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Abstract
Motivated by problems from compressed sensing, we determine the threshold behaviour of a random
n× d ± 1matrixMn,d with respect to the property ‘every s columns are linearly independent’. In particular,
we show that for every 0< δ < 1 and s= (1− δ)n, if d ≤ n1+1/2(1−δ)−o(1) then with high probability every s
columns ofMn,d are linearly independent, and if d ≥ n1+1/2(1−δ)+o(1) then with high probability there are some
s linearly dependent columns.
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1. Introduction
Compressed sensing is a modern technique of data acquisition, which is at the intersection of
mathematics, electrical engineering, computer science, and physics, and has grown tremendously
in recent years. Mathematically, we define an unknown signal as a vector x ∈R

d, and we have
access to linear measurements: that is, for any vector a ∈R

d, we have access to a · x=∑d
i=1 aixi.

In particular, if a(1), . . . a(n) ∈R
d are the measurements we make, then we have an access to the

vector b := Ax, where

A :=

⎛
⎜⎜⎜⎝

− a(1) −
...

− a(n) −

⎞
⎟⎟⎟⎠ .

The tasks of compressed sensing are: (i) to recover x fromA and b as accurately as possible, and
(ii) doing so in an efficient way. In practice, one would like to recover a high dimensional signal
(that is, d is large) from as few measurements as possible (that is, n is small). In this regime, for an
arbitrary vector x ∈R

d the problem is ill-posed: for any given b, the solution of b=Ax, if it exists,
forms a (translation of) linear subspace of dimension at least d − n, and therefore there is no way
to uniquely recover the original x.
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A key quantity to look at to guarantee the success of (unique) recovery is the sparsity of the
vector x, and we say that a vector is s-sparse if its support is of size at most s. That is, if

|supp(x)| = {i : xi �= 0} ≤ s.

A neat observation is that having at most one s-sparse solution to Ax= b for every b is equiva-
lent to saying that A is 2s-robust (that is, every 2s columns of A are linearly independent). Indeed,
if we have two s-sparse vectors x �= y such that Ax=Ay then x− y is a nonzero 2s-sparse vector
in the kernel of A. For the other direction, if there is a nonzero 2s-sparse vector in the kernel of
A, one can split its support into two disjoint sets of size at most s each and consider the vectors
restricted to these sets, one of which is multiplied by −1.

If we take A to be a random Gaussian matrix A (or any other matrix drawn from some ‘nice’
continuous distribution), then we clearly have that with probability one A is s-robust for n= s
and any d ∈N (and in particular, one can uniquely recover s/2-sparse vectors). Moreover, in their
seminal work, Candes and Tao [3] showed that it is possible to efficiently reconstruct x with very
high accuracy by solving a simple linear programme if we take n=O(s log(d/s)).

In this paper, we are interested in the compressed sensing problem with integer-valued mea-
surement matrices and with entries of magnitude at most k. Integer-valuedmeasurement matrices
have found applications in measuring gene regulatory expressions, wireless communications, and
natural images [1, 4, 12], and they are quick to generate and easy to store in practice [13, 14].
Under this setting, for integer-valued signal x, we can have exact recovery even if we allow some
noise e with ‖e‖∞ < 1/2 (for more details, see [10]).

The first step is to understand when the compressed sensing problem is well-posed for given
s, n, k, and d. Namely, for which values of s, n, k and d does an s-robust n× d integer-valued
matrix with entries in {−k, . . . , k} exist? For s= n, observe that if d ≥ (2k+ 1)2n, then by the
pigeonhole principle, one can find n columns for which their first two rows are proportional and
therefore are not linearly independent. In particular, we have d =Ok(n). In [10], Fukshansky,
Needell, and Sudakov showed that there exists an s-robust A with d = �(

√
kn), using the result

of Bourgain, Vu and Wood [2] on the singularity of discrete random matrices (in fact, the more
recent result by Tikhomirov [17] gives a better bound for k= 1). Konyagin and Sudakov [15]
improved the upper bound to d =O(k

√
log kn), and they gave a deterministic construction of A

when d ≥ 1
2k

n/(n−1) > n.
When 1≤ s≤ n− 1 and k= 2, Fukshansky and Hsu [9] gave a deterministic construction such

that d ≥ (n+2
2
)1+ 2

3s−2 . When s= o(log n), this implies we can take d = ω(n). This result hints that
if we allow s to be ‘separated away’ from n, then one could take d to be ‘very large’. A natural
and nontrivial step to understanding the s-robustness property of matrices is to investigate the
typical behaviour. For convenience, we will focus on the case k= 1 (even though our argument
can be generalized to all fixed k), and we define, for all n, d ∈N, the random variable Mn,d which
corresponds to an n× d matrix with independent entries chosen uniformly from {±1}. For 1≤
s≤ n, we would like to investigate the threshold behaviour of M := Mn,d with respect to being
s-robust. That is, we wish to find some d∗ := d(s, n) such that

lim
n→∞ P[M is s-robust]=

{
0 d/d∗ → ∞
1 d/d∗ → 0.

It is trivial to show (deterministically) that if s= n and M is s-robust, then d ≤ 2n. What if
we allow s to be ‘separated away’ from n? That is, what if s= (1− δ)n for some 0< δ < 1? It is
not hard to show (and it follows from the proof of Lemma 3.3) that the probability for a random
n× n matrix to have rank at least (1− δ)n is at least 1− 2−�(δ2n2). Therefore, one could think
that a typical Mn,d might be (1− δ)n-robust for some d = 2n1−o(1) . This turns out to be wrong as
we show in the following simple theorem:
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Theorem 1.1. For any fixed 0< δ < 1 there exists C > 0 such that for sufficiently large n ∈N the
following holds. If s= (1− δ)n and d ≥ Cn1+1/(1−δ), then every ±1 n× d matrix M is not s-robust.

Proof. Given any s/2-subset of column vectors v1, . . . , vs/2 ∈ {±1}n ofM, by Spencer’s ‘six stan-
dard deviations suffice’ [16], there exist some x1, . . . , xs/2 ∈ {±1} for which ‖∑s/2

i=1 xivi‖∞ ≤
C′√n for a universal constant C′ > 0 (a simple Chernoff bound suffices if one is willing to lose
a
√
log n factor). Fix such a combination

∑s/2
i=1 xivi for each s/2-subset of column vectors. Since

there are at most
(
3C′√n

)n integer-valued vectors in the box [−C′√n, C′√n]n, and since
(

d
s/2

)
≥
(
d
s

)s/2
=
(
Cn1/(1−δ)

1− δ

)(1−δ)n/2

>
(
3C′√n

)n ,
by the pigeonhole principle, as long as C is large enough, there are two s/2-subsets whose
corresponding combination of column vectors are the same. Subtracting the corresponding com-
bination of column vectors leads to a nonzero s-sparse kernel vector ofM (since the indices of two
s/2-subsets are not the same), proving the result. �

In our main result, we determine the (typical) asymptotic behaviour up to a window of
(log n)ω(1).

Theorem 1.2. For any fixed 0< δ < 1, let n ∈N be sufficiently large, let s= (1− δ)n, and let ε =
ω(log log n/ log n). We have that:

(1) If d ≤ n1+1/(2−2δ)−ε then with high probability Mn,d is s-robust.
(2) If d ≥ n1+1/(2−2δ)+ε then with high probability Mn,d is not s-robust.

We believe that by optimizing our bounds/similar methods, one would be able to push the
bounds in Theorem 1.2 up to a constant factor of n1+1/(2−2δ) (though we did not focus on this
aspect). It would be interesting to obtain the 1+ o(1) multiplicative threshold behaviour.

2. Proof outline
We first outline the proof of Theorem 1.2. We will prove part (1) of Theorem 1.2 over Fp for some
prime p= eω(log2 n) to be chosen later (a stronger statement). Our strategy, at large, is to generate
M as

M =
⎛
⎝M1

M2

⎞
⎠

whereM1 =Mn1,d andM2 =Mn2,d, with n1 ≈ n and n2 = o(n). The proof consists of the following
two phases:

(1) Phase 1: Given any nonzero vector a ∈ F
d
p , we let

ρFp(a)=max
x∈Fp

P

⎡
⎣ d∑

i=1
aiξi = x

⎤
⎦ , (2.1)

where the ξis are i.i.d. Rademacher random variables. In this phase, we will show that

(a) M1 is with high probability such that for all nonzero a ∈ F
d
p , if |supp a| ≤ s := (1− δ)n

andM1a= 0, then ρFp(a)= e−ω(log2 n), and
(b) M1 is with high probability such that every s-subset of its columns has rank s− o(s).
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(2) Phase 2: Conditioned on the above properties, we will use the extra randomness ofM2 to
show that for a specific set of s columns, after exposingM2, the probability that it does not
have full rank is o

(
1/
(d
s
))
, and hence a simple union bound will give us the desired result.

In this strategy, it turns out that Phase 1(a) is the limiting factor, that is, ruling out structured
kernel vectors.

For the proof of the upper bound in Theorem 1.2, we exploit this observation. We show using
the second-moment method that it is highly likely that some 2�(1− δ)n/2� columns sum to the
zero vector (corresponding to an all 1s, highly structured kernel vector).

3. Proof of the lower bound in Theorem 1.2
In this section we prove Theorem 1.2. Let (say) p≈ elog3 n be a prime, let d = n1+1/(2−2δ)−ε and
s= (1− δ)n as given, and n1 = (1− β)n where β = ω(1/ log n) and β = o(log log n/ log n). As
described in Section 2, our proof consists of two phases, each of which will be handled separately.

3.1 Phase 1: no sparse structured vectors in the kernel of M1
Our first goal is to prove the following proposition.

Proposition 3.1. Mn1,d is with high probability such that for every (1− δ)n-sparse vector
a ∈ F

d
p \ {0}, if M1a= 0 then ρFp(a)= e−ω(log2 n).

In order to prove the above proposition, we need some auxiliary results.

Lemma 3.2. Mn1,d is with high probability n/ log
4 n-robust over Fp.

Proof. Observe that for any a ∈ F
d
p \ {0}we trivially have that P[M1a= 0]≤ 2−n1 = 2−	(n). Since

there are at most (
d

n/ log4 n

)
pn/ log

4 n ≤
(
edp log4 n

n

)n/ log4 n

= 2o(n)

n/ log4 n-sparse vectors a ∈ F
d
p , by a simple union bound we obtain that the probability for such

an a to satisfyM1a= 0 is o(1). This completes the proof. �
In particular, by combining the above lemma with the Erdős-Littlewood-Offord inequality

[5], we conclude that if a ∈ F
d
p is (1− δ)n-sparse and M1a= 0, then ρFp(a)=O(log2 n/n1/2).

However, to prove Proposition 3.1, we need a stronger estimate.
The following lemma asserts that every subset of s columns in M1 has large rank. It will be

crucial in Phase 2.

Lemma 3.3. Let t = ω(log n). Then, with high probability M1 =Mn1,d is such that every subset of s
columns contains at least s− t linearly independent columns.

Proof. Consider the event that one such subset has rank at most s− t. There are
(d
s
)≤ ds ≤ nn

possible choices of columns. For each such choice, there are at most 2s ≤ 2n ways to choose a
spanning set of r ≤ s− t columns. Such a subset has span containing at most 2s many {±1} vec-
tors (indeed, consider a full-rank r × r sub-block; any {±1} vector in the span of the columns
is determined by its value on these r coordinates), so the probability that the remaining at least
t = ω(log n) columns are in the span is at most (2s/2n1 )t ≤ (2−(δ−β)n)t = o(n−n). Taking a union
bound, the result follows. �
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Next, we state a version of Halász’s inequality [11, Theorem 3] as well as a ‘counting inverse
Littlewood-Offord theorem’ as was developed in [7].

Definition 3.4. Let a ∈ F
n
p and k ∈N. We define R∗

k(a) to be the number of solutions to

±ai1 ± a2 ± . . . ± ai2k ≡ 0 mod p

with |{i1, . . . , i2k}| > 1.01k.

Theorem 3.5. ([7, Theorem 1.4]). Given an odd prime p, integer n, and vector a= (a1, . . . , an) ∈
F
n
p \ {0}, suppose that an integer 0≤ k≤ n/2 and positive real L satisfy 30L≤ |supp(a)| and

80kL≤ n. Then

ρFp(a)≤
1
p

+ C3.5
R∗
k(a)+ ((40k)0.99n1.01)k

22kn2kL1/2
+ e−L.

We denote b⊂ a if b is a subvector of a and let |b| be the size of the support of a vector b.
Theorem 3.6. ([7, Theorem 1.7]). Let p be a prime, let k, n ∈N, s ∈ [n] and t ∈ [p]. Define
Bk,m,≥t(s, d) as the following set:{

a ∈ F
d
p : |a| ≤ s, and R∗

k(b)≥ t · 2
2k · |b|2k

p
for every b⊆ a with |b| ≥m

}
,

We have

|Bk,m,≥t(s, d)| ≤
(
d
s

) (m
s

)2k−1
(1.01t)m−sps.

We now are in position to prove Proposition 3.1. The proof is quite similar to the proofs in
[6–8].

Proof of Proposition 3.1. Let k= log3 n andm= n/ log4 n, p≈ elog3 n.
First we use Lemma 3.2 to rule out vectors a with a support of size less than n/ log4 n. Next, let

(say) L= n/ log10 n and let
√
L≤ t ≤ p.

Consider a fixed a ∈ Bk,m,≥t(s, d) \ Bk,m,≥2t(s, d) and we wish to bound the probability that
M1a= 0. By definition, there is a set S⊆ supp(a) of size at leastm such that

R∗
k(a|S)< 2t · 2

2k|S|2k
p

. (3.1)

Since the rows are independent and since ρFp(a)≤ ρFp(a|S), the probability that M1a= 0 is at
most ρFp(a|S)n1 . Furthermore, by Theorem 3.5 and the given conditions, which guarantee 30L≤
m≤ | supp(a|S)| and 80kL≤m≤ |S|, and by

√
L≤ t ≤ p, we have

ρFp(a|S)≤
1
p

+ C3.5
R∗
k(a|S)+ ((40k)0.99|S|1.01)k

22k|S|2kL1/2 + e−L

≤ 1
p

+ 2C3.5t
p
√
L

+ 10kC3.5
L1/2

(
k
|S|
)0.99k

+ e−L

≤ Ct
p
√
L

(3.2)

for all sufficiently large n by equation (3.1). All in all, taking a union bound over all the pos-
sible choices of a (Theorem 3.6), and using the fact that s= (1− δ)n and n1 = (1− β)n with
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β = ω(1/ log n), we obtain the bound
(
d
s

) (m
s

)2k−1
(1.01t)m−sps

(
Ct
p
√
L

)n1
≤
(
ed
s

)s
(1.01t)m

( p
1.01t

)s ( Ct
p
√
L

)(1−β)n

≤
(

ed
(1− δ)n

)(1−δ)n
2o(n)

(
1.01t
p

)(δ−β)n(C(log n)5√
n

)(1−β)n

= o(1/p)

on the probability M1 has such a kernel vector for sufficiently large n. Here we used the bounds
d ≤ n1+1/(2−2δ)−ε , ε = ω(log log n/ log n) and β = o(ε). Union bounding over all possible values
of t shows that there is an appropriately small chance of having such a vector for any t ≥ √

L.
Finally, note that Bk,m,≥p(s, d) is empty and thus the above shows that kernel vectors a cannot

be in Bk,m,≥√
L(s, d). A similar argument as in equations (3.1) and (3.2) shows that

ρFp(a)≤
C′

p
,

and the result follows. �

3.2 Phase 2: boosting the rank using M2
Here we show that, conditioned on the conclusions of Proposition 3.1 and Lemma 3.3, after

exposingM2 with high probabilityM =
⎛
⎝M1

M2

⎞
⎠ is s-robust.

To analyse the probability that a given subset of s columns is not of full rank, we will use the
following procedure:

Fix any subset of s columns inM1, and letC := (c1, . . . , cs) be the submatrix inM1 that consists
of those columns. We revealM2 according to the following steps:

(1) Let I ⊆ [s] be the largest subset of indices such that the columns {ci | i ∈ I} are linearly inde-
pendent. By Lemma 3.3 we have that T := |I| ≥ s− t = (1− δ)n− t, where t = ω(log n).
Without loss of generality we may assume that I := {c1, . . . , cT} and T ≤ s− 1 (other-
wise we have already found s independent columns of M). By maximality, we know that
cT+1 can be written (uniquely) as a linear combination of c1, . . . , cT . That is, there exists a
unique combination for which

∑T
i=1 xici = cT+1. In particular, this means that

T∑
i=1

xici − cT+1 = 0,

and hence the vector x= (0, . . . , x1, . . . , xT ,−1, . . . , 0) ∈ F
d
q is (T + 1)-sparse and satisfies

M1x= 0. Since T + 1≤ s, by Proposition 3.1 we know that ρFp(x)= 2−ω(log2 n).
(2) Expose the row vector of dimension T + 1 from M2 below the matrix (c1, . . . , cT+1). We

obtain a matrix of size (n1 + 1)× (T + 1). Denote the new row as (y1, . . . , yT+1).
(3) If the new matrix is of rank T + 1, then consider this step as a ‘success’, expose the entire

row and start over from (1). Otherwise, consider this step as a ‘failure’ (As we failed to
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increase the rank) and observe that if

⎡
⎣c1 . . . cT+1

y1 . . . yT+1

⎤
⎦ is not of full rank, then we must have

x1y1 + x2y2 + . . . − yT+1 = 0.

The probability to expose such a vector y is at most ρFp(x)= e−ω(log2 n).

(4) All in all, the probability for more than βn− t failures is at most
(
βn
t
) (

e−ω(log2 n)
)βn−t =

e−ω(n log n) = o
((d

s
)−1)

. Therefore, by the union bound we obtain that with high probabil-
ityM is s-robust.

This completes the proof.

4. Proof of the upper bound in Theorem 1.2
We first perform preliminary computations to compute a certain correlation. This boils down to
estimating binomial sums. Let ξi, ξ ′i be independent Rademacher variables and define

α(n,m)= P[ξ1 + · · · + ξn = ξ1 + · · · + ξm + ξ ′m+1 + · · · + ξ ′n = 0]
P[ξ1 + · · · + ξn = 0]2

.

Clearly α(n,m)≤ α(n, n)≤ 10
√
n by [5].

Lemma 4.1. Fix λ > 0. If n is even and 0≤m≤ (1− ε)n we have

α(n,m)= 1+O(m/(εn)).

Proof. We have

α(n,m)≤ supk P[ξ1 + · · · + ξn−m = k]
P[ξ1 + · · · + ξn = 0]2

≤ 2−(n−m)( n−m
�(n−m)/2�

)
2−n( n

n/2
) = 1+O(m/(n−m)).

�
We will also need a more refined bound whenm is small.

Lemma 4.2. If n is even and 0≤m≤ n1/2, we have

α(n,m)= 1+O(m2/n2).

Proof. Using the approximation 1− x= exp(− x− x2/2+O(x3)) for |x| ≤ 1/2 we see that if y is
an integer satisfying 1≤ y≤ x/2 then

x(x− 1) · · · (x− y+ 1)= xy exp
(

−
y−1∑
i=0

i
x

−
y−1∑
i=0

i2

2x2
+O

( y4
x3
))

= xy exp
(

− y(y− 1)
2x

− y(y− 1)(2y− 1)
12x2

+O
( y4
x3
))

. (4.1)

We now apply this to the situation at hand. We see α(n,m) is equal to
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2−(2n−m)∑m
k=0
(m
k
)( n−m

n/2−k
)2

2−2n( n
n/2
)2

= 2m
m∑
k=0

(
m
k

)(
(n/2)(n/2− 1) · · · (n/2− k+ 1)× (n/2)(n/2− 1) · · · (n/2− (m− k)+ 1)

n(n− 1) · · · (n−m+ 1)

)2

= 2m
m∑
k=0

(
m
k

)(
(n/2)me−

k(k−1)
n − k(k−1)(2k−1)

3n2
− (m−k)(m−k−1)

n − (m−k)(m−k−1)(2m−2k−1)
3n2

+O(m4/n3)

nme−
m(m−1)

2n −m(m−1)(2m−1)
12n2

+O(m4/n3)

)2

= 2−m
m∑
k=0

(
m
k

)
exp

(
− m3 − 4mk(m− k)+ n(2k−m)2 − nm

2n2
+O(m2/n2)

)

= 2−m
m∑
k=0

(
m
k

)(
1− m3 − 4mk(m− k)− nm

2n2
+O(m2/n2)

)(
1− (2k−m)2

2n
+O

(
(2k−m)4

n2

))

= 2−m
m∑
k=0

(
m
k

)(
1− m3 − 4mk(m− k)− nm

2n2

)(
1− (2k−m)2

2n

)
+O(m2/n2).

In the third line, we used equation (4.1) and in the fourth line, we simplified the expression
and used k≤m≤ n1/2 to subsume many terms into an error of size O(m2/n2). The fifth line used
exp(x)= 1+ x+O(x2) for |x| ≤ 1 and the sixth line uses 2−m(m

k
)
(2k−m)4 ≤ 2m2 exp(− (2k−

m)2/100). Finally, this sum equals

α(n,m)= 1− 3nm2 − 3m3 + 2m2

4n3
+O(m2/n2)= 1+O(m2/n2).

�
We are ready to prove the upper bound in Theorem 1.2.

Proof of the upper bound in Theorem 1.2. We are given δ ∈ (0, 1) and ε = ω(log log n/ log n),
with d = n1+1/(2−2δ)+ε . Let s= 2�(1− δ)n/2�. We consider an n× d random matrix with inde-
pendent Rademacher entries and wish to show it is not s-robust with high probability. We may
assume ε < 1/2 as increasing dmakes the desired statement strictly easier.

For an s-tuple of columns labelled by the index set S⊆ [d], let XS be the indicator of the event
that these columns sum to the zero vector. Let X =∑

S∈([d]s ) XS, and let (ξ1, . . . , ξd) be a vector of
independent Rademachers. We have

EX =
(
d
s

)
EX[s] =

(
d
s

)
P[ξ1 + · · · + ξs = 0]n =

(
d
s

)(
2−s
(

s
s/2

))n

and

Var X =EX2 − (EX)2 =
∑

S,T∈([d]s )

(
P

[∑
i∈S

ξi =
∑
j∈T

ξj = 0
]n − P[ξ1 + · · · + ξs = 0]2n

)

= (EX)2 · 1(d
s
)2 ∑

S,T∈([d]s )

(
P

[∑
i∈S ξi =∑

j∈T ξj = 0
]n

P[ξ1 + · · · + ξs = 0]2n
− 1

)

= (EX)2
s∑

m=0

( s
m
)(d−s

s−m
)

(d
s
) · (α(s,m)n − 1).
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For every η > 0 and m≤ cηn1/2, where cη is a sufficiently small absolute constant in terms
of η, we see |α(s,m)n − 1| ≤ η by Lemma 4.2. For cηn1/2 <m≤ (1− ε/8)s we have α(s,m)n ≤
exp(O(m/ε)) by Lemma 4.1. For this range we have, sincem/s≥ nδ/2s/d,( s

m
)(d−s

s−m
)

(d
s
) ≤ (s+ 1)P[Bin(s, s/d)≥m]≤ exp(− sD(m/(2s)||s/d))≤ exp(−m(δ/4) log n)

by Chernoff–Hoeffding (the fact that Bin(n, p) exceeds nq for q≥ p with probability at most
exp(− nD(q||p)), where this is the KL-divergence). Thus

(1−ε)s∑
m=c

√
n

( s
m
)(d−s

s−m
)

(d
s
) · (α(s,m)n − 1)≤

(1−ε)s∑
m=c

√
n

exp(O(m/ε)) · exp(−m(δ/4) log n)= o(1)

as ε = ω(log log n/ log n).
Finally for (1− ε/8)s≤m≤ s we have

s∑
m=(1−ε)s

( s
m
)(d−s

s−m
)

(d
s
) · (α(s,m)n − 1)≤

s∑
m=(1−ε)s

( s
m
)(d−s

s−m
)

(d
s
) (10

√
n)n ≤ 2s

( d
εs/8
)

(d
s
) (10

√
n)n.

Thus
s∑

m=(1−ε)s

( s
m
)(d−s

s−m
)

(d
s
) · (α(s,m)n − 1)≤

(
10s
εd

)(1−ε/8)s
(10

√
n)n ≤ (n− 1

2−2δ −ε/2)(1−ε/8)(1−δ)n(10
√
n)n,

since d = n1+1/(2−2δ)+ε and s= 2�(1− δ)n/2� along with ε = ω(log log n/ log n). We see that this
is o(1). Thus

Var X ≤ (EX)2 ·
(

η + o(1)+ o(1)
)

≤ 2η(EX)2

for n sufficiently large, and thus X > 0 with probability at least 1− 2η. �
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