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INTEGRALLY CLOSED FACTOR DOMAINS

VALENTINA BARUCCI, DAVID E. DOBBS AND S.B. MULAY

This paper characterises the integral domains R with the property that R/P is integrally
closed for each prime ideal P of R. It is shown that Dedekind domains are the only
Noetherian domains with this property. On the other hand, each integrally closed going-
down domain has this property. Related properties and examples are also studied.

1 INTRODUCTION

Let R be a (commutative integral) domain. It is well-known that R is integrally
closed if and only if each localisation Rp is integrally closed. Our interest here is to
ask the "dual" question: for which R is it the case that R/P is integrally closed for
all P £ Spec(i?)? Not all integrally closed domains R have this property, as we see by
considering (see [13, (3), page 262]) R = D[X,Y] and P = (X2 - Y3) , where D is any
integrally closed domain. Notice in this example that R is Noetherian, and of (Krull)
dimension at least 2, if D is also assumed Noetherian. However, there are instances in
which the property in question holds. For instance, if R is a Priifer domain, then each
factor domain R/P is also a Priifer domain and, hence, is integrally closed. Also, if R
is integrally closed and dim(iZ) < 1, then each factor domain of R is either R or a
field, and hence is integrally closed.

The two main results of this paper generalise the above examples. The first of
these, Theorem 3.1, asserts that if R is an integrally closed Noetherian domain of
dimension at least 2, then R/P is not integrally closed for at least one height 1 prime
ideal P of R. The second main result, Theorem 4.1, concerns going-down domains
(in the sense of [4]). Recall that arbitrary Priifer domains and arbitrary domains of
dimension at most 1 are examples of going-down domains. Theorem 4.1 asserts that if
R is an integrally closed going-down domain, then so is R/P, for each P £ Spec(iZ).
Theorems 3.1 and 4.1 thus give a new way in which Noetherian domains and going-down
domains manifest "opposite" behaviour. Another way is via their spectra. Indeed, if R
is a going-down domain, then Spec(i?) as a poset under inclusion is a tree [4, Theorem
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2.2]; while Krull's principal ideal theorem implies, for a Noetherian domain R, that

Spec(i?) is a tree if and only if dim(12) ^ 1 •

We next describe the organisation of this paper. Section 2 is concerned with gener-

alities about the property in question, including a characterisation of it in Proposition

2.3. Here and elsewhere, the CPI-extension of R with respect to P (in the sense of [1])

and other pullbacks intervene naturally. Section 3 is devoted to the proof of Theorem

3.1. Using, the material in Section 2, we reduce this to the case of a two-dimensional

local (Noetherian) domain (R,M). This case is then attacked by treating separately

the subcases of finite or infinite residue field R/M. The proof for the latter subcase

retains a faint image of the motivating X2 — F 3 example. In addition to establishing

Theorem 4.1, Section 4 studies the passage, from a going-down domain R to a factor

domain R/P, of properties that are less restrictive than "integrally closed," such as

"root closed" and "seminormal." For this work, the characterisation of going-down

domains in terms of divided domains [5] is a useful tool.

2 CHARACTERISATIONS

To state many of our results, it will be convenient to let C_ denote the class of

commutative rings A such that A/P is integrally closed for each P G Spec(^l). As

noted in the introduction, C_ contains each Prufer domain and each integrally closed

domain of dimension at most 1. Proposition 2.1(b) will explain how the study of C_ is

reduced to determining which domains are in Q_.

PROPOSITION 2.1. Let A be a commutative ring. Then:

(a) A £ C_ <=* AP £ C_ for each P £ Spec(A) -±=> AM £ Q_ for each
M £ Max(A);

(b) A £ C_ •<==$• A/P £ C_ for each minimal (that is, height 0) prime P of A;

(c) AeC_*$=> Ated£C_;

(d) If dini(A) = 0 (for instance, if A is von Neumann regular), then A £ C_.

PROOF: (a) Suppose A £ G_, and consider P £ Spec(.A). To show Ap 6 G, we

need to prove that D — Ap/QAp is integrally closed for all primes Q C P of A. To

do this, take 5 = {a + Q £ A/Q: a G A\P} , and note that D = S~1(^±\Q) is a ring

of fractions of the integrally closed domain A/Q .

Conversely, suppose that AM G C_ for all M G Max(A). To show A G C_, we

consider a prime P of A and must show that A/P is integrally closed. We shall

show, equivalently, that E = (A/P)M,p is integrally closed for all maximal ideals M

containing P. To do this, note that E = AM/PAM , a factor domain of a domain in

c.
(b) Since every prime Q of A contains a minimal prime P, the assertion

follows from the standard isomorphism (A/P)/(Q/P) = A/Q.
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(c) A direct proof as in (b) is possible. Instead, we shall use (b). It suffices to

note that the minimal primes of Ale<i have the form Pj = P/vA, where

P is any minimal prime of A; and that A/P = Aie&/P\.

(d) This is evident since each factor domain of a zero-dimensional ring is a
field, and hence integrally closed. For a more esoteric proof, use (c.) and
(a), noting that Ap is a field (and hence in C ) for each prime P of a
von Neumann regular ring A . H

The next example shows that domains in C_ other than those mentioned above can

have Pruferian proper factor domains.

Example 2.2. There exists an (integrally closed) domain R in C_ such that R/P

is a Priifer domain for each nonzero P 6 Spec(iZ), R is not a Priifer domain, and

dim(iZ) = 2.

For the construction, we use data satisfying the following conditions: (S,M) is a

quasilocal one-dimensional nonvaluation domain with residue field k = S/M and V

is a one-dimensional valuation ring of k. (For instance, take S = Q + .XQ(Y)[[vY]]

and V = Z2Z •) Letting tp: S —* k denote the canonical surjection, we assert that the

pullback R = <p~i(V) has the stated properties.

Indeed, standard pullback methods (see [8, Theorem 1.4 and Corollary 1.5(5)])

yield that R is an integrally closed two-dimensional quasilocal domain whose only

nonzero nonmaximal prime ideal is M. Observe that R/M == V is (a valuation and

hence) a Priifer domain. Finally, note that R is not a Priifer domain, since 5 is a

quasilocal nonvaluation overring of R. R

In view of the diversity suggested above, it will be helpful next to give a charac-

terisation of the domains in G_. First, recall from[l], [7], [8] that if R is a domain

and P 6 Spec(iZ), the CPI-extension of R with respect to P is R + PRp, which

may be viewed as the pullback R/PxR /PRpRp ; and that the contraction map gives

a bijection between Spec(R + PRP) and {Q 6 Spec(.R): either Q C P or P C Q}. To

motivate the condition in Proposition 2.3(a), recall the well-known result of E.D. Davis

that R is a Priifer domain if and only if each overring of R is integrally closed.

PROPOSITION 2.3. Let R be a domain. Then:

(a) Re C_ *=> R + PRP is integrally closed for all P G Spec(R);
(b) let. P € Spec(R). Then the following six conditions are equivalent:

n-l

(i) if y is in the quotient field of R/P a.nd yn + ^ (r,; + P)y' = 0 for some

finite subset {ro,. . . , r n _ i } of R, then y £ R/P;
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n - l

(ii) if a £ R, b £ R\P and an + £ f\a'&"-* £ P for some finite subset
;=o

{ro,.. ., r n _ i} of R , then bx — a £ P for some x £ R;

(iii) = "(ii)" with a£ # \ P ;

(iv) if a e R\{0} , b E R\P and a = p(a'1)"~1 - b[ J2 ri{ba~1)"~1~) for
Vt=O /

some p £ P and a finite subset {ro,.. . ,r,,_i} of R, then a £ (P,b);
(v) = "(iv)" with a £ Pi\P;

(vi) jR/P is integrally closed.

PROOF:

(a) If follows from a proof of Greenberg [10, Proposition 4.7] that if P £ Spec(Pi),

then R-\-RPp is integrally closed if and only if both Pip and R/P are integrally closed.

However, Greenberg's result assumes, but. does not use, the extra hypothesis that P is

a flat ideal. So, for the sake of clarity, we next offer a fresh proof of Greenberg's result.

Let A denote the integral closure of JR + PRp in Rp and let B denote the integral

closure of R/P. By [8, Corollary 1.5(5)], A = BXR /PRPRP- If R/P is integrally

closed, B = R/P and so A = R + PRp is integrally closed in Rp . Thus, if both

R/P and Rp are integrally closed, so is R + Rp . Conversely, suppose that Pi + PRp

is integrally closed. Hence, so is its localisation at PRp . But this localisation is just

Rp i by [7, Lemma 2.2(a)]. Moreover, the hypothesis is that A = R + PRp, whence

B = A/PRp = R/P. Thus, R/P is also integrally closed, completing the "fresh

proof". We next use this assertion to obtain (a).

Suppose first that R £ C_, and consider P £ Spec(Pt). To show that R + PRp is

integrally closed, the above result directs us to R/P and Rp . The former is integrally

closed because R £ C_; the latter is integrally closed because R(~ R/0) is.

Conversely, suppose that each R + PRp is integrally closed. By the above result,

so is each R/P; that is, Re C_.

(b) (i) <*=* (vi): Clear.

(i) =4- (ii): Suppose a,b are as in (ii). Put y = ab-1 + PRp in Rp/PRp , the

quotient field of R/P . Now, since 6"1 £ Rp ,

i + P)yl = I a" + Y, r^b"-1 b~n + PRP = PRP

is 0 in Rp/PRp , and so (i) gives y £ R/P. In other words, a6~1 — r £ PRp for some

r £ R. Thus, a— br = b(ab~1 — r) £ PRP nR = P, which immediately gives (ii), with

x = r .

(ii) =4- (iii): Trivial.

(iii) =» . (ii): If a £ P and b £ R\P, any x £ P satisfies bx - a £ P.
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(ii) =$• (i): Let y be as in (i). Write y = ab*1 + PRp, for some a 6 R and

b £ i?\-P- Then z = a6"1 satisfies

whence, multiplying by bn, we have

a" + r^aT^b +••• + r1abn~i + rob
n G PRp D R = P.

By (ii), br — a £ .P for some r 6 R. Thus, multiplying by —6"1 , we have z — 7' 6 PRp .

Hence, y = z + PRp = r + PRp is in R/P, proving (i).

(ii) i=i- (iv): Notice that the assertion in (ii) is trivial if a = 0, by using any

x £ P. Hence, we may take a 7̂  0. It now suffices to notice that the equation in (iv)

is equivalent to

i=o
n - l

that is, to an + J2 rialbn~l = p, which is essentially the condition in (ii).

(iii) •$=$• (v): repeat the argument for (ii) •$=> (iv), noting that a is now auto-
matically nonzero. R

The conditions in Proposition 2.3 will lead to a fast proof of one of our main results,
Theorem 4.1. Rather than review the necessary background for it here, we close this
section with some assorted remarks.

Remark 2.4. (a) The following result has some of the flavour of the conditions in
Proposition 2.3(b). Let R be a domain and P £ Spec(iZ). Suppose that a, b £ R\P
implies that either a\b or b\a. Then R/P is a valuation domain.

For a proof, deny, and hence take a,b G R\P such that neither a = a + P nor
6 — b + P divides the other in R/P. Hence, neither a nor b divides the other in R,
contrary to hypothesis.

(b) The analogy between (a) and Proposition 2.3(b) is not perfect, for the converse
of the result in (a) is false. To see this, consider R = K[[X, Y]], where K is a field, and
P = (A' - Y). It is possible to show that R/P £ K[[X]], a (discrete rank 1) valuation
domain, although a = X, b = Y are in R\P and neither a nor b divides the other.

(c) It is important to note that R/P can be integrally closed without the CPI-
extension R + PRp reducing to R. In other words, R/P being integrally closed does
not imply P = PRp. To illustrate this, we need only consider a maximal ideal P of
a nonquasilocal domain i ? ; o r a prime P of a Priifer domain R such that P is not
contained in the Jacobson radical of R; or P = (X) in R = K[X,Y], where A" is
a field; or a host of other examples. Despite the evident rarity of the UP = PRp"
condition, it will be very useful in the proof of Theorem 4.1 and Proposition 4.4.
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3 T H E NOETHERIAN CASE

In this section and the next, we interpret the conditions in Proposition 2.3 for

certain classes of domains. For Noetherian domains, the full answer is given in the

following main result.

THEOREM 3.1. Let R be an integrally closed Noetherian domain. Then:

(a) if Q e Spec(R) and ht(Q) = 2, then there exists P £ Spec(R) such that

P C Q, ht{P) = 1, and R/P is not integrally closed;

(b) if dim(il) > 1, then there exists P £ Spec(R) such that ht(P) = 1 and R/P

is not integrally closed, and so R £ C_;

(c) R £ C <=>• R is a Dedekind domain <$=>• dim(iZ) ^ 1.

Assume, for the moment, that (a) has been proved. We show next how (b) and
(c) are easy consequences.

(b) Choose N £ Max(.R) with ht(N) > 1. But ht(N) < oo, by a standard

consequence [11, Theorem 152] of Krull's principal ideal theorem. Hence N contains

a height 2 prime, say Q. Apply (a) to Q.

(c) Since R is Dedekind if and only if R is (integrally closed Noetherian and) of

dimension ^ 1, it is enough to apply (b) and recall that all domains of dimension ^ 1

are in C_.

The rest of the argument is devoted to proving (a). First, we reduce the problem

to proving the following assertion:

(*) if (R,M) is a two-dimensional integrally closed local (Noetherian) domain,

then R/P is not integrally closed for some height 1 prime P of R.

We show next how (a) follows from (*). This will be done by reworking the proof

of Proposition 2.1(a). Let R, Q be as in (a). Consider the two-dimensional integrally

closed local Noetherian domain RQ . By (*), it contains a height 1 prime / such that

RQ/I is not integrally closed. Since / = PRQ for some height 1 prime P C Q, it

follows that {R/P)QIP = RQ/I is not integrally closed. Hence, neither is R/P.

It remains only to prove (*). For the remainder of this section, let (R,M) be as

in (*). There are two cases, determined by whether k = R/M is finite. For each case,

it will be helpful to consider

gr(,R) = k® M/M2 e M2/M3 © . . . ,

the associated graded ring of R.

PROOF OF (*) IF k IS INFINITE: Since M is an ideal of definition R, it follows

from (2, Corollaire, page VIII.66] that dim(gr(.R)) = dim(iZ) = 2. Moreover, gr(.R)

is a finite-type k-algebra. Indeed, if {mi, . . . ,mn} is a generating set for M as an
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ideal of R, then gr(-R) = k[mi,... , m n ] , where m; — m; + M2 in M/M2 . Thus, the
Noether Normalization Theorem (NNT) gives X,Y 6 gr(i?), a pair of elements which
are algebraically independent over fc, such that gr(i?) is integral over fc[X,y]. Now—
and this is where we use the hypothesis that k is infinite—it follows from the proof of
NNT [13, Theorem 8, page 266] that X, Y can be chosen in ^ fcm" . So chosen, X
and Y are in M/M2 . Choose x,y E M such that X = x + M2 , Y = y + M2 . Since
X, Y are linearly independent over k, {x, y} is part of a minimal generating set for
M. In particular, xy~* ̂  R.

Consider f = x2 — y3 . Note that / ^ 0, lest (xy~1) = y 6 R, contradicting the
hypothesis that R is integrally (really, 2-root) closed. Thus, if P £ Spec(i?) is chosen
minimal over Rf, the principal ideal theorem gives ht(P) = 1. If we deny the result,
it follows from a comment in the above proof of (c) that R/P is a local Dedekind
domain but not a field. In other words, A = R/P is a DVR. Let TV denote M/P,

the maximal ideal of A . Notice that the residue field of A is A/N = k. Since A is a
one-dimensional regular local ring [14, Theorem 25, page 301] yields that gr(A) =• k[T]

as k -algebras, for some indeterminate T over k . Also, [14, Theorem 2, page 250] gives
that gr(v4) is isomorphic to the graded module associated to the .R-module A. In
other words,

>i=0 n=0

that is, we identify gr(4) S ®(Mn + P)/(Mn+1 + P) . Since Mn/Mn+1 maps onto

(Mn + P)/(Mn+1 + P) , it follows that there is a surjective fc-algebra homomorphism

o:gr(f l)-gr(A).

We claim that a(X) = a(Y) = 0. Now,

a(X) = a(x + M2) = x + {M2 + P) £ (M + P)/{M2 + P)

and similarly, a(Y) = y + (M2 + P) . Thus, the claim will follow if x,y e M 2 + P.

We shall prove this next (showing also that x € M 3 + P)-

If x G -P, then y3-x2-feP + P = P, whence y e P C M2 + P. Similarly,

y G P implies x £ P. Thus, without loss of generality, neither x nor y is in P. Let

y be a (discrete rank 1) valuation with value group Z and valuation ring A. Since

x + P and y + P are nonzero elements of N , both v(x + P) and i>(j/ + P) are positive

integers. Now, applying v to the equation (x + P) = (y + P) [which holds since

/ £ P] yields 2v(x + P) = 3v(y + P). Since 2 and 3 are relatively prime, v(x + P)

is an integral multiple of 3, and v(y + P) is an integral multiple of 2. In particular,

v(x + P) > 3 a n d v{y + P)^2. T h u s ,

x + P G /V3 = ( M / P ) 3 = (M 3 + P ) / P
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and, similarly, y + P G (Af2 + P)/P. Hence, x € M3 + P and y G M2 + P, as

asserted. This establishes that a ( X ) = a(Y) = 0.

Next, consider any £ G gr(i?). Since £ is integral over fc[X, Y],

for some <7i, • • • ,<7n £ M-^>^1 • Apply the k-algebra homomorphisni a to the displayed
integrality equation. The result is

Now, since oc(X) and a ( y ) are both 0, it follows that a(gi) G k for all i = 1, .. , n .
Hence, a(£) is algebraic over k, for all £ G gr(iZ). Since a is surjective, gr(A) is
algebraic over k. Since gr(A) S fc[T], it follows that k[T] is algebraic over k. But T
is transcendental over k, and so we have produced the desired contradiction. |

PROOF OF (*) IF fc IS FINITE: Deny. Then, just as in the preceding proof, if
P G Spec(iZ) has height 1, the inclusions Mn —* M " + P induce a surjective A:-algebra
homomorphisni gr(i?) —+ gr(R/P) = k[T]. The kernel of this homomorphisni is a
nonmaximal prime ideal of gr(iZ). This kernel, which will be denoted by gr(i?, P), is

+1,P) = 0 (Mn n (Mn+1 + P))/Mn

n=l

which, by an easy calculation, can also be written as

ET{R,P) =

Using either description, we see that gr(R,P) is a homogeneous ideal of gr(i2).
Let V = {gi(R,P): P g Spec(R), ht{P) = 1} and W = {(P + M2)/M2: P G

Spec(i?), ht(P) = 1}. Note that M/M2 is a finite dimensional k -space. Hence—and
this is where we use the hypothesis that k is finite—M/M2 is a finite set. Therefore,
so is W . We claim that, in fact, V is a finite set. To show this, it suffices to prove that
the funciton /?: V -> W, given by 0(gr(R,P)) = {P + M2)/M2 for all P G Spec(i?)
with ht{P) = 1, is an injection.

We shall show, in fact, that if P G Spec(fl) with ht(P) = 1, then

((Mn r\P) + Mn+1)/M"+1 = ((P + M2)/M2) (Mn~1lMn)

for each n ^ 1. One inclusion is evident. For the other, we shall show that

MnnPcPMn~1
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for each n > 1. (Notice, for n = 1, that this is simply P C P.) Since R/P is a
DVR, its maximal ideal is principal and nonzero. Thus, M/P = (R/P)(ir + P) for
some 7T £ M/P; in particular, M = RTV + P.

Consider 0 / p £ Mn D P. Then p is the sum of finitely many terms of the
form bi — an ... ain, with each o<j £ M . Write a^- = r^n + pij, with r^- £ R >
Pi_, £ P . Expanding 6;, we find 6; = r{1 ... rinir

n + qi, where g; £ P M " " 1 . Thus,
p = 52 6i = r 7 r " + 9> f° r some r £ iZ, 9 6 PMn~1. It will suffice to prove that r £ P

(for then p € P M " + PM"-1 = PM"'1). For this, notice that

although -w £ P. Since P is a prime ideal, it follows that r € P, as desired. This
concludes the proof that /? is an injection. (Notice that this part of the proof did not
use the fact that k is finite.) Now, since k is finite, we have seen how the injectivity
of /? assures us that V has only finitely many, say e, elements. It will be convenient
to write V = {grffl.P,),. •. ,gi{R,Pe)}.

Consider / = ® Mn/Mn+1. This is a homogeneous maximal ideal of gr(fl)
n=l

which properly contains each gr(R,Pi). By prime avoidence lemma [11, Theorem 81],

/ is not contained in Ugr(i?, Pj ) . Since I is homogeneous, there exist d ^ 1 and

F G Md/Md+1 such that F <£ g r ( B , P ) , for each P € Spec(#) with ht(P) = 1.
Choose a coset representative, / , of F; that is, / G Md and F — f + Md+1 .

Since P ^ 0, we have / £ M d + 1 , and so / ^ 0 . Thus, by the principal ideal theorem,
if Q £ Spec(iZ) is chosen minimal over Rf, we have ht(Q) = 1. By the preceding
paragraph, F $ gr{R, Q). In particular, F <£ ((Md D Q) + M d + 1 ) / M d + 1 . This means
that / 0 ( M d n Q ) + Md+1 . However, / £ Md (1 Q, and so we have produced the
desired contradiction.

The proof of Theorem 3.1 is now complete. |

4 GOING-DOWN DOMAINS AND C P I - E X T E N S I O N S

We begin by recalling some definitions and facts. Let R be a domain. As in [4],
R is said to be a going-down domain in case R C T satisfies GD (the going-down
property) for each overring T of R. Being a going-down domain is a local property.
We say R is divided in case P - PRP for each P £ Spec(R). If R is divided, then R
is a quasilocal going-down domain [5, Proposition 2.1]. The converse is false in general
[5, Example 2.9] , but valid for R seminormal [5, Corollary 2.6]. In particular, if R is
integrally closed, then R is a going-down domain if and only if RM is a divided domain
for each M £ Max(fi) (see also [12, Corollary 11]).

We next use Proposition 2.3 to give two proofs (one using pullbacks, the other
without) of the following main result.
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THEOREM 4.1. If R is an integrally closed going-down domain, then R/P is

integrally closed for each P £ Spec(R). (In other words, a going-down domain is in C_

if and only if R is integrally closed.)

PROOF: By the above comments, the hypotheses are preserved under localisation.

Thus, by Proposition 2.1(a), we may assume that R is quasilocal and hence, by the

above comments, that R is divided.

Our first proof uses Proposition 2.3(a). (Thus, by appeal to either [10] or [8], it

uses pullbacks.) Accordingly, we are to show that D = R + PRP is integrally closed

for each P £ Spec(iZ). However, since R is divided, PRp — P, whence D = R, which

is integrally closed by hypothesis.

Our second proof uses the criterion in Proposition 2.3(b)(v). (Thus it avoids explicit

use of pullbacks.) Suppose

)
\t=0 /

for some P e Spec( f i ) ; p 6 P; a,b G R\P; and ro,...rn_! £ R. Since a g P,

an-i g p a n ( j p ( a - i ) n £ PRP = P. Hence, the displayed equation yields a € {P,b),

the desired contradiction. |

Remark 4.2. (i) Theorem 4.1 leads to a new proof of the motivating result that any

factor domain of a Priifer domain is itself a Priifer domain. For this we need to recall

three facts:

(a) [5, Remark 2.11 or Remark 3.2(a)(b)]: each factor domain of a going-down

domain is a going-down domain;

(b) [3, Corollary 4]: a domain is a Priifer domain if and only if it is an integrally

closed finite-conductor going-down domain;

(c) [6, Lemma 3.8]: if D is a finite-conductor domain and Q — QDQ 6 Spec(D),

then D/Q is a finite-conductor domain.

For the proof, let R be a Priifer domain and P £ Spec(i?). We shall use (b) to

show that T = R/P is Priifer. By Theorem 4.1 and (a), we need only show that T is

finite-conductor. Now, being finite-conductor is a local property, so it remains only to

prove TM/P = RMIPRM is finite-conductor for each maximal ideal M containing P.

Since RM is a valuation domain, (c) evidently applies, with D = RM and Q = PRM.

(ii) For each n ^ 1, there exists an n-dimensional going-down domain which is in

C_ but is not a Prufer domain: combine Theorem 4.1 with [4, Corollary 4.4(i),(ii)].

Fact (a) recalled in Remark 4.2(i) asserted that the class of going-down domains

is stable under formation of factor domains. In view of Theorem 4.1, it seems appro-

priate to identify some "nice"properties, where "nice"is somewhat weaker than "inte-
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grally closed," such that the class of "nice"going-down domains is stable under for-
mation of factor domains. This will be done in Proposition 4.4, after recalling some
"nice"background and developing a lemma about "nice"divided domains. Later, in
Proposition 2.5(k),(l), we shall give related "nice"results without any going-down hy-
potheses.

Let R be a domain with quotient field K, and let S be a nonempty subset of
positive integers. We say that R is S-closed if u £ K, un £ R for all n £ S implies
u £ R. For any finite S, it is easy to show that being S -closed is a local property.
For any positive integer n ^ 2 , R is said to be n-root closed in case R is {n}-closed.
We say that R is root closed in case R is n-root closed for each n ^ 2. As in [9] for
instance, we say that R is seminormal in case R is {2,3}-closed. In general, integrally
closed =4- root closed =£• n-root closed for some n > 2 = > seminormal, with
none of the implications being reversible. With this "nice"background in hand, we now
give:

LEMMA 4.3. Let S be a nonempty subset of positive integers, R a divided S-

closed domain and P £ Spec(R). Then R/P is S-closed.

PROOF: Suppose u £ Rp/PRp = Rp/P satisfies un £ R/P for each n £ S.
Write u = v + P for some v € RP. Thus, vn £ R + P = R for all n £ 5. As fi is
5-closed, v £ R, whence u £ R/P. |

PROPOSITION 4.4. Let R be a going-down domain and P £ Spec(R). Then:

(a) if iZ is n-root closed for some n ^ 2, then R/P is n-root closed;
(b) if R is root closed, then R/P is root closed;
(c) if R is seminormal, then R/P is seminormal.

PROOF: It is clear that (b) would follow from (a), and so it will be enough to prove
(a) and (c). We give a unified proof for them, with 5 meaning {n} or {2,3}. Suppose
u £ Rp/PRp satisfies uk £ R/P for all k e S. Then, for each maximal ideal M
containing P and each k £ S,

uk £ R/P c {R/P)M/P = RM/PRM-

By hypothesis, R is S-closed (with S either {n} or {2,3}). Thus, by the above
"nice"background, R is seminormal. It follows that the quasilocal going-down domain
RM is seminormal, and hence divided. As RM inherits the 5-closed property from
R, Lemma 4.3 yields that RM/PRM is S-closed. Hence, so is (R/P)M/p.. Thus
uen(R/P)M/p = R/P. I

In Proposition 2.3(a), we saw how behaviour of the CPI-extensions of a domain R
could be used to characterise the condition RE C_. Many related conditions considered
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in this paper admit similar characterisations. The next result collects many of these.
For the sake of clarity and brevity, we avoid explicitly mentioning pullbacks and only
sketch the simple proofs in Proposition 4.5.

PROPOSITION 4.5. Let R be a domain. Then:
(a) R is a Priifer domain <=> R + PRp is a Priifer domain for each P G

Spec{R) •$=$> R + MRM is a Priifer domain for each M G Max(R) <==* R/P is a
Priifer domain for each P G Spec(R);

(b) dim(i?) < 1 <*=> R + PRP = RP for each nonzero P G Spec(R) «=>
dim(iZ + PRp) ^ 1 for each P G Spec(R) <==> dim(R + MRM) ^ 1 for each M G
Max(R) «==*• dim (.R/P) < 1 for each P G Spec(R);

(c) R is a going-down domain <==> R + PRp is a going-down domain for each
P G Spec(R) <=> R + MRM is a going-down domain for each M G Max(R) •$=*. R/P
is a going down domain for each P G Spec(R);

(d) Spec(R) is a tree «=> R C R + PRP satisfies GD for each P G Spec(R) 4=>
Spec(R + PRp) is a tree for each P G Spec(R) <=4- Spec(R + MRM) is a tree for each
M G Max(R) <=*• Spec(R/P) is a tree for each P G Spec(R);

(e) R is a valuation domain <=> R+ PRp is a valuation domain for each P G
Spec(R) -£=£• R/P is a valuation domain for each P G Spec(R);

(f) R is divided <=> R + PRP is divided for each P G Spec(R) <=> R/P is
divided for each P G Spec(R);

(g) R is a Dedekind domain -£=*- R + PRp is a Dedekind domain for each P G
Spec(R) <*=> R/P is a Dedekind domain for each P G Spec(R);

(h) Rp is divided for each P G Spec(R) <=> RM is divided for each M G
Max(R) <$=$• R + PRp is R-flat for each P G Spec(R) <£=> R + PRP is a ring of
fractions of R for each P G Spec(R) <=> each localisation of R + PRp is divided for
each P G Spec(R) <=$> each localisation ofR+MRM is divided for each M G Max(R);

(i) R is a quasilocal going-down domain <=> R + RPp is integral over R for each
P G Spec(R);

(j) R/P is integrally closed for each P € Spec(R) «=*• R + RPP is integrally
closed for each P G Spec(R);

(k) R/P is (n-)root closed for each P G Spec{R) <=> R + PRP is (n~)root
closed for each P G Spec(R);

(1) R/P is seminormal for each P G Spec(R) <=> R + PRp is seminormal for all
P G Spec(R).

PROOF (SKETCH): (a) The key facts are that R = R + 0R0 £ R/0; if P C Q
are primes of R, the localisation of R + PRp at Q + PRp is RQ + PRp [7, Lemma
2.2(b)]; and any overring or factor domain of a Priifer (respectively, valuation) domain
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is a Priifer (respectively, valuation) domain.

(b) The first "«=" follows from the fact that if P C Q are distinct primes of R,

then Q + PRp is a prime of R + PRP which contracts to Q. For the first "=>",

take 6 and c in R\P, use the maximality of P to get 6 £ (P,c), and conclude

6c"1 £ R + PRp . The next two equivalences follow from the bijection noted prior to

Proposition 2.3.

(c) See [8, Proposition 4.6(6)] or [4, Proposition 3.2]; the localisation fact recalled

in the proof of (a); and fact (a) recalled in Remark 4.2(i).

(d) The first equivalence is [7, Proposition 2.7]. For the next two equivalences, use

the order-isomorphism recalled in the proof of (b).

(e) Argue as in the proof of (a).

(f) See [7, Corollary 2.6]; the order-isomorphism recalled in the proof of (b); and

[5, Lemma 2.2(c)].

(g) Argue as in the proof of (a) and recall that dim(P) < 1 for each Dedekind

domain D.

(h) See [7, Theorem 2.4 and Corollary 2.6] and use the localisation fact recalled in

the proof of (a).

(i) This is part of [6, Proposition 2.1].

(j) This is a restatement of Theorem 4.1.

(k) Assume first that each R + PRp is (n—)root closed. Now if u £ Rp is such

that u = u + PRp satisfies un £ R/P, then un £ R + PRP, whence u £ R + PRP

and u £ R/P. Thus, R/P is (n-)root closed.

Conversely, assume each R/P is (n—)root closed. Putting P = 0, we have R is

(n—)root closed, and hence so is RQ for each Q £ Spec(iZ). Thus, if u in the quotient

field of R satisfies «n £ R + QRQ , we have u £ RQ , so that u — u + QRQ in the

quotient field of R/Q satisfies u" £ R/Q- As R/Q is (n—)root closed, u £ R/Q,

whence u £ R + QRQ , as desired.

(1) Argue as in the proof of (k), replacing {n}-closed condition with the {2,3}-

closed condition. |

Remark 4.6. (a) By the method of proof given for Proposition 4.5(k), (1), we have
the following generalisation. Let 5 be a finite nonempty set of positive integers and R

a domain. Then R/P is S-closed for each P £ Spec(il) 4=> R + PRP is S-closed for
each P £ Spec(#).

(b) In contrast to the way in which Proposition 4.4 evolved from Theorem 4.1 by

replacing "integrally closed" with "nice"weaker conditions, one may ask about analogues

in which "integrally closed" is replaced by stronger conditions. We close by raising

such a question. If A is a completely integrally closed (cic) going-down domain and
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P G Spec(i2), must R/P be cic? We doubt it, but note that the answer is affirmative
if R is quasilocal, by virtue of [5] and the following result. If a domain R is cic and
P - PRp is in Spec(iZ), then R/P is cic.
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