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IN MEMORIAM: J. MICHAEL DUNN, 1941–2021

The history of relevance logic cannot be written without mentioning J. Michael Dunn who
played a prominent role in shaping this area of logic. In the late twentieth century, he was a
doyen with a world-class reputation in the field of philosophical logic. Dunn’s research also
encompassed logics outside of relevance logic, from 2-valued first-order logic to quantum
logic and substructural logics such as the Lambek calculi, intuitionistic logic, linear logic, etc.
Each of the disciplines of philosophy, mathematics, and computer science has been impacted
in intrinsic ways by some of the theorems proved by Dunn.

Jon Michael Dunn was born in Fort Wayne, Indiana, on June 19, 1941, and he passed away
on April 5, 2021, in Bloomington, Indiana. After attending high schools in Fort Wayne and
Lafayette, he obtained an AB degree in philosophy from Oberlin College, Ohio, in 1963. Dunn
completed his Ph.D. Thesis entitled The Algebra of Intensional Logics at Pittsburgh University
in 1966; his thesis supervisor was Nuel D. Belnap. In 1969, Dunn was appointed an associate
professor in the Department of Philosophy at Indiana University in Bloomington, Indiana,
and he stayed on the faculty at IU until 2007, when he retired as University Dean of the
School of Informatics, Oscar R. Ewing Professor of Philosophy, Professor of Informatics,
Professor of Computer Science, and Core Faculty in Cognitive Science. Dunn supervised
14 Ph.D. students in logic and 3 Ph.D. students in other areas of philosophy. He taught
advanced graduate courses in logic, including courses on 2-valued logic (metalogic), modal
logic, algebraic logics, and substructural logics. Dunn was the founding dean of the School of
Informatics, and he served in other administrative positions such as Chair of the Department
of Philosophy and Associate Dean of the College of Arts and Sciences in previous years.
Dunn held multiple research grants and visiting positions at universities in the US, Europe,
and Australia. Dunn, for his contributions to Indiana University, was honored by the IU
Provost Medallion in 2007. The state of Indiana bestowed on Dunn the rank and title of
Sagamore of the Wabash the same year. Dunn was elected a Fellow of the American Academy
of Arts and Sciences in 2010.

The logic of relevant implication R combines Church’s “weak implication” with lattice
connectives and De Morgan negation. Alternatively, R results from Ackermann’s system
Π′ by omitting a rule (the so-called � rule) and adding permutation. Dunn started to
investigate R from an algebraic point of view in his Ph.D. thesis [14]. This research continued
the study of distributive lattices with De Morgan negation already underway in [1, 4, 5,
35, 43]. Dunn showed that 4, the four-element lattice with two incomparable elements on
which negation has fixed points, plays a fundamental role among De Morgan lattices,
and hence, for first-degree entailments fde; (the implication-free fragment of R and of
the logic of entailment E). Dunn proved—using methods similar to those Stone utilized
in his representation of Boolean algebras—that every De Morgan lattice is embeddable
into a product of 4, that is, into

∏
i<κ 4i , where κ ≤ �2 and � is the cardinality of the De

Morgan lattice. Whenever possible, Dunn generalized theorems to complete lattices, complete
homomorphisms, complete embeddings, and similar notions, which, strictly speaking, go
beyond the purely algebraic approach. He also defined a new interpretation for fde that relies
on pairs of sets of situations. Later, Dunn defined the four values (true, false, both, and
neither) that emerge in the interpretation of fde as subsets of {T, F }, and Belnap provided
motivations for these values by appeal to databases. Nowadays, this logic is often referred
to as Dunn–Belnap (or Belnap–Dunn) logic (cf. [48]). The algebraization of R revolves
around two concepts: residuation and the intensional truth constant (denoted by t). Relevant
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implication (→) is not a residual of conjunction (∧)—unlike intuitionistic implication. Dunn
introduced an intensional conjunction connective (◦) and treated→ as its residual. He defined
De Morgan semi-groups and showed that the Lindenbaum algebra of R is not free in the class
of De Morgan semi-groups. However, once t is added to R (conservatively), the Lindenbaum
algebra of Rt is free in the class of De Morgan monoids. This algebraization of propositional
R parallels the algebraization of 2-valued propositional logic as a Boolean algebra.

Dunn and Belnap proved in [36] that 2-valued first-order logic (fol) is incomplete with the
substitutional interpretation of quantifiers. The latter approach to quantification is popular
in some introductory logic courses, presumably, because it bypasses the function that assigns
elements of the domain to variables. A simple form of this incompleteness is practically
obvious to anybody who is familiar with standard definitions of the language and the
interpretation of fol; however, [36] proved incompleteness in a stronger sense using Gödel’s
incompleteness theorem. Dunn and Belnap also pointed out a notion of logical consequence
that is not subject to this sort of incompleteness. To wit, logical consequence that is invariant
under extensions of the language by new name constants circumvents the crucial step in
the incompleteness argument; this notion is pivotal in Henkin-style completeness proofs for
first-order logics.

Algebraic investigations of relevance logics by Dunn led to a proof of the admissibility
of � in joint work with Robert K. Meyer. The � rule (as a rule of inference) was omitted
from Ackermann’s Π′ calculus giving the logic E. [47] showed that if both A and ∼A ∨ B
are theorems of E, then so is B; similarly, for R and T (the logic of ticket entailment). This
resolved one of the most intriguing open problems concerning E (cf. [30] and [47]). ∼A ∨ B
may be written as A⊃ B to resemble material implication, and then the admissibility of
� means that detachment for ⊃ is ok on theorems. Another way to view the � rule is as
“disjunctive syllogism,” which has a fascinating history (cf. [2, §25], [3, §82]). Urquhart [51]
provides an account of how Dunn and Meyer came up with their proof.

Dunn proved that � is admissible for R-mingle (RM), which adds the mingle axiom (M)
A→ (A→ A) to R. (Incidentally, RM was created by Dunn to parallel EM, which was
suggested as a potentially interesting logic by Storrs McCall; see [2, p. 94], [13].) The addition
of the axiom A→ (B → A) to R reduces it to 2-valued logic; however, RM is neither of
those logics. Infinite Sugihara matrices, which are linearly ordered, are characteristic for
RM, but for instance, 	RM (A→ B) ∨ (B → A) and 	RM (A ∧ ∼A) → (B ∨ ∼B) are
not theorems of R. In [15], Dunn proved that RM is pretabular, and its extensions that have
a finite characteristic Sugihara matrix without 0 admit �. A similar pretabularity result was
proved for LC (Dummett’s logic) in [38] by Dunn and Meyer.

R-mingle turned out to be a very fruitful logic—despite its “not-quite-relevant” nature.
The first relational (or Kripke-style) semantics for an intensional logic—beyond modal
and intuitionistic logics—was defined for this logic. Dunn in [18, 19] gave semantics for
propositional R-mingle and first-order R-mingle using model structures with a binary
accessibility relation. The linear order of Sugihara matrices might hint at a reason why
such a semantics works; however, another novelty in the semantics is equally important.
Namely, Dunn defined a 3-valued semantics, which is unlike the common 2-valued semantics
for modal logics and for intuitionistic logic (cf. [44–45]). The third value is the result of a
formula getting both “usual” truth values (i.e., T and F); that is, the motivation for the third
value here is different than in Ł3 for 1

2 , or in Bochvar’s and Kleene’s 3-valued logics where
truth-value gaps are introduced. Truth-value gluts have appeared, later on, in other logics,
for instance, in LP (the logic of paradox).

The three-variable fragment of R-mingle (RM3) has a 3-valued linearly ordered
characteristic matrix, which can be viewed as { – 1, 0,+1 } with the usual ≤. 0 is its own
negation; thus, the filter [0) contains an “inconsistent element.” Dunn in [21] used this 3-
valued logic to show that there is a three-element model of Peano arithmetic (PA) that does
not make formulas that are not theorems of PA true (but it makes all theorems of PA at least
true). A similar result follows for type theory. These theories illustrate Dunn’s general theorem
about 3-valued structures; the latter emerge, for instance, when the homomorphic image of a
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structure results by a(n operational) homomorphism that is not a relational homomorphism.
Arithmetic and type theory may be formulated in the language of a relevance logic such
as R. If those theories contain the theorems of their 2-valued counterparts and admit the rule
�, then an elementary proof of the absolute consistency of the 2-valued theories results. The
difficult steps in carrying out this plan are (i) finding a suitable formulation of the relevant
version of a theory and (ii) showing that � is admissible. An example provided by Dunn in
[20] pertains to Robinson’s arithmetic Q. QR (with 0 included) collapses into Q. Roughly
speaking, the culprit is 0, or more precisely, �x. x × 0 being a constant function that (of
course) yields 0 for any argument. Multiplication by 0 is not unlike the combinator K with
reduction axiomKxy � x, which “disregards” y, or in other terms,Kx is a constant function.
Dunn proved that relevant Robinson’s arithmetic of positive integers is not Q(1) (2-valued Q
without 0). Then in [23], Dunn formulated OM#, arithmetic as an extension of orthomodular
logic—owing to the craze in philosophy about the “One True Logic” (orthomodular logic) at
the time. He demonstrated that OM#, orthomodular arithmetic proves the distributivity of ∧
and ∨. Furthermore, orthomodular logic with a minimal amount of extensionality collapses
into 2-valued logic. Dunn continued to scrutinize the interactions between extensionality and
components of a logic such as the constants T and F as well as theorems such as truth table
generalizations of excluded middle in [26]. He proved that such ingredients—independently of
other features of a logic—suffice to reduce a higher-order logic to 2-valued higher-order logic.
Dunn investigated applications of quantified relevance logics with identity to philosophical
problems in a series of papers [25, 27–29, 34]. Often, distinctions are made between various
kinds of properties such as intrinsic and essential properties, and there is no agreement in
the philosophical literature as to existence being or not being a predicate. Relevance logics
provide a more expressive framework than modal logics do (let alone fol does) to analyze
such problems.

Dunn also worked on the proof -theoretic aspects of relevance logics. He introduced LR+,
a sequent calculus for R+, the positive fragment of the logic R in [16]. Relevance logics avoid
provingA→ (B → A) (the arrow version of the positive paradox) as a theorem, which means
that the left weakening rule cannot be adopted as a rule in a sequent calculus. An innovation
in LR+ is that formulas can form two kinds of sequences that are indicated, respectively,
by , and ; . Comma corresponds to ∧, whereas semi-colon turns into ◦ on the left-hand side of
the 	 , and weakening is a rule only for sequences built with comma. Another novelty inLR+

is the presence of t , which is essential in applications of the cut rule where the left premise is a
theorem (i.e., the 	 has nothing on the left). The insertion of t instead of the invisible empty
sequence precludes the conflation of the two kinds of sequences of formulas (and thereby, it
prevents bogus proofs of non-theorems to count as proofs). Dunn in [17] also showed that
the most natural version of analytic tableaux in the style of Jeffrey formalizes fde (rather than
2-valued logic). Further, [22] gave a straightforward step-by-step method to find out whether
a 2-valued theorem of the form A⊃ B (with no ⊃ in A or B) is an fde theorem A→ B (with
¬ rewritten as ∼).

The cut rule, in some form, is desirable in a sequent calculus, because it facilitates a proof
of the replacement theorem as well as a proof of the equivalence of the sequent calculus
formulation of the logic with its axiomatization. The cut rule, on the other hand, violates the
subformula property; hence, its presence is sometimes undesirable. The admissibility of the
cut rule, which delivers the benefits without the drawbacks, can be proved syntactically, but
also semantically. Dunn and Meyer in [39] used insights from proofs of the admissibility of
� to prove the admissibility of the cut for K1, Schütte’s formulation of fol. This was the first
conceptually new proof of the cut theorem for fol since the 1950s.

Curry noted a similarity between certain combinators and structural rules in the sequent
calculi LK and LJ . The positive or the implicational fragments of the relevance logic B can
supply the context to make this analogy precise. Dunn and Meyer in [40] introduced sequent
calculi in which structural rules are fully supplanted by combinatory rules, hence the name
“structurally free logics” for this group of logics. Indirectly, the ideas in structurally free logics
together with the connections between implicational fragments of relevance logics and the
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simple principal type schemas of (proper) combinators led to a solution of an open problem
by Dunn and Bimbó around 2010. [9] introduced a new sequent calculus for R→ (denoted
by LT t©→ ), which extends a sequent calculus for Tt→ (from [6]). Then [10] showed how three
sequent calculi, LRt→, LT t©→ , and LT t→, plus the decidability of Rt→, can be combined to
prove the decidability of T→, that is, the decidability of implicational ticket entailment.

The proof-search tree approach to decidability, which is based on sequent calculi and
originated with Curry, was adapted to relevance logics (to E→ and R→) by Saul A. Kripke.
Meyer showed that LR (lattice-R) and LR� (lattice-R with necessity) are decidable. LR
differs from R by omitting the distributivity of conjunction and disjunction, and the � in
LR� is like the “exponential” ! , which makes LR� similar to LL (linear logic). [11] (cf.
[12]) showed that LL (which has been believed to be undecidable for decades) is decidable,
like a handful of other closely related logics.

Dunn claimed in his autobiography [7, p. xxix] that he had no grand research program.
However, he invented a grand framework—gaggle theory—to deal with the semantics of
substructural logics. The set-theoretical semantics that Dunn defined for RM did not seem
to generalize to R or E. After the introduction of the Meyer–Routley semantics [49], together
with the operational semantics of Urquhart [50] and the operational–relational semantics of
Fine [42], Dunn started to develop a theory of set-theoretical semantics that would encompass
a range of semantics somewhat similarly as the Jónsson–Tarski representation provides
semantics for a range of logics the Lindenbaum algebra of which has a Boolean algebra
reduct. Dunn gave the first “gaggle talk” in 1979, and presented the whole framework in a
series of papers in the 1990s [30–33], and further, in two books in the 2000s [8, 37]. Gaggles
(of various kinds) are algebras, many of which are reducts of the Lindenbaum algebra of
intensional logics such as R or T. (“Gaggle” also serves as the pronunciation of the acronym
“gGl” that stands for generalized Galois logics.) This uniform approach to the definition of the
semantics of substructural logics yields a semantics once (abstractly) residuated operations are
grouped together, and their distribution types (if there are lattice connectives in the logic) or
their tonicity types are discerned. An interpretation for a logic emerges in two steps: first, the
Lindenbaum algebra of the logic is seen as a gaggle (or more likely, several gaggles combined),
and second, the set-theoretic representation of the algebra yields the semantics. Hopefully,
this description outlines the big picture; however, the details are many and subtle. Kripke’s
semantics and the Meyer–Routley semantics dealt with non-classical logics of a certain kind,
while Dunn’s gaggle theory is applicable not only to those logics but to logics without ∧
and ∨ distributing over each other, and even without one or both of the latter connectives.
Furthermore, issues of canonicity, of correspondence between axioms and frame conditions,
of topological characterizations of the image of the Lindenbaum algebra and of interactions
between groups of operations are only some of the questions that have been investigated as
part of generalized Galois logics. Gaggle theory combines an algebraic approach to logics—
that was always preeminently present in Dunn’s work—with the goal of producing informally
palatable interpretations for logics—that is in harmony with Dunn’s view of logics as tools
for rational beings.

This brief overview has been unavoidably selective. Dunn published (sometimes with co-
authors) on other topics too, which include information, its properties, and its role in logic and
computing; pieces of history of relevance logics and informal interpretations of those logics;
the logic of quantum computers; relational algebras; etc. The complete list of publications of
Dunn (up to about 2015) is included in [7], and hopefully the reader is intrigued by now to
find out more about Dunn’s work and results in logic.

J. Michael Dunn was a highly respected logician whose legacy will thrive through his
books and papers, through the knowledge of his students, as well as through his efforts to
establish the Logic Program and to found the School of Informatics at Indiana University in
Bloomington.
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