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ISOMORPHISMS OF SOME SEGAL ALGEBRAS
AND THEIR MULTIPLIER ALGEBRAS

U.B, TEWARI AND K. PARTHASARATHY

Let G., £„ be locally compact groups and let S , S^ be Segal

algebras on G , G respectively. Under certain conditions on

G , Gp and S , S , we prove that if there is a bipositive or

isometric isomorphism between S , S or between their

multiplier algebras then G and G are topologically

isomorphic.

1. Introduction

Let G be a locally compact group with a fixed left Haar measure

dx . The topology of any locally compact group will be assumed to be

Hausdorff. For a function f on G , the left translate f and the

right translate f of f are defined by

Jiy) = fi^y

and

fjiy) = fiVx-1)^-1) , x, y € G ,

where A is the modular function of G .

A dense subalgebra S{G) of L (G) is said to be a Segal algebra, if

it satisfies the following conditions:
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(1) S(G) is a Banach space under a norm ||*||c such that

\\f\\s ^ \\nx for all f i S(G) •

(2) S{G) is left invariant (/ € S(G) =» / € S(G) for all

y (. G ) and for each f G S(G) the mapping z/ •* / of G

into S(G) is continuous;

(3) II, fIL = II/IL for all / £ S(.G) and i/ 6 G .

If G is discrete then every Segal algebra S(G) coincides with

A Segal algebra S(G) is said to be symmetric if S{G) satisfies

the following conditions:

(I1) S{G) is right invariant and for each f € S(<?) the

mapping y •* / of G into 5(G) is continuous;

(2-) \\fy\\s = \\f\\s for all f € S(G) and y € G .

If G is abelian then every Segal algebra 5(G) is symmetric.

A Segal algebra 5(G) is said to be pseudosymmetric if it satisfies

(l1) and S(G) contains functions u 2: 0 with udx = 1 and arbitrarily

small support.

For various properties of Segal algebras, we refer to Reiter [73] and

[12].

A multiplier T of a Segal algebra 5 on G is a linear map from 5

to S such that T{f * g) = T(f) * g for f,gdS. It is well known

that a multiplier T of 5 is a continuous linear operator on 5 . The

set M(S) of all multipliers of 5 is a Banach algebra with

multiplication as composition and the norm as operator norm. M(S) is

called the multiplier algebra of S .

The basic references for multipliers are Larsen [S] and Sections 35

and 36 of Hewitt and Ross [5].

Let S be a Segal algebra on G and let M(G) denote the algebra of

bounded regular Borel measures on G . M{G) can be canonically imbedded
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in M{S) by considering V € M(G) as a multiplier defined by

= V * f , for all / € S . This correspondence is norm decreasing;

that is, IMIM/5\ - l̂ ll̂ (c) * For S = Lx^ ' this imbedding is an

isometric isomorphism of M(G) onto M(S) .

For a € G s let 6 f W(G) denote the unit point mass at 'a' . As6

an element of M(S) , 6 is nothing but left translation by 'a' ; that

is, 6 (/) = f . By the definition of Segal algebras II f|L = 11/11 c , fora a a D &

every / € 5 . Hence AS for |X| = 1 and a i G is an isometric

multiplier of 5 . The authors have proved in [7-H that for a large class

of Segal algebras, these are the only isometric multipliers. This result

assumes special significance in relation to Theorem 2 of this paper.

A multiplier T of S is said to be positive if Tf 2 0 almost

everywhere whenever / - 0 almost everywhere and / € 5 . If p € M(G)

is a positive measure on G then y is a positive multiplier of S .

Conversely, we shall prove in Lemma 1 that for a large class of Segal

algebras these are the only positive multipliers. This result will be the

key to the proof of Theorem 1 of this paper.

Let G, , Gp be locally compact groups and let .4̂  , .4 be spaces of

measurable functions on G , G respectively. A mapping ¥ : A -*• A is

said to be bipositive whenever Vf > 0 almost everywhere if and only if

f - 0 almost everywhere. The bipositive mappings between the spaces of

multipliers are defined analogously.

Gaudry [3] proved that if there is a bipositive or isometric

isomorphism between the multiplier spaces of L [G ) and L [G ) ,

1 < p < oo an(i p $ 2 , then G and G are topologically isomorphic.

There has been considerable interest in results where the existence of some

kind of isomorphism between spaces of functions on G and G? or between

their multiplier spaces implies that G and G are topologically

isomorphic. See, Edwards [2], Johnson [6], Nagrajan [9], Parrot [JO],

Rigelhof [14], Strichartz [J5], [76] and Tewari [J7]. In this paper we

consider isomorphisms between Segal algebras S , 5p on G , <?„ or
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between their multiplier algebras and under some conditions on S , S , G ,

Gp we prove that G and G- are topologically isomorphic. Tewari [17]

and Nagrajan [9] have proved special cases of our results. We also note

that our proofs are simpler than those of Tewari and Nagrajan. Following

are the main results of this paper.

THEOREM 1. Let G^, Gp be locally compact groups and let S , S2

be Segal algebras on G , G_ respectively, Suppose that any one of the

following holds:

(i) G and G are abelian;

(ii) G. and Gp are compact and 5. and S~ are symmetric;

(iii) S. and SU are pseudosymmetric.

If there is a bipositive isomorphism V of M[S } onto MyS^) then

G. and Gp are topologically isomorphic.

THEOREM 2. Let G , G~ be locally compact groups and let S. , £„

be Segal algebras on G , G_ respectively. Suppose that the following

conditions hold:

(i) either G. , G- are abelian or G., G~ are compact and

S. , Sp are symmetric:

(ii) the isometric multipliers of S and Sp are just

unimodular multiples of left translation operators.

If there is an isometric isomorphism ¥ of M{S.) onto M[S^) then

G and G^ are topologically isomorphic.

2. Bipositive isomorphisms

In this section our main aim is to give a proof of Theorem 1. We

begin by proving a result about positive multipliers of a Segal algebra.

LEMMA 1. Let T be a positive multiplier of a Segal algebra S on

a locally compact group G . Suppose that any one of the following
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conditions holds:

(i) G is abelian;

(ii) G is compact and S is symmetric;

(Hi) S is pseudosymmetrie.

Then there exists a positive measure y € M(G) such that Tf = \i * f

for every f € S .

Proof. Each of the conditions (i), (ii) and (Hi) implies that there

exists a two-sided approximate identity {/„} °? S such that / € S ,

f' > 0 and ||/ || = 1 ; see Theorems 33.12 and 28.53 of [5] and

Proposition 1 on page 2k of [73]. Fixing g € 5 with g > 0 and

||g'|l1 = 1 , we get

= llTfa * 9 h

£ \\T\\\\g\\s •

The first equality occurs because Tf and g are non-negative and

the last inequality follows because ||/ |L = 1 . {̂ /o,} i s n o w a

net in M(G) . Hence there is a subnet {Tfa\ and a p € M(G) such that

Tfo converges to y in the weak star topology of M(G) . Since each Tfo
p p

is non-negative, y is a positive measure. We shall show that Tf = y * f

for every / € S .

Since Tf_ converges to y in the weak star topology of M{G) ,

Tf& * Mx) converges to y * h(x) for every h € C
O^

G) a n d x $. G . In

particular, Tf~ * f * h{x) converges to y * f * h{x) for every f t S ,

h € CQ{G) and x € G .

On the other hand, for any / € S , fa * f converges to / in S .

Therefore r(/g * /) = Tfr. * f converges in S , and hence in L , to

Tf . In particular, TfR * / converges to Tf in the weak star topology

of M{G) and hence Tf- * f * h(x) converges to Tf * h(x) for every
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h € C {G) and x € G . Thus Tf*h = ]s*f*h for every / € S and

h € C (G) . This implies that Tf = y * f for every / € 5 and the proof

of the lemma is complete.

Proof of Theorem 1. Let V be a bipositive isomorphism of M[S )

onto W[S } and let M be a positive measure in M\G' ) . It follows that

f̂p is a positive multiplier of £„ and, by Lemma 1, we conclude that fy

is a positive measure in M\G J . Conversely, every positive measure in

M\G ) is the image under ^ of a positive multiplier of S , that is, of

a positive measure in M[G ) .

Thus 1* maps the positive cone of M[G } onto that of ^(GpJ • But

any measure is a linear combination of positive measures. Hence ¥

restricted to M[C ] is a bipositive isomorphism of M\G } onto ^(Gp) .

It follows from the £ -case of Theorem 2 of Gaudry [3] that G and G

are topologically isomorphic.

REMARKS. I. In the abelian case Theorem 1 was proved by Tewari

for multipliers of A -algebras. Nagrajan [9] modified the arguments of

Tewari to prove the abelian case of Theorem 1. Our proof is simpler even

in the general case.

2. It is obvious that our proof of Theorem 1 is valid for all pairs

of Segal algebras S , S whose positive multipliers are given by positive

measures. The conditions in Theorem 1 are used only to ensure this; see

Lemma 1.

3. The proof of Theorem 1, given here, has the further merit that it

applies to more general situations than those considered in Theorem 1. For

example, it holds good for any space of functions on the group whose

multiplier algebra contains the measure algebra and all of whose positive

multipliers are given by positive bounded measures. This is the case, for

instance, for the L -spaces on a large class of groups, which include all

abelian groups and compact groups; see Brainerd and Edwards [/]. However,

it does not hold universally; see [31. For those groups, for which it is
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true, our arguments will yield a simpler proof of Theorem 2 of [3] for

P > 1 •

Rigelhof [J4] proved a result about bipositive homomorphisms of

measure algebras which contains Gaudry's L -case of Theorem 2 [3] as a

special case. If, in the proof of Theorem 1, we use Rigelhof's result, we

get the following more general version of Theorem 1. In view of Remark 3

above, it follows that a more general version of Gaudry's Theorem 2 [3J is

true for certain groups which include all abelian groups and compact

groups.

THEOREM 1'. Let G , G and S , S be as in Theorem 1. Suppose

that there is a bipositive homomorphism f of M[s' ) onto M[s } such

that if V(p * MfG-J) = 0 for some u € Af(ff]L} then t(y) = 0 . Then

there is an open continuous homomorphism a of G onto G . If ¥ is

an isomorphism then so is a .

COROLLARY 1. Let G , G^ and S S be as in Theorem 1. If there

is a bipositive isomorphism ¥ of S onto S , then G and G are

topologicaZly isomorphic.

Proof. The map T •*• TOT" is a bipositive isomorphism of M[S )

onto M[S2) and the result follows from Theorem 1.

REMARK. Corollary 1, in the case of group algebras, was proved by

Kawada [7]. His result was, perhaps, the first of the isomorphism theorems

of the sort discussed in this paper. When G , G are compact, Corollary

1 was proved for the algebras L (G.) and C[G.) , i = 1, 2 , by Edwards

[ZL

3. Isometric isomorphisms

Proof of Theorem 2. In the proof to follow, the multiplier

corresponding to a measure \i will be denoted by T except when u is a

point mass at a point, in which case 6 will denote both the point

measure concentrated at a as well as the corresponding multiplier. This
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is done in order to avoid the confusion which might arise by using the same

symbol for the multiplier as well as the measure.

Condition (ii) in Theorem 2 implies that any isometric multiplier of

S or S is of the form X6 or X6, where |X| = 1 and a € G and

b € G2 .

For any a € G , VS is an isometric multiplier of S and hence

there exists an element b = $(a) of G and a complex number X(a) with

|X(a)l = 1 such that VS = X(a)S, . This follows from condition (ii) of1 1 a b

the theorem. Thus we get a map <t> : G -*• G defined by <f>(a) = b . It

can be easily seen that 4> is an isomorphism of G onto G . If the

continuity of <$> is proved, then similar considerations using V would

complete the proof.

So suppose that (J) is not continuous. Then there is a net {a.}
Is

converging to the identity element e of G and a subnet {<j>(a.J} of
1 1 0

{((>(a.)} lying entirely outside some neighbourhood W of the identity

element e of G .

Now {V6 } is a bounded net in M[G J and hence some subnet {>i/6 }

of {V&a } converges in the weak star topology to a measure p € M[G~) .
0

Let A denote the set of all h (. L [G ) having compactly supported

Fourier transform if G is abelian and the set of all trigonometric

polynomials if G is compact. Then VT~{h) € A for every h € A and

/ € L± {G±) . Hence, for any h € A and / € L [G ) ,

(1) 4-6̂  [VTf(h)){x) - T^Tf{h)){x) for every x € G^ .
K,

But a. -*• e , so that 6 * / + f in I and hence 6 T „ -*• T „ in

M(S ) . This implies that ^6 4T, -* VT in «(SO) and

YS TT,(j) •+ 4T (g') in S , and hence in the weak star topology of
ak I T *
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M{G ) , for every g £ S . Therefore, we get

(2) ¥6 VTAg) * h{x) •+ VTJg) * h{x) for every x £ G and h £ A .
ak * •*

(1) and (2) imply that

(3) T VT J,g) * h = 4TJg) * h for £ € S2

and h £ A . Since /4 is dense in 5 , ( 3 ) implies that

T 4T, = 4T,, , for any / € L.^G.J ,

so that 4'~121 Tf = Tf , which in turn implies that f"
1!7 equals the

identity on L * S (= S ) . This gives T = 6 and so y = 6

Let y be a neighbourhood of e_ in G? such that V is compact

and V~ c W . Here F~ denotes the closure of V . Choose f £ C [G )

such that j(e ) = 1 and support of f is contained in W . Since

4> (a, J \ W for any k , we have

(U) f[<t>[ak)) = 0 , for each k .

However 4* (6 ) = A(a,)6,(' -i and V& -»- 6 in the weak star

topology of M[GS] SO that (̂a,)/(<i) [p-u]) "* /(eo^ = •*• • T^is contradicts

I1*). Therefore 41 is continuous and the proof of the theorem is complete.

COROLLARY 2. Let G , Gg and S±, 5g fee as in Theorem 2. If there

is an isometric isomorphism f of S onto S^ j then G and G are

topologically isomorphic.

Proof. The map T -*• VT*¥ is an isometric isomorphism of M[S )

onto M[S2) and the result follows from Theorem 2.

REMARKS. I. For a large class of Segal algebras which satisfy

conditions (i) and (ii) of the theorem, see [ H ] . Without some conditions

of the sort given in Theorem 2, the results are no longer valid; see

Gaudry [3]. If G± = ¥ , Gg = T x J , S^ = L^G^) , i = 1, 2 , neither
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the theorem nor the corollary holds.

2. The proof given here will hold good on arbitrary locally compact

groups if one can show that there is. a subspace A of S r\ C such that

A is invariant under all multipliers of S and A is either dense in S

or in CQ .

3. If it is assumed only that V is norm decreasing, V6 is still

an isometry (it has a norm decreasing inverse) and the techniques in the

proof of Theorem 2 yield a continuous isomorphism of G into G . The

difficulty now appears to be in showing that this isomorphism is

surjective. Rigelhof [74] has proved that the existence of a norm

decreasing isomorphism between M\G J and M[G ) implies that G and

6 are topologically isomorphic.
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