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Abstract

Our present view of the universe suggests that the set of mutually
receding galaxies may provide a natural substratum for the propagation
of light. It is shown that this assumption leads to a consistent derivation
and interpretation of special relativity, along the lines envisaged by Lorentz
but requiring also the employment of Einstein's measurement definitions.
The time-dilatation and Fitzgerald contraction effects emerge as intelligible
consequences of this approach, and their interaction with an associated
anisotropy effect produces the relativity of simultaneity, the reciprocity
phenomenon and the results described by Einstein's principles; the approach
provides a definitive resolution of the "clock paradox" within the framework
of Special Relativity.

1. Assumptions

The concept of a cosmological substratum, linked with Mach's principle,
has been revived in recent years with the recognition that the space of our
universe has field properties determined by the density and distribution
of matter and affecting, in turn, the behaviour of matter and light. The
possible nature of such a substratum has been investigated by Bastin and
Kilmister [1] and its implications for gravitational theory have been devel-
oped, by Sciama [2], Bastin [3] and Surdin [4], among others.

It is suggested that the nature of the cosmological substratum is
closely linked with the kinematic mode of light propagation in our universe.
Our present view of the universe suggests that its "fundamental particles",
the galaxies, are distributed homogeneously (apart from local irregularities)
and that they are receding from one another according to Hubble's Law.
Hence, we can imagine a family of mutually receding fundamental ob-
servers whose viewpoint of the universe and of the laws of nature (including
Newton's laws) is identical. The implication that the law of light propa-
gation is also the same for all fundamental observers is consistent with
an hypothesis, proposed by McCrea [5], that a light-ray passes every
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fundamental observer in its path with velocity c. The hypothesis provides
a simple interpretation of the Doppler redshift effect and, as has been
shown by the author [6], it makes fundamental observers Lorentz-equivalent
if their mutual recession is assumed uniform. However, its most important
consequence for our present purposes, is that it implies the existence of a
specific substratum delineated by the family of fundamental observers.
Relative to these observers the propagation of light is isotropic but for all
others this is not the case. We distinguish therefore between the fundamental
observers (and particles) who are stationary relative to the substratum
and "moving" observers (and bodies) who are in motion relative to it.
In this way motion assumes an absolute significance which is linked moreover
with an immediate observable distinction — the recession of the galaxies, as
displayed by the Doppler red-shift, will not appear isotropic to moving
observers.

The model derives from and resembles many others. In particular it
appear at first sight very similar to the Kinematic Relativity of Milne [7]
who also distinguishes between fundamental and subsidiary (that is, moving
relative to the substratum) Galilean frames in a uniformly-expanding
universe. However, Milne's approach, in common with most others, lacks a
specific mode of light-propagation; hence in order to preserve the relativistic
equivalence of fundamental observers, Milne introduces two scales of time
related by a logarithmic formula. In our case, as is seen in [6], this formula
(expressing a measurement relationship) is a direct result of the light
hypothesis and it is the elaboration of this assumption which gives the
model its interest and advantages. In particular, we are interested here in
the consequence that for the moving (or subsidiary) observers, the propaga-
tion of light (and more generally of all forms of energy) is not isotropic.
The resulting anisotropy leads to a number of physical and measurement
effects whose interaction leads in turn to the relativistic equivalence of all
Galilean frames.

Builder [8] appears to have been the first to recognise the relativistic
consequences of an anisotropy effect. We are concerned here with the
mathematical development of this approach (but in a cosmological context)
and the demonstration that it provides an intelligible and self-consistent
expression of Special Relativity.

We consider therefore as our basic assumptions:
I. In any given locality of the universe there exists a reference frame,

Is, (with a fundamental observer, S, at its origin) relative to which the
propagation of energy is isotropic. Since Newton's laws of motion hold for
all fundamental observers, Is is an inertial reference frame. It follows that
a system I A in the same locality, associated with a reference frame in uniform
motion relative to Is, is also an inertial system, since a body at rest or in
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uniform motion in Is is equally so in I A • Is will be considered as the basic
system for the locality.

II. The movement of a body relative to Is is associated with a single
physical effect, the contraction of its length in the direction of motion.
Specifically for a body moving with velocity UA in Is, its length in the
direction of motion is proportional to (1—uA[c2)i, a factor which will be
denoted by /Tj1.

The synchronisation of clocks and the measurement conventions
proposed by Einstein will be referred to as "Einstein measures". These have
become refined through the years and we will employ them in the light-
signal measurement form given by Synge [9].

2. The time-dilatation effect

By using Is as a basic reference frame we can relate the corresponding
time-intervals and measurements of observers in relative motion.

Following Builder [8] we imagine that S has a number of identical
clocks each consisting of a rigid rod, of length I, with mirrors at each end
to reflect a beam of light to and fro along the length of the rod. Let the
time be measured in terms of a unit which is the interval between successive
light reflections on one of the mirrors. For a rod stationary in Is the unit
is is given by

(2.1) is = 2llc

Now imagine that S gives A one of these clocks when A passes him
with uniform velocity uA and that A carries it at an angle 0 (according
to S) to the direction of motion. The rod is contracted in the direction of
motion only, so that if the length of the moving rod is now I' (according
to S), then

(/3,,rcos0)2+(Z'sin0)2 = Z2

whence

(2.2) I' = (l/pA) [l-(uA sin 0)2/c2]-i

Further, since the rod is moving in Is, the velocity of a light-ray along
the rod and relative to it will be different for the two directions, say cx

and c2 where
ex = (c*-uA sin2 6)i-uA cos 0,

c2 = {c*-uA sin2 6)i+uA cos 0.

The corresponding unit of time in IA is then

(2.4) k=(*7« i )+ (*'/*•) = (2*/c)A,,
the result being independent of 0.
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We note that if 8A is .4's measure of the angle the rod makes with
the direction of motion, then 0 and 8A are related by

(2.5) tan 0 = pA tan dA

in consequence of A's measuring stick being contracted according to (2.2).
From (2.1) and (2.4) we obtain

(2.6a) . iA = pAta

Similarly for an observer B moving with velocity UB in Is,

(2.6b) tB = fais

Hence if A and B are moving along a common straight line in Is and
measure their times tA and tB from the instant of A and J3's spatial coin-
cidence, then these are related through the corresponding Is time ts by

(2.7) ts = pAtA = fata

The result can be considered as applying not only to clocks but to all
phenomena involving electromagnetic impulses and hence, following
Builder [10], to all natural phenomena.

3. The anisotropy and associated effects

Consider first how Einstein's synchronism procedure applies to two
observers A and A', stationary in I A and employing similar clocks. Let
d be the Is distance separating A and A', and 0 the angle that the direction
of A A' makes with the direction of UA. Let A transmit a light ray at t\
so that it reflects A"s clock and returns to A at tA, according to his clock;
these times correspond to 0AtA and fiAtA in 7s time. Let the Is time of
reflection of ^4"s clock be ts = fiAtA. The light-ray travels from A to A'
and back again with the respective velocities c1 and c2 as given by (2.3).
Hence

(3.1) AiM-<})=«*/Ci

and

(3.2) A,M-<5) =<*/«.
so that

(3.3) rA-(2={fiAuAl*)icaa0

where tA = f {t\-\-tA), is ̂ 4's Einstein measure of the time of the light-ray's
reflection at A'.

To satisfy the synchronism criterion, A requires that the light-ray
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should reflect the reading t" on ^4"s clock. However, according to S the
reflection takes place simultaneously with the reading tA on A's clock,
so the difference between the two readings results in different views of
simultaneity in / s and IA. Further, since the difference is essentially an
anisotropy effect and depends on the magnitude of uA, it follows that
clocks A and A' synchronous in IA will not appear so in any other system
IB unless the direction of A A' is normal to the directions of both uA and
UB. It is seen that the synchronism is reciprocal since the angles that

A A' and A 'A make with the direction of uA are supplementary, and that
it is also transitive on account of the group nature under addition of
(fiAuAlc2)d cos 0, remembering that dcosd is the projection of A A' in the
direction of uA. Thus Einstein's synchronism definition is self-consistent
with respect to any inertial system in spite of the inequality of the light
paths involved for all systems except Is.

Adding (3.1) and (3.2) leads to

(3.4) c(tA-tA) = 20Ad[l-{uA s in0)W

Hence, ,4's Einstein measure, dA, of the space interval A A' is related to
the Is measure d by

(3.5) dA = j (3-3) = fiAd[l-(uA sin0)W

Comparing this relation with (2.2), it is seen that the space interval A A'
will have the same measure whether A uses a (contracted) measuring rod
or the Einstein light-signal convention. In consequence A's measure of the
velocity of light in IA, as given by the ratio of 2dA to (tA—tA), will always
be c irrespective of the direction or location of A'. And this result will also
hold for the one way clocking of a light-ray using two previously-syn-
chronised clocks, since the synchronisation procedure sets the clocks on
the assumption that light traverses a space interval in half the time it would
take for an out-and-return journey over the interval.

The result applies for all mertial systems and also in respect to light
from outside sources whether in relative motion or not. Thus Einstein's
light principle emerges as an unambiguous consequence of our assumptions
— in the sense that the measure of the velocity of light is the same with
respect to all inertial systems. The result confirms the claims of Builder [8].

4. The Lorentz transformation

Consider two observers, A and B, moving with uniform velocities UA
and UB(UB > uA) respectively, and in the same straight line (the path of a
light-ray in Is) relative to the system Is- A and B measure their time with
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similar clocks from the instant of their spatial co-incidence, and this instant
is also taken as the zero Is time according to a third similar clock associated
with an observer S so that (2.7) applies. We note that according to S, the
relative velocity of A and B is (UB—UA), and the Is space interval separat-
ing A and B, at time ts, is (UB—UA)IS-

We will take the point, in 7s, of A's and B's spatial co-incidence as
the origin of a reference system for Is, A's location as the origin for I A
and B's location as the origin for IB • We will refer to the straight line joining
these three origins, and its extension in either direction, as the common
z-axis of 7s, I A and 7B, where the direction A to B is taken as the positive
direction of this axis.

Let A's Einstein measure of B's relative velocity be denoted by v.
To determine this A requires the measure, SA, of the space interval, AB,
at two separate times. For one of these he can use SA = 0 when IA = 0.
For the second he must employ a light-ray observation from which he
can obtain B's co-ordinates in I A , viz. (XAB, t™), since B lies on the a;-axis.
Thus SA — XAB when IA = t^ • These measures are related to the correspond-
ing 7S measures, s and tr

s, by (2.7), (3.3) and (3.5) with 0 = 0, so that

where

Then

(4 1) y =

It is easily verified that B will have the same measure as A of their mutual
relative velocity.

Consider, further, an event on a body E whose motion in 7s is arbitrary.
Since the location of a given event can always be considered co-planar
with the locations of A and B, it will be convenient to assume a t/-axis,
through each origin, in this common plane and normal to the common
a;-axis. The corresponding 2-axes are then normal to the plane. We may
denote the 7s co-ordinates of the event by (xs, ys, zs, tT

s), where tr
s is iden-

tical to the Einstein measure, i™, by any observer S. A's I A co-ordinates
based on his Einstein measures of the event, may be denoted by (XA , VA ,
ZA, t™), and B's corresponding IB co-ordinates by (XB, VB, ZB, ?£). Thus
if p is the 7s space-interval, separating A and E, at tT

s; 0 the angle, according
to S, that AE makes with the a;-axis; and if PA, tt. and 0A are the cor-
responding measures according to A, then within each inertial system,
separately,

(4.2) xs = uAtr
s+p cos 0, ys = p sin 0, zs = 0;

and

s =

XAB—0

(UB—UA]

/c2, and

XS = («B —UA^APJ

)

PAS;

UB — UA
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XA = PA cos 6A, VA = PA sin dA, zA = 0;
= PAP COS 9, — p sin d,

on applying (2.5) and (3.5). Hence

(4.3) xA=pA(xs-uAts), yA = ys, zA = Zs

Also applying (2.7) and (4.2) in (3.3), we obtain the rest of the transfor-
mation (4.3), viz.

(4.3) tl = tA-($AuA\c%)p cos 8 = pA(th-uAXslc*)

By relating the IB and Is measurements we would obtain similarly

, . %B = fiB(Xs—»BtS), VB = VS, ZB = Zs)
{ • ' q = pB{tr

s-UBXslc*)

Eliminating xs and tg from (4.3) and (4.4) and using (4.1) then yields,

xA = PAB(XB+V^), yA = VB, ZA = zB

where
UB-UA

The relationship (4.5) is generally known as the Lorentz transformation
and it may be generalised to apply to the Einstein measures of an event
of any pair of non-accelerated observers in Is- The transformation makes the
Maxwell equations invariant and on combining it with Newton's first and
second laws (conservation and rate of change of momentum), which hold
for all inertial systems, we obtain a system of mechanics which again has
the invariance property. Thus Einstein's relativity principle is also a con-
sequence of our assumptions.

5. The operation of relativistic effects

The measurements related by the Lorentz transformation embody the
interaction of the time-dilatation and anisotropy effects. Hence, to ap-
preciate, within our context, the basis of the reciprocity and other aspects
of the transformation, it is necessary to disentangle the contributions of
the two effects. For instance the relavistic Doppler effect is immediately
intelligible from our approach, for if the frequency of a light-ray is y ac-
cording to S, then on account of (2.6) its frequencies according to A and
B are related by
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7B /3B(1—MB/c)y

= (r=wc) • usmg (4>1)-
It is of interest to consider the operation of the various effects in the

context of an out and return journey since it leads to different measures
of time by two observers who have been in uniform relative motion, present-
ing a phenomenon which appears to contradict the reciprocity of obser-
vations between such observers.

Consider then, an observer A stationary in IA moving with velocity
UA in a straight line relative to Is- Consider also a "traveller" B, leaving
A with velocity ux relative to Is along the same straight line, proceeding
with this velocity until he is at a distance d (as measured in Is) from A,
then changing his velocity to w2 (in Is) so that he returns to A.

Assuming that A and B (as well as any other observers, S, G, etc.)
are carrying similar clocks, we will denote the time taken for B's> journey
according to B's clock by TB and according to A's clock by TA. (TA—TB)A

will then denote the difference between these two times, if any, according
to A's standpoint, (TA~TB)G the corresponding difference according to an
observer G, stationary in IG, etc.

We will assume that the journey is sufficiently long so that the effects
of accelerations at the beginning, turning point and end of the journey,
can be considered negligible compared to the effects associated with the
uniform velocity periods. We will take the direction A to B as the positive
direction, so that d is positive, and then it also follows that «2 <

 UA < Mi >
irrespective of the sign of UA-

From the absolute viewpoint of an observer S, the time taken for the
outward journey is *?/(%—M^), and for the return journey dl(uA—u2). The
corresponding times of A and B depend on their velocities in Is, hence,
denoting uAjc by UA, etc.,

(TA-TB)S = J
UX—UA

(5.1) +_i

on applying the Binomial theorem and noting that each grouping of the
higher powers is also positive tor u2 < UA < ux. Thus from the Is stand-
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point, the traveller's clock will always be retarded, on returning, relative
to the similar and previously synchronised clocks at his base.

Relative to A, B's out and return velocities will be vx and — v2,
respectively, where

5.2 vi = ;
1

v* . - -l—uAu2

A's Einstein measure of the distance travelled is f}Ad where fiA = (1—
so that

7B = (MM) (1
and

(TA-TB)A =

(5.3)

= (TA-TB)S

on substituting for vt and v2.
Now consider an observer G, whose Is velocity in the direction of B's

journey is UG. According to G, stationary in IG, B'S journey takes place
along a space interval which is moving with velocity WA relative to IG,
where

WA =

Hence the length, dG, of this space interval, according to G, will be

do = 0Ad{l-&A)i

\—UAUG

wA is, of course, ^4's velocity relative to G. B's out and return velocities,
wx and w2, relative to G, are given by

W2 =
1—U2UG

Hence by the same reasoning as before

(5.4) + _ ^ [ (

WA—W2

= (TA-TB)s,

on substituting for WA, wlt w2 and da.
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Note that the result depends on the discriminating use of the velocities
transformation formula. It is not relevant to measurements referred to a
single inertial system; so that during the outward journey, the Is relative
velocity of A and B is simply (%—uA), and the corresponding I a measure
is (W1—WA).

It is seen that (TA — TB) is always positive and independent of the
inertial system with respect to which it is measured. However, we note
that it is only the final result which has universal observational validity.
The mutual observations of A and and B, as well as those of G, are inevitably
distorted (from the Is viewpoint) during the journey. Only the Is observers
can obtain a true "running commentary", yet all commentaries converge,
inevitably, to the final result.

How this can be reconciled with the reciprocity aspect tof A's and B's
observations has caused much concern and bears further examination.
As B approaches the turning point, his clock-reading (according to S)
approaches the time tB where

(5.5) t'B = ^ - ^ (!

Let A's corresponding clock-reading, according to S, be denoted by tA

where

(5.6) tA = — * — (l-uA)i = d\$A(ux-uA)
UX — UA

We note that the values of tA and tB are those used in the first part
of (5.1).

At this stage A and B's views of each other's clocks are reciprocal.
Thus A's Einstein-estimate, tA, of the reversal event coincident with B's
clock-reading, tB, is given by applying (3.3), so that

,- , . Q = tA
{ ' ; = tB{l-%)i = pAdlVl

on invoking (5.5), (5.6) and (5.2), and noting that

B's corresponding estimate, Q, of the event (that is, the appearance of
non-uniformity in A's relative velocity) coincident with ^4's clock-reading,
tA, is similarly given by (3.3) with 0 = n in this case, so that

(5 8] *B = ts+P^dlc*
{ • = tAl(l-vl)h = Mvi

on involking (5.6), (5.5) and (5.2) again.
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(5.7) and (5.8) express the reciprocity phenomenon and demonstrate
the role of the anisotropy effect in generating this phenomenon. However,
during the reversal period, when B is changing his velocity in Is, such
reciprocity no longer operates. A's view remains unaffected, but B's view
is now associated with a succession of inertial frames so that the anisotropy
effect associated with his light-signal observations of A undergo a cor-
responding change. The net effect of B's reversal (whether carried out
slowly or rapidly) on his Einstein observation of the scene at his base is
a diminution in the anisotropy effect from /S^i/c2, as in (5.8) to /J2«2i/c

2,
where /?2 = (1— ul)~i, since u2 < ux. And since also u2< UA, this now
results in A's clock appearing fast (as is easily confirmed using (3.3) again)
compared to B's according to the latter's Einstein observation. With the
resumption of reciprocity during the return journey A's clock again appears
to be losing time but it remains still in advance (according to B) when A
and B are reunited.

Exactly, B's view of the situation converges to

(TA-TB)B = ( j 3 1 ^ 1 ) [ ( l - ^ ) i -

= (TA — TB)S

as for all other observers, on making the necessary substitutions. Thus
taking into account the change in the anisotropy effect during reversal
completely resolves the notorious "clock paradox".

It is seen that the hypothesis of a cosmological substratum for light-
propagation permits of a full and consistent interpretation of the theory
and of the absolute effects described by it. It may also provide the key
to the physical implications of the theory. One might expect the emergence
of physical effects as a result of the anisotropy of electromagnetic and
gravitational propagation (and of the resultant fields) relative to moving
bodies. A manner in which this may occur has already been outlined by
Bastin [3], and the application of his approach by the author [11] suggests
that the Fitzgerald contraction may be a primary anisotropy effect resulting
from the asymetry of the gravitational and electromagnetic fields relative
to a moving system of particles.

In this way the whole theory and all its implications can be considered
to rest on the single assumption that the universe provides a natural
substratum for the propagation of light. Einstein's principles emerge as
intelligible consequences of this approach so it is not surprising that they
served as a valid starting point for developing the theory. It is suggested
however, that our present picture of the universe provides a better basis
for comprehending and applying the theory than was possible in 1905.
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