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ASYMPTOTIC DISTRIBUTION OF THE ZEROS OF CERTAIN
LAGRANGE INTERPOLANTS

by M. A. BOKHARI and M. IQBAL

(Received 4th May 1993)

We consider rational functions of the form fm(z) = zm/(z — p) which are analytic in |z|<p, p>\, and establish
that the asymptotic distribution of the zeros of their Taylor sections and Lagrange interpolants at uniformly
distributed nodes is similar. This notion is also illustrated computationally. We conjecture that a similar result
can be expected for any function analytic in \z\ < p.

1991 Mathematics subject classification: 3OC15, 41A05.

1. Introduction

An elegant result of J. L. Walsh ([12, p. 153]) provides a close relationship between
the partial sections of the Taylor series of an analytic function and its Lagrange
interpolants in the roots of unity. During the last decade many mathematicians
extended this result in various directions ([l]-[4], [10]). On the other hand, the
problem related to the distribution of zeros of the sections of power series of an analytic
function has a long and respectable history ([5], [8], [11]). At this point it seems
worthwhile to question whether something can be said about the asymptotic distribu-
tion of the zeros of Lagrange interpolants to / on uniformly distributed nodes in the
complex plane.

Let Ap be the class of functions / analytic in the open disk \z\ < p but non-analytic on
|z| = p. For /(z) = Xjk°=oakz*e^p. ' e t Sn(

z>/) = S!=oa!kz\ and let L"n(z,f) denote the
polynomial of degree n which interpolates / in the n + 1 roots of zn+1 — CT"+1 = 0 where
0<<7<p. Now a simple but interesting situation provides us a further motivation to
discuss the foregoing question:

Example 1.1. Select /0(z) = (p — z)"1 with pxr>0. Then it is easy to see that

and

99

https://doi.org/10.1017/S0013091500006222 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500006222


100 M. A. BOKHARI AND M. IQBAL

Ln(z, / o ) - Sn(z, / o ) = n + 1 +l Sn(z, f0).p -a"

This shows that the n zeros of Sn(z,f0), which are uniformly distributed on the circle
\z\ = p (except for z = p), are identical to those of L"n(z,f0) and L°(z, f0)—Sn(z, f0).

Instead of/0(z), if our choice is slightly modified to fi(z) = z(p —z)~l, then

and

l ll (1.1)

Contrary to the outcome of the Example 1.1, we note that none of the zeros of
Sn(

z»/i) is identical to a zero of L"n{z, / j). In fact, Sn(z, ft) possesses one of the zeros at
the origin and the rest are uniformly distributed on |z| = p. On the other hand the
location of the zeros of LJJ(z,/J is not obvious from its expression (1.1).

The aim of the present note is to investigate the asymptotic behaviour of the zeros of
L"n(z, fm) where m is a fixed nonnegative integer and

/m(z) = z"7(p-z). (1.2)

We show that asymptotically the distribution of the zeros of L°(z,fm) and Sn(z,fm) is
similar. This notion is also illustrated graphically by computing the zeros of the two
polynomials. In the last section, we suggest a conjecture related to the rational function
(L°(z,f) — Sn(z,f))/Sn(z,f),feAp, p>\, which provides us an insight about the
asymptotic distribution of the zeros of L"n(z, f).

2. Notation and main result

Let m be a fixed non-negative integer. For any integer n}Zm, we shall write

n(m): = n-m+l. (2.1)

Let

«/,n(m):= exp(2lin/n(m)), l=\,2,...,n(m).

Since
-m( nn(m) _ -n{m)\
Z%(plz)\ (2-2)
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we observe that Sn(z,fm) has a zero of multiplicity m at zo=O and its remaining n(m) — 1
zeros are given by

Z|,n(m) = P-«l,n(m)> / = 1, 2 , . . . , n(ffj) - 1. (2.3)

For each / = 1,2,..., n(m) — 1, we set

min \z,Mm)-zjMm)\,^--p,p-l) (2.4)
a )

where CT>0 and p>max{l ,a}. If we denote by O£1 n(m)(z, n(m)) the open sphere with
centre at zUn(m) and radius £i,n(m) then our main result can be stated as:

Theorem 2.1. Let fm(z) = zm/(p — z) where m is a fixed non-negative integer. Let a>0
and p> max {1, a}. Then:

(A) For every sufficiently small neighbourhood K of zo = 0, there exists a positive
integer N(K) such that K contains exactly m zeros of L°(z, fm), n ̂  N(K).

(B) For all sufficiently large n and for all 1= 1,2, . . . ,n(m)— 1, the open sphere
°£.,n(m,(z/.n(m)) (cf. (2.3),{2.4)) contains exactly one zero of La

n(z, fm).

The proof of Theorem 2.1 is partly based on the behaviour of the rational function
^ / J / S ^ . / J where

Pn(z, fm): = Un{z, fm) - Sn{z, fm). (2.5)

More precisely, if C,,n(m) denotes the boundary of Oc, n(m) (z,,„,„,,), / = 1,2,...,n(m)- 1, we
prove:

Lemma 2.1. With all the conditions specified in the hypothesis of Theorem 2.1, we
have

(ii) for all sufficiently large values of n

: l , VzeClMm), (2.7)
Sn(z,fm)

Proof. The formula (2.6) follows from the interpolatory properties of the polynomial
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In order to establish (2.7), first we note that

(2-8)

The choice of e,Mm) guarantees that the polynomial Sn(z,fm) does not possess any zero
on the circle C, n(m). Moreover,

1 ^ H < — , VzeC,jn(m).a

Since a < p, a straightforward calculation from (2.8) and (2.2) now yields the estimate

S(z f) ~» - ' Vz6C'.-C")' a s n ^ c o '
^iX2' Jm)

Thus (2.7) holds.

Proof of Theorem 2.1. Using the integral representation of L"(z,/J and fm(z), we
have

where F is the circle \t\ = R with a<R<p. Consequently, the sequence of polynomials
L°(z, fm) converges uniformly to fm(z) in every closed subregion of |z| < p. An application
of Hurwitz theorem ([7]) now leads us to establish part (A) of Theorem 2.1.

For part (B), first note that

Because of the relation (2.7), Rouche's theorem [7] confirms that Un(z, fm) has the same
number of zeros interior to C/n(m) as does the polynomial Sn{z,fm). Since Sn(z,fm) has
exactly one zero inside ClMm), this completes the proof of Theorem 2.1.

Remark 2.1. Since e;,n(m)->0 as n-*oo, it follows from Theorem 2.1 that the
asymptotic distribution of the zeros of Sn(z,fm) and L°{z, fm) is similar.

3. Discussion of numerical results

To illustrate our main result we have used the ZPOCC program in the IMSL library
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in order to list the zeros of the two polynomials Sn(z, fm) and L"n(z, fm). The location of
these zeros around the circle \z\ = p is shown for various values of n separately in the
computer-generated figures explained below:

We select p = 6 and (<x, m)=(2,8). The three figures corresponding to «= 10,15,21
show that the Taylor polynomial Sn{z,f8) has a zero of order 8 at zo=0 and its
remaining (n — 8) zeros are distributed on the circle \z\ = 6. The n zeros of Sn{z, f8) and
Lj,(z,fB) are represented respectively by the symbols A and O in the three figures. We
notice that exactly eight of the n zeros of L$(z, f8) move toward the zero of Sn(z, fs) at
zo = 0 as n attains larger values whereas each one of its remaining (« —8) zeros gets
closer to the n — 8 zeros of Sn{z,f8) lying on the circle |z| = 6.

4. Concluding remarks

In general, if feAp, a>0, and p>max{l,a} then for every zeC with |z|<p, it is well
known that

lim I
n-* oo

and

lim I"(z,/) = /(*)

(4.1)

Since the convergence in (4.1) is uniform on any compact subset of the region
Dp = {zeC:\z\<p}, we have the following result which is an immediate consequence of
Hurwitz theorem [7]:

Theorem 4.1. If z0 is an m-fold zero of feAp in the region Dp then for all sufficiently
small e>0, the disk \z — zo\<e contains exactly m zeros (counted with their multiplicities)
of each of the polynomials Sn(z,f) and L"n(z,f), n^

Remark 4.1. If feAp has r zeros, say zJt (j=l,...,r), (counted with their multiplici-
ties) in Dp and if ^ „ and nj_n, (j=l,...,r), are the respective zeros of Sn(z,f) and
L°(z,f) lying in the neighbourhood of Zj as narrated in Theorem 4.1, then

lim \Zhn-nLn\=0. j=l,2,...,r.

Besides the r zeros described in the above remark, we are also interested in discussing
the asymptotic behaviour of the remaining zeros of Sn(z,f) and L°(z,f) lying in the
region Dp. For this, first we note that

Pn(z,f): = L"n(z,f)-Sn(z,f)
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Legend

A =ZeroofSn(z,/J
O =ZeroofL;(z,/J
(a,m) =(2,8)
p =6
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(4.2)
\\f J J

and

1 flt\ t"+1 — 7n+1

o / /*\ * r J \*-J # * ^ j ^

Ini rt — z t" 1

Jj)) (43)

where F is the circle \t\ = R, a<R<p.
Next assume that zliB,z2iII,...,z,>I1 are the only distinct zeros of Sn(z,f) in Dp such

that

z k n # ^ J n , / c= l , . . . , / and j=l,...,r,

where ^Jjn, (j = 1,...,r), are the zeros of Sn{z,f) considered in Remark 4.1. Let

e*.n=imhJ min |z,-n-ztJ, p - 1 , — - p i . (4.4)

In the light of our Lemma 2.1 and the estimates (4.2) and (4.3), it seems appropriate to
suggest the following:

Conjecture. Let feAp, a>0 and p>max{l,<r}. If Ckn denotes the boundary of the
disk \z — zk n\<ekn, k= 1,2,...,/, then for all sufficiently large values of n

(4.5)
Sn(z,f)

k= 1,2,...,/. Moreover, ek n-y0 as n-*co.

Note that Sn(z,f) has exactly one zero inside the circle Ckn. Therefore, due to
Rouche's theorem [7], L"Jz,f) will have exactly one zero, say zk „ on or within CkB,
{k=l,...,l) if the above conjecture is valid. This will lead us to conclude that the
asymptotic distribution of the zeros of Sn(z, f) and L°(z, f) is similar.

As far as the location of the zeros of Sn(z,f) is concerned when feAp and l < p < o o ,
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Jentzch [6] proved that for any e>0, and for any <}> (0^0 ^27i), there are infinitely
many values of n having at least one zero in the disk

Later on, Szego [9] established the existence of an infinite sequence {«,}"= i of
positive increasing integers such that as q-*co, the arguments of the zeros of Snq(z,f)
are equidistributed in the sense of Weyl. We stress that the results of Jentzch and Szego
are valid for Un{z, / ) , a < p, in place of Sn(z, f) provided that our conjecture is true.
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facilities availed at King Fahd University of Petroleum and Minerals during the
preparation of this paper.
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