, we introduce a standard structural lemma
allowing us to 'normalize' derivations in the polytype system for use in a syntax-
directed proof.

Lemma 3.2
Let H\—P F [> E: V. x where T is a context, x is a monotype, and V denotes a (possibly
empty) list of quantified variables. Then if E is not a variable, there exists a proof
H'\-p r [> E: x where the last rule used in II' is either (varp), (absP), (appP), or (letp).

Proof
Observe that H\~P T [> E: V. x is a syntax-directed proof, except for the use of (genP)
and (instP). The lemma states that the final uses of (genp) and {instP) can be removed.
The proof proceeds by induction on the number of such uses; in the basic case, clearly
V.TEt.

For the inductive step, we must consider only two cases:

Case 1: The proof n ends using the rule (genP)

. , r>JE:V.T(p
(genP)

Simply remove the last step of the proof to remove one quantifier from the type, and
apply the inductive hypothesis.

Case 2: The proof II ends using the rule (instP)

r>£ ' :V.x(a)
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where a is a monotype. Observe that the last rules appearing in the proof are a series
of uses of (genP) and (instP), where the former adds a quantifier, and the latter
removes a quantifier. As such, they act like a stack. Identify the point (I) in the proof
where / is universally quantified

, r>£ :V.T ' (0
(genP) ~-^-

Ft>£:W.V.x'(»

We now proceed as follows:

1. In the subproof rooted at (I), replace all free occurrences of t by a.
2. In the deductions from (I) until the end of the proof, remove the binding W,

replacing newly free occurrences of t by a.
3. Remove the conclusions of (I) and the final inference. The proof now has two

fewer uses of (genP) and (instP), so we can apply the inductive hypothesis. •

Given the lemma and the stated assumptions on F, F', and OF, we prove the above
statement (1) in Definition 3.1 via structural induction on E, proceeding by case
analysis. We assume by renaming that no variable is bound or quantified more than
once.

Case E=wt

Then necessarily x = a, and I— P F U F ' [> w,: a(; since [Fj/yJ [F2/y2]. •. [Fn/yn] w( = w0

the result is immediate.

Case E = yj
In the forward direction, assume I— PFU F' [>y}:x. Since I-PFU F' [> y}: P; is a
principal typing, we know P; E x; since x e ̂ "0, we know there exists a substitution £
such that 1 $ = x. But since [FJyJ [F2/y2]... [FJyJy, = [FJyJ [F2/y2]... [F^Jy^] Fp

and
n \-M r > [FJyJ [F2/y2]... [F^/y^F^

we know
^ M r > [FJyJ [F2/y2]... [F^/ j^J F,: x

by applying I to all types appearing in the proof II.
In the reverse direction, suppose I - M F > [FJy^[FJy2]...[Fj_Jyj_^\Fj:x; then by

principality we know Sj^ = x. Given \-P F U F' > y}: p ,̂ we derive I-P T U F' > y}: x by
instantiating the V-bound variables of P̂  according to X.

Case E=GH
To prove 'only if, if \-pT U F' > GH: x, then \-pr U F' > G: T'-»- X and \-P F U F' >
H: x' for some monotype x', by Lemma 3.2. From induction on G and H, we know
\-M T [> [Fi/^j] [Fj/j'j]... [Fn/^n] G: x' -»• x and I-M F > [F^^J [F2/j2]... [FJyn] H: x',
so the result follows by use of(appM). Note the implications are all reversible, except
that Lemma 3.2 is not needed.
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Case E = Xx.G
To prove' only if, if \-p F U F' [> Xx. G: x' -> x" where T = x' -» x", then by Lemma 3.2
we know I— P F U {x:x'} U F' [> G:x". By induction on G (with a larger monotype
context, since the binding for x is added), we have \— M Y U {x: x'} [> [FJ /JJ [^/j2] • • •
[FJyn] G: x", and by (absM), \-M F 0 [F,/^] [Fg/j/J... [FJyn] Xx. G: x' -> x". Again, all
implications are reversible.

= lety^G in H
\{\-PT\jT'\>lety = GinH\T, then by Lemma 3.2 and (fefP), H,, F U F' > G: a for
(principal) polytype a, and I-P F U F' U {j : CT} D> / / : x. By (instP), \-P T U F' > G: a, so
by induction on G we have a proof

n \-M F > fl/j/J [/?/;;J ... [FJyn] G: o.

Hence by induction on H with polytype context {yl:$1,y2:$2,...,yn:$n,y:o} and
associated code {Flt F2,..., Fn, G} we have \-M F > [ i^ / j j [F2/>^2]... [FB/^J [G/j] H: x,
which we rewrite as KM F > [[i^/jj [F2/y2]... [FJyn] G/y] [FJy,] [F2/y2]... [FJyn] H:
x. Using proof n above and (letM), we then have a proof of

KM F > lety = [FJy,] [F2/y2]... [FJyn] G in [FJyJ [FJy2]... [FJyn] H: x,

which is syntactically identical to

^ r > [FJyJ [F2/y2]... [FJyJlet y = G in H: x.

Once again, the argument is reversible.
Given our above definition of equivalence, we then have:

Theorem 3.3
The polytype and monotype inference systems for Core ML are equivalent.

Corollary 3.4
Let E be a closed term and x be a monotype. Then \-P0\> E:z if and only if

3.1 Parametric polymorphism, cut elimination, and proof theory

In the well-known Curry-Howard propositions-as-types analogy, we read E: a not as
'expression £"has type CT', but 'expression Eis a proof of proposition a'. In this case,
the function ->• in types is read as iogical implication. An environment F then serves
as a set of labelled assumptions, so that a type judgement F [ > £ : a elaborates a
logical sequent f I— a.

Proofs in sequent calculus, like type derivations, can be written in the form of trees,
where the leaves form propositional hypotheses. The logical formalism of cancelling
hypotheses via -^-introduction is reflected in removing type assumptions and
introducing ^.-abstraction. (For a further detailed but elementary discussion, see van
Daalen, 1979.)

The process of (3-reduction in the simply typed ^.-calculus can be interpreted as a
transformation on proof trees: if UM \— F[> "kx.M: x,-*x2 and n ^ HF[> N:zx,
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by modus ponens we get YlMN h f | > (Xx. M) N: x2. In this case we also know I— F [>
[N/x]M:x2, since Yl'M\-Y \}{x\x^[> M:x2; we replace the assumption X:T1 (ap-
pearing as a leaf in the proof tree n^) by the subtree (proof) TlN. Interpreted at the
proof theory level, this transformation is an example of what is called, after Gentzen
(1969), cut elimination, since (kx. M) N represents a proof where xx is proved once, a
'shortcut' over [N/x]M, which may require many proofs of Tr

The parametric polymorphism in Core ML introduced by the let construct can be
viewed as a more powerful form of cut-elimination. The cut-elimination via 0-
reduction allows one proof of a V-free proposition to be used several times, while cut-
elimination via fef-reduction allows one proof of a proposition to be used several
times, provided that the ' use' is always monomorphic (V-free). Rather than prove P
= {a -> a, P -> p, (a -»• P) -> (a -> P)}, for example, we construct one proof ofVt.t->t,
and instantiate t appropriately. The propositions in P have a most general unifier,
namely a proposition n such that n =̂  p for each p e P. We make the related
observation that the monomorphic inference rules for Core ML show that the
principal type property proved in Milner (1978) is a straightforward consequence of
the existence of most general unifiers in the first-order domain.

Similar to P-reduction, fef-reduction can be viewed as a proof transformation.
Since the expression let x = Em B may have a polytype assigned to x, each use of E
in [N/x] B can instantiate the quantifiers differently. The ' same' proof is recycled to
generate structurally similar propositions.

4 A characterization of polymorphic recursion by monotypes

The inference rules we have described thus far for typing ML programs do not include
a rule for typing fixpoints, and hence do not allow recursion. In ML, fixpoints are
constrained to be monomorphic; as such, the polytype system is usually extended
with

ffi , T[){x:x}\>E:x

It is not difficult to show that when this rule is added to the polytype system, \—P F
[> ftxx.E.xiff \-PFt> Xx.EqEx:x, where Eq = Xp.Xq.Kp(kr.K(rp)(rq)), given the
usual definition K=Xx.Xy.x, since Eq has principal type Vt.t^t->t. As a
consequence, adding monomorphic fixpoint does not make type inference particularly
more complex.

Alan Mycroft (1984) proposed a more powerful variant to the above rule, whereby
fix-bound variables could occur polymorphically

(- , T[){x:a}\>E:a
^ p) r > f i x x . £ : a

In this rule, a is a polytype. It has recently been shown by Kfoury et al. (1990) that
type inference in the presence of such a polymorphic fixpoint is undecidable.
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In this section, we show that polymorphic fixpoint can also be described using type
monomorphism only. As the polymorphic inference system has been augmented with
the rule (fixp), we add the following rules to the monotype system

Tt>Ek:z
T\>fixx.E:z

where for any term E with free variable x, we define

F = \ = fiv v v
X^Q — _1_ — 11A A, . A

E1 = let x0 = Eo in [xjx] E

Ek+1 = let xk = Ek in [xjx] E

Henceforth, we refer to the polytype system as augmented with rule ifixP), and the
monotype inference systems as augmented with rules (1M) and (fixM). We observe
that, properly speaking, (fixM) is actually a rule schema, since its syntax varies with
the integer k. However, it should be noted that all the inference rules are actually
schemas! The monomorphic rules for typing polymorphic fixpoint have a simple
explanation. An initial approximation ±:Vt.t is made for the fixpoint, and the
principal types of the Ek are repeatedly computed to better approximate the fixpoint
until (possible) convergence.

To carry out this approach, we must show that for a given term Ek with principal
type \ik approximating the least fixpoint, and a known (type) fixpoint a of fixx.E in
the polytype system, it follows that the principal type Uj.+1 of Ek+1 = let xk = Ek in
[•**/*] E always satisfies \ik E \ik+1 E a. Since there are (up to renaming of V-bound
variables) only a finite number of types a' satisfying cr' E a, we know by a pigeonhole
argument that the sequence must converge. (We could instead show that the types
form a complete partial order, from which convergence of the sequence is assured, but
we prefer to proceed using a more combinatorial approach.)

We begin by indicating how polytype inferences can be derived from monotype
inferences.

Proposition 4.1
Let r , r , F be defined as in Definition 3.1. If

• • • [FJyn] E} •. p

is a principal typing for _/£{&,£+ 1}, and E is fix-free, then \-pT U F > fixx.E: u.

Proof

By Theorem 3.3, we know that

\-P T U r ' > let xk = Ek in [xjx] E: u,

so that hprur'U{x:(i}t>£:n,
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and hence by rule (fixp)
\-pr \J T'\> fixx.E:\i. •

Observe that in the above Proposition, u must be the principal type of Ek and Ek+1,
as principality is required for the proof of Theorem 3.3. To prove the converse,
namely that monotype inferences can be derived from polytype inferences, a bit more
detail is required. We begin with the following simple observation:

Proposition 4.2
If \-p F U P > fix x. E: a, then h p r u F > £ t : o for all k 5= 0, and the principal type
\ik of Ek in environment F U F' satisfies \ik E a.

Proof
By induction on k. The case k = 0 is trivial. For k ^ 0, recall by (JixP) that I-P

F U F' U {x: <T} > £: a. To show the same judgement holds of Ek+1, observe that as
Ek+1 = let xk = Ek in [xk/x]E, we must have by (letP)\-PFU F'C> Ek:& and \-P

F U F' U [xk: CT'} C> [xt/x] £: a ; by inductive hypothesis, take a' = cr. Since fix x. E is
typable, then all the Ek are also typable. As such, each Ek must have a principal type
jit = o. D

Our goal is to now show that some successive Ek, Ek+1 must have the same principal
type.

Proposition 4.3
For all types a, Sfa = {[a]: a E a} is a finite set.

Proof
Define the length of a monotype as |?| = 1, ITQ-^TJ = |TO| + |T|. If a E O, then <<x> 2
<CT>, hence a e <a>. Since \[x/t] PI > IPI (substitution cannot decrease length), we know
|a| < |5|, and without loss of generality, the number of quantifiers preceding a in a is
bounded by |a|. •

Proposition 4.4
Let \-P F > E{: \x( be a principal typing, where E is fix-free. Then for all / ^ 0, n( E

By induction on i. The basis is when / = 0: in this case, no = V(./£ ji1.
For the inductive step, assume by inductive hypothesis that \it E u<+1. Then HP

F U {x: uj C> £: ^i+2, since we can take the proof \-PT\J{x: u(+1} [> E: u(+2, and note
that any instantiation of x: (x(+1 to a monotype can also be carried out if x: \i(. Since
\-P T > E(: n(, by (ferP), it is clear that I-P F > £(+1: n(+2. By the principality of \-P F
p> E(+1: n,.!, we then know that u(+ E u(+2. D

Lemma 4.5
Let £ be fix-free. Then h-P F U {x: a} [> E: a if and only if there exists k ^ 0 and type
a' = a where l-p F [> Ek: a' and I-P F > £i+1: cr'.
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Proof
Proposition 4.1 proves the ' i f direction. As for 'only if, recall that y o = {[a]:a E
a}. By Proposition 4.2, f i ,Eo for all / ̂  0, hence [ n j e ^ . As Sfa is finite by
Proposition 4.3, there exists by the pigeonhole principle 0 < k < ( ^ |5^| where [uj
= [u,]. But by Proposition 4.4, \ik e U;fc+1 E ^ hence [nj = [ut+1]; take a' = nk. D

Finally, we can state the equivalence theorem for the polytype and monotype
inference systems with polymorphic fixpoint:

Theorem 4.6
Let T,T',!F be as in Definition 3.1. Then

l - p r u r > £ ' : o if and only if \-MT > [F1/y1][F2/y2]...[FJyn]E':o.

Proof
We augment the induction proof of Theorem 3.3 with the case E' = fixx.E. Without
loss of generality, assume a is a principal typing. If I— PT U P [> fixx.E: a, then by
the argument of Lemma 3.2 \-p T U T' U {x: a} [> E: a.

If £ is fix-free, by the previous Theorem there exist k > 0 and a ' E o such that I— p

F \JT' \> E}:a' for je{k,k + 1}. Since the Et are fix-free, by Theorem 3.3 we have \-M

r>[F1/y1][FI/y2]...[FJyn]Ej:&. Let E=[F1/y1\[FJys\...[Fn/yn]E, so that
I - M r > 4 : a ' for ye {A:, A;+1}; by (/zxM) we have \-MT t> fixx.£:o'. However, note
that fixx.E = [FJy,][FJy2]...[FJyn]fixx.E.

In the case that E is not fix-free, we observe that using the inductive hypothesis, the
above claims about fix-free expressions also hold with such stipulation. We then
repeat the argument. •

5 Final remarks

It seems obvious that the polytype and monotype inference systems should be
equivalent in their expressive power. When we use an expression defined with let and
having a polytype, we instantiate the quantified type variables to be in accordance
with the type context. Had we the code instead, we could type the code differently in
each instance. In the ML module system, identifiers are bound to types without code,
so that type inference can still take place; an obvious use for this facility is in
incremental compilation. Of course, the module could instead give the code, but in
practice the type is shorter. There are, however, examples where the type is much
larger than the code, and these pathological examples provide the foundation for
lower bounds on type inference (Kanellakis and Mitchell, 1989; Mairson, 1990;
Kanellakis et al., 1991). In short: most general specifications (i.e. types) can be
considerably longer than the programs implementing the specifications when the
specification language is rich enough.

The equivalence proofs we have given are based on a fairly straightforward
structural induction. The contribution of this paper, for the most part, is to give a
precise definition of the equivalence. The lesson is simple: type polymorphism is not
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needed when you do not reuse code, and instead use separate copies of the same code.
Our equivalence proofs explain a theory of type monomorphism in programming,
where it becomes clear that the type polymorphism found in ML-like languages
admits straightforward quantifier elimination procedures.
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