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AN ORDERED SHEAF REPRESENTATION
OF SUBRESIDUATED LATTICES

WILLIAM H, CORNISH

Kennison's concept of an ordered sheaf is used to show that any

member of the variety of subresiduated lattices is canonically

isomorphic to the algebra of all ordered sections in a certain

ordered sheaf, whose base is the Priestley space of the

residuating sublattice.

0. Introduction

Recently in [5], Kennison introduced the notion of an ordered sheaf of

finitary algebras and its associated algebra of ordered sections. In such

a sheaf, the total space is Hausdorff, the base space is an ordered

topological space, and a representation of an algebra as the ordered

sections supplies a good generalization of the representation of an algebra

as the algebra of all sections in a Hausdorff sheaf. Nevertheless, it

would not seem to be an easy task to give a non-trivial ordered sheaf

representation for each algebra in some variety. Here we show that such a

representation is possible for the variety of subresiduated lattices; this

variety was introduced by Epstein and Horn in their recent work [4] on

modal logics.

1. Subresiduated lattices

The more intuitive definition of a subresiduated lattice is a pair

(A, Q) , where Q is a bounded distributive lattice (with largest element
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1 and smallest 0 ) and Q is a sublattice of A containing 0, 1 such

that for each x , y € A there is an element p € Q with the property that

for a l l q € Q , x A q s y if and only if q < p . This element p is

denoted by x -*• y . For x € A , x! = 1 ->• x is the largest element of

the subresiduating sublattice Q which is beneath x and Q is the

sublattice {x € A : x = x\} = {y! ; y £ A) . Moreover, the following

equations are identically satisfied:

(Rl) (x A y) •* y = 1 ,

(R2) x ->• y 5 s -» • ( x -»• y) ,

(R3) x A (x -»• y) 5 y ,

(RlO 3 -> (x A z/) = (a -»• x) A (s •+ y) .

The concept of a subresiduated l a t t i c e was recently introduced by Epstein

and Horn [4] to describe the Lindenbaum algebras of cer ta in modal log ics .

In t he i r paper [4, Theorem 1 ] , they showed that an algebra

{A; A, V, -s-, 0, 1) of type (2 , 2, 2, 0, 0) i s a subresiduated l a t t i c e

with Q = {x € A; x - 1 -*• x} as the subresiduating subla t t ice if and only

i f (A; A, v, 0, 1) i s a bounded d is t r ibu t ive l a t t i c e and (Rl)-(Rl*) hold

iden t i c a l l y . Thus, the c lass of subresiduated l a t t i c e s wil l be considered

as a var ie ty R of algebras of type (2, 2, 2, 0, 0) . The subresiduating

sub la t t i ce ix (. A; x = x'.} of an R-algebra A i s denoted by Q(A) .

The most familiar subclass of R is the class H of a l l Heyting (or

r e l a t i v e l y pseudocomplemented or , in the terminology of [6 , Chapter k~],

pseudo-Boolean) algebras , tha t i s , bounded d i s t r ibu t ive l a t t i c e s

(A; A, v, 0, l ) such tha t for each x, y € A , there i s an element

x •* y d A with the property that x A s S j y (s € A) i f and only if

z — x •*• y . When •* i s considered as a fundamental binary operation, H

i s nothing more than the subvariety of R which consists of a l l

R-algebras A sat isfying the ident i ty x = x! (that i s A = Q{A) ) .

Perhaps, i t is also worth noting that a finite subla t t ice Q of a bounded

d i s t r i b u t i v e l a t t i c e (A; A, v, 0, l ) subresiduates A , provided

0, 1 € Q ; for x , y € A , x •* y is the supremum of a l l q € Q for

which x A q 5 y .

Let A be an R-algebra and F be a f i l t e r (dual ideal) of the

sub la t t i ce Q(A) . Then, F induces an R-congruence on A which i s

given by x = y (mod F) (x, y € A) i f and only if x h f = y h f for
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some / € F i f and only i f x •* y , y •* x € F if and only if

(x •*• y) A (y •+ x) € F .

The quotient R-algebra is denoted by A/F ; the congruence class of

x t A is denoted x/F € A/F . The above congruence is the unique

R-congruence 0 on A such that F = {<? € 5(4) : <? = 1 (0) } . In fact,

the map F •*• mod F is a lattice-isomorphism of the la t t ice of f i l ters of

Q(A) onto the la t t ice of R-congruences of A ; the details are given in

14, Theorem 2].

2. The ordered sheaf

A sheaf of R-algebras is a t r ip le (E, IT, ^) such that the following

properties are fulfilled:

(1) E and X are topological spaces and IT : E -*• X i s a local

homeomorphism from E onto X ;

(2) for each x € X , the stalk £„ = TT~ ({a:}) is an R-algebra;

(3) the functions (a, b) *—>• a * b , {a, b) *-+ a V b , and

{a, b) *—•*• (a -»• 2?) from the subspace

{(a, b) Z E * E : ir(a) = ir(2>)}

of E x E into £" are continuous;

{k) the functions 0 and 1 which assign to each x € X , the

zero 0 and the unit 1 of E respectively, are
X XX

continuous.

A section O of such a sheaf (E, ir, X) is a continuous map

0 : X •*• E such that na(x) = x for each x d X . Under pointwise defined

operations, the set T(^) of all sections forms an R-algebra with

smallest element 0 and largest element 1 ; this is ensured by

conditions (3) and (h). For a background on sheaves of finitary algebras

of a given type, we refer to Oavey C3] ; see also, Cignol i [7] and Kennison

[5].

The space £ of a sheaf (E, it, X) is called the total space while

the space X is called the base space. A sheaf is said to be Hausdorff if

the total space E is a Hausdorff topological space. An important fact

about sheaves is that the set ix € X : o(x) = T ( X ) } , where two sections
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agree, is open. Hence, in a Hausdorff sheaf {x € X : a(x) = T(X)} is

olopen (closed and open).

By an ordered (topological)space, we mean a set X which is both a

topological space and a partially ordered set. Such a space is said to be

order-disconneoted if whenever x } y , there is a clopen increasing subset

U of X such that x € U and y £ X\U ; a subset U of a partially

ordered set is increasing if whenever x 5 i/ and x £ U then y Z U .

Specializing Kennison's definition [5, Section 1] of an ordered sheaf

of finitary algebras to R-algebras, we have: an ordered sheaf of

R-algebras is a quadruple (E, TT, X, e) such that

(1) (E, TT, X) is a Hausdorff sheaf of R-algebras and the base

space X is an ordered topological space, and

(2) for each pair x, y € X with x S y , there is a so-called

order map e(x, y) : E •*• E which i s an onto
x y

R-homomorphism and e(x, x) equals the identity of E ,

e{y, z)e(x, y) = e(x, z) , when defined.

An ordered section a of an ordered sheaf (E, TJ, X, e) is a section

of the sheaf (E, 7r, X) such that e(x, y) (o(x)) = o(y) whenever x < y .

The set F-(X) of al l ordered sections forms an R-subalgebra of the

R-algebra T(X) . It should be noted that a Hausdorff sheaf (E, ir, X)

gives rise to an ordered sheaf (£, IT, X, e) by defining the order on X

to be the equality relation and the order maps e(x, y) to be the

corresponding identity functions, wherein r_(^) = T(X) . Thus, the

concept of an ordered sheaf extends the notion of a Hausdorff sheaf.

We are going to represent an R-algebra A as the algebra r.(Af) in

a certain ordered sheaf (E, IT, X) ; we proceed to describe X and then

E .

Let L be a bounded distributive la t t ice. Then S(L) denotes the

Stone space of L . As a^set, S(L) is the set of a l l prime fi l ters of L

and a base for i t s topology is {s(a) : a € L] , where

s(a) = {F € S(L) : a € F} ; S(L) is a so-called spectral space and the

map a t—»• s{a) is a lattice-isomorphism of L onto the compact-open

subsets of S(L) . We use P(L) to denote the Priestley space of L . As
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a set, P(L) = S(L) and a base for i t s topology is

{s(a) : a € L} u {P(L)\s(a) : a £ L] ;

with P{L) ordered by set-inclusion between i t s member prime f i l te rs ,
P(L) is a compact order-disconnected ordered space and the map a i—• s(a)
is a lattice-isomorphism of L onto the clopen increasing subsets of
P{L) . For more details and the connection with the dual of the category
of bounded distributive la t t ices , the reader is urged to consult [2].

For a non-trivial (that i s , 0 * 1 ) R-algebra A , le t X(A) be the
Priestley space PyQ{A)^ and E{A) be the disjoint union of the
R-algebras E(A) = A/F , F 6 X(A) . For any x <L A , le t
x : X(A) -*• E{A) be the Gelfand transform of x , that i s , x is defined

by x(F) = x/F € ffU)_ = A/F for each prime f i l ter F (. X{A) . Also
t

define TT(A) : E(A) •* X{A) by irU) (t) = F , if t = a/F for some a £ A
and (unique) F €

For any x, y d A , {F € X(/J) : aHF) = p(F)} is an open subset of
X{A) . Indeed, suppose x{F) = y(F) . Then x = y (mod F) and so
(x -*• y) A (y -»• x) € F . Then s((x •* i/) A (y -»• x)] is a clopen
(increasing) neighbourhood of F contained within the given set. It
follows from general considerations ([3, Lemma 2.1]) that if E(A) is
endowed with the finest topology making the Gelfand transforms continuous
(that is E(A) i s given the topology whose base for the opens is
{x[s(a)) : x € A, a € Q(A)} ) then [E(A), v(A), X(A)) is a sheaf of
R-algebras.

For F 5 G (that is Fc G ) in X(A) , define

eU)(.F, G) : E(A)p •*• E(A)G

to be the well-defined R-epimorphism e(A)(F, G){a/F) = a/G for each
a/F £ A/F with a € A .

We now come to our theorem.

THEOREM. Let A be a non-trivial R-algebra. Then
[E{A), TT(/4), X(A), e(A)) is an ordered sheaf of R-algebras and the map
a *-+ a is an R-isomorphism of A onto the algebra T [x(A)) of all

ordered sections.
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Proof. To show tha t we have an ordered sheaf, i t suffices to prove

the Hausdorffness of E{A) . Suppose m, n € E(A) with m t n . Then

m = a{F) and n = b(G) for sui table a, b € A and F, G € X(A) . Now

X{A) i s order-disconnected, so i f F ± G , say F $ G , there i s a clopen

increasing neighbourhood U (= s{q) for some <? € Q{A)) such that F £ U

and G € #\tf . Thus a(U) and S(*W) are open in E{A) , m € a(U) ,

n € SU\£/) and a(U) n S(J\J/) = 0 ; that i s , i f F * G then m and -n

are separated in E(A) by open neighbourhoods. The complication a r i ses

when m and n are in the same s ta lk , that i s , F = G . In t h i s case,

m $ n means a{F) = b{F) , tha t i s ,

F M f i E XU) : (a -• b) A (2, -• a ) f G> = ^ U ) \ s ( ( a •*• b) A (Z> •* a)) = T

( s ay ) , which i s open in X(A) . Then a{T) and b(T) are d i s jo in t open

neighbourhoods of m and n , as required.

The def in i t ions ensure that each a (a £ A) i s in Ta(x(A)) and

t h a t the map a i—• a i s an R-homomorphism. If a, b £ A and a # b ,

say a $ b , then a + H 1 and so there i s a prime f i l t e r H of Q{A)

such tha t a •* b \ H . Then a(H) + b{H) and so the homomorphism is

one-to-one.

I t remains to prove tha t the homomorphism i s onto. Let a € Ta[X(A))

be fixed. For F € X{A) , a(F) £ E{A) = A/F and so there exis ts i n y

such tha t O(F) = x f (F) . Now {G i X{A) : o(G) = xp(G)} i s clopen as

E(A) i s Hausdorff. Moreover, i t is increasing. Indeed, i t i s easy to

es t ab l i sh that the set where two ordered sections agree in an ordered sheaf

i s both clopen and increasing! Hence, there exis ts bp € Q(A) such that

{G € X(A) : a(G) = xp(G)} = s[bp) . How {s[bp) : F € X(A)} i s an open

cover of compact X{A) = P[Q(A)j ( i t i s even an open cover of compact

S[Q(A)) ) so there ex is t in tegers i = 1, ..., n for which

sfe^ u . . . u s(fc^) = X(A) and a(ff) = x.(G) for a l l G € s(fo.) , where

b. and x. a re simplified notations for b and x n , respect ively.

With the given nota t ion, x.{G) = x.(G) for a l l i , j = 1, . . . , n

and C i s{b?i n s(&.) = s (fc^ A fe .) , tha t i s , a^ = x. (mod (7) for a l l
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prime f i l t e r s G of Q(A) such that b . A b . € G . Thus, for a l l

i , j = 1 , . . . , n , x. A b . A b . = x. A b . A b . . Otherwise, there are
i i 3 3 i 3

subscripts r and s such that x Kb A b * x A b A b , say

x A b A b ^ x h b A b so tha t i A i | i + i in Q(A) . But

then we must have a prime f i l t e r H of d i s t r ibu t ive Q{A) such that

b A b • € H and x -*• x t fl . As a; = x (mod ff) , x •+ x £ # and we

have the desired contradict ion.

Let x = [x A b.) v . . . v [x A b- ) . Because of the preceding

paragraph, x K.b . = x. A b. for each i = 1, . . . , n . In other words,
1, Ts 1s

x{G) = x.[G) for all G Z X{A) such that b. (. G , that is, G d s[b .) .
Is Is 1s

It now follows that o(G) = x(G) for all G £ * U ) , that is, a = x

and the Gelfand transform does map A onto r_(Af(/l)) . //

The assignment of the ordered sheaf of the above theorem to each non-

trivial R-algebra can be expanded to yield a functor from the category R

into the appropriate category of ordered sheaves and their morphisms. We

will not pursue the details here; ordered sheaf morphisms are defined in

[5, p. 39]-

An important subclass of R consists of those R-algebras A in

which each element q of the subresiduating sublattice Q(A) has a

complement p within Q[A) , or equivalently q v q* = 1 . Here x*

denotes the element x -*• 0 of Q{A) , for any x £ A . This class is the

class of R-algebras of [4]; R is the subvariety of R which consists

of all algebras satisfying (Rl)-(Ri*) and the additional identity:

(R5) x\ v x* v (x! v x*)* = 1 .

For details, see L4, Lemma 10]. For any R-algebra A , Q(A) is a

Boolean lattice and so the base space X(A) is totally unordered and the

order maps e(A) reduce to identity functions. Moreover, for each

F £ X(A) , Q(A/F) is the two-element chain. In other words, the stalks

of the total space E(A) consist of those subdirectly irreducible

R^-algebras (special R,.-algebras) which are R-homomorphic images of A

{of. 14, Definition lk, Lemma 16, Corollary 173). In this way the ordered
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sheaf representation can be used to characterize R,.-algebras. It can also

be used to characterize the so-called 8-algebras and P-algebras of [4].

However, in these cases i t is not necessary to proceed from the ordered

sheaf representation. In [7, Theorem 3.6], Cignoli gave a characterization

and sheaf representation of P-algebras, as a special class of distributive

la t t i ces .

In conclusion, i t should be mentioned that the representation of R--

algebras, and hence B-algebras and P-algebras, can be obtained from a

general representation theorem of Davey [3, Theorem ^-5], wherein the base

space is the Stone space of a Boolean lat t ice of factor congruences of a

finitary algebra.
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