ON VECTOR SPACES OF CERTAI' A :ODULAR FORMS OF GIVEN NEIGHTS: ADDENDUM
 A.R. Aggarwal and M, K, Agrawal

The statement $f=\underset{\rightarrow}{\lim } g_{t}$ used in proving Theorem 2 of [1] needs explanation. This was pointed out to us by Professor S. Raghwan of Tata Institute of Fundamental Research, Bombay, and we gave the explanation of this in [2]. For the sake of completeness we give here the full proof of the theorem; filling the gap in the proof. We use the same notations and definitions as those of [1]. Also for simplicity of notation we write $k_{m n}, g_{m n}$ and $a_{m n}$ to mean $k_{m, n}, g_{m, n}$ and $a_{m, n}$ respectively. We need the following lemma.

LEMMA. Let $p \geq 5$ be a prime number and u an even integer such that $0 \leq u<p-1$. Further let $\left\{g_{m}\right\}$ be a family of all modular forms over $\mathrm{SL}_{2}(Z)$ such that

$$
k_{m} \equiv u \bmod (p-1)
$$

for all m, where k_{m} denotes the weight of the modular form g_{m}. Then for each $n=0,1,2, \ldots$, there exist non-negative integers $a(n)$ and $b(n)$, satisfying
(i) $4 a(n)+6 b(n)+12 n \equiv u \bmod (p-1)$, and
(ii) $k_{m n}=\left\{k_{m}-(4 a(n)+6 b(n)+12 n)\right\} /(p-1)$ are non-negative integers for $0 \leq n<d_{m}$, where d_{m} denotes the dimension of vector space of modular forms over $\mathrm{SL}_{2}(z)$ of weight
\qquad
Received 15 February 1982.

Proof. Arrange $\left\{d_{m}\right\}$ in ascending order of magnitude. Let $k_{m_{i}}$ be the least among the weights of modular forms of dimension d_{i} in the family $\left\{g_{m}\right\}$. Then $\left\{k_{m_{i}}\right\}$ are also in ascending order.

For $0 \leq n<d_{0}$, we have $k_{m_{0}}-12 n \geq 0$ and not equal to 2 . Therefore for these n, we can choose non-negative integers $a(n)$ and $b(n)$ such that $4 a(n)+6 b(n)=k_{m_{0}}-12 n$. Then

$$
4 a(n)+6 b(n)+12 n=k_{m_{0}} \equiv u \bmod (p-1)
$$

As $k_{m_{0}} \leq k_{m}$ for all m, therefore $k_{m m}$ are non-negative integers for $0 \leq n<d_{0}$ and for all m. Proceeding as above we can find non-negative integers $a(n)$ and $b(n)$ for $d_{i} \leq n<d_{i+1}, i=0,1,2, \ldots$, satisfying the required conditions.

REMARK. Let S be any subfamily of the family of all modular forms $\left\{g_{m}\right\}$ with weights k_{m} satisfying $k_{m} \equiv u \bmod (p-1)$. Then the same choice of $a(n)$ and $b(n)$, as is done for this family of all modular forms in the lemma, will work for the subfamily S also.

For a given prime $p \geq 5$ and $k=(s, u), u$ as above, construct $a(n)$ and $b(n)$ for each n. Consider

$$
f_{m}=Q^{a(n)} R^{b(n)} \Delta^{n} E_{p-1}^{s} n
$$

where $s_{n}=\{s-(4 a(n)+6 b(n)+12 n)\} /(p-1)$. It follows from Theorem 1 of [1] that f_{n} is a p-adic modular form of weight k. Writing ' q ' series expansion for f_{n}, that is,

$$
f_{n}=\sum_{m=0}^{\infty} a_{m}^{(n)} q^{m}, \text { with } a_{m}^{(n)} \text { in } Q_{p}
$$

we see that $a_{m}^{(n)}=0$ for $0 \leq m<n$ and $a_{n}^{(n)}=1$. We now give a complete proof of Theorem 2 of [1].

THEOREM. f is a p-adic modular form of weight $k=(s, u)$ if and only if $f=\sum_{n=0}^{\infty} a_{n} f_{n}$ with $\nu_{p}\left(a_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$.

Proof. Suppose first that f is a p-adic modular form of weight k . Write

$$
f=\sum_{m=0}^{\infty} b_{m}^{(0)} q^{m}, b_{m}^{(0)} \text { in } Q_{p}
$$

The Fourier series expansion of $f-b_{0}^{(0)} f_{0}$ has no constant term, therefore we can write

$$
f-b_{0}^{(0)} f_{0}=\sum_{m=1}^{\infty} b_{m}^{(1)} q^{m} \text { with } b_{m}^{(1)} \text { from } Q_{p} .
$$

Similarly, we can write

$$
f-b_{0}^{(0)} f_{0}-b_{1}^{(1)} f_{1}=\sum_{m=2}^{\infty} b_{m}^{(2)} q^{m} \text { with } b_{m}^{(2)} \text { from } Q_{p}
$$

Repeating this process t times, we can write

$$
f-\sum_{n=0}^{t} b_{n}^{(n)} f_{n}=\sum_{m=t+1}^{\infty} b_{m}^{(t+1)} q^{m} \text { with } b_{m}^{(t+1)} \text { from } Q_{p} .
$$

This means that we can find $b_{n}^{(n)}$ in $Q_{p}, n=0,1,2, \ldots$, such that as a formal series in q, we have

$$
f=\sum_{n=0}^{\infty} b_{n}^{(n)} f_{n} .
$$

Writing a_{n} for $b_{n}^{(n)}$, we see that

$$
f=\sum_{n=0}^{\infty} a_{n} f_{n}, \text { with } a_{n} \text { in } Q_{p}
$$

Now we shall prove that $v_{p}\left(a_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$. Choose a sequence $\left\{g_{m}\right\}$ of modular forms converging to f. Then the sequence $\left\{k_{m}\right\}$ of their weights converges to k in X. Therefore $\left\{k_{m}\right\}$ converges to s in
z_{p}. For the family $\left\{g_{m}\right\}$ we construct $a(n), b(n)$ and $k_{m n}$ as in the lemma. For each m, define

$$
g_{m n}=Q^{a(n)} R^{b(n)} \Delta_{E_{p-1}}^{k_{m n}} \text { for } n=0,1, \ldots, d_{m}^{-1}
$$

where d_{m} is the dimension of the vector space $M\left(k_{m}\right)$ of modular forms of weight k_{m}. Then $g_{m n}$ are modular forms of weight k_{m} and constitute a basis for $M\left(k_{m}\right)$. Therefore for each m, we can write

$$
g_{m}=\sum_{n=0}^{\infty} a_{m n} g_{m n} \text {, with } a_{m n}=0 \text { for } n \geq d_{m}
$$

Now $k_{m n}=\left(k_{m}-4 \alpha(n)-6 b(n)-12 n\right) /(p-1)$ are integers (may be negative for large n) for all m and all n. Define, for each n,

$$
s_{n}=(s-(4 a(n)+6 b(n)+12 n)) /(p-1)
$$

Then $s_{n} \in Z_{p}$, as $k_{m} \rightarrow s$ in Z_{p}. Therefore $k_{m n} \rightarrow s_{n}$ for each n and this convergence is uniform in n. Therefore $E_{E_{p-n}^{k}}^{k_{m}} \rightarrow E_{p-1}^{s} n$ uniformly in n. Hence $g_{m n} \rightarrow f_{n}$ uniformly in n.

Now

$$
\begin{align*}
f-g_{m} & =\sum_{n=0}^{\infty}\left(a_{n} f_{n}-a_{m n} g_{m n}\right) \tag{*}\\
& =\sum_{n=0}^{\infty} a_{n}\left(f_{n}-g_{m n}\right)+\left(a_{n}-a_{m n}\right) g_{m n}
\end{align*}
$$

As $g_{m} \rightarrow f$ and $g_{m n} \rightarrow f_{n}$ uniformly in n, therefore given a positive integer N, we can find a positive integer m_{0} such that for each $m \geq m_{0}$, we have

$$
v_{p}\left(f-g_{m}\right)>N
$$

and

$$
v_{p}\left(f_{n}-g_{m}\right)>N \text { for all } n \geq 0
$$

Therefore, for $m \geq m_{0}$ and $n \geq 0$, it follows from (*), that

$$
v_{p}\left(a_{n}-a_{m n}\right)>N
$$

In particular,

$$
v_{p}\left(a_{n}-a_{m_{0} n}\right)>\bar{N} \text { for all } n \geq 0
$$

But $a_{m_{0} n}=0$ for $n \geq d_{m_{0}}$. Hence $v_{p}\left(a_{n}\right)>N$ for $n \geq d_{m_{0}}$. This shows that $v_{p}\left(a_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$.

$$
\text { Conversely suppose now that } f=\sum_{n=0}^{\infty} a_{n} f_{n} \text {, with } v_{p}\left(a_{n}\right) \rightarrow \infty \text { as }
$$

$n \rightarrow \infty$. Take $g_{t}=\sum_{n=0}^{t} a_{n} f_{n}$. Then g_{t} is a p-adic modular form of weight k. Since $v_{p}\left(a_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$ and $v_{p}\left(f_{n}\right)=0$, so g_{t} is a convergent sequence with its limit equal to f. Hence f is a p-adic modular form of weight k.

References

[1] A.R. Aggarwal and M.K. Agrawal, "On vector spaces of certain modular forms of given weights", Buzl. AustraZ. Math. Soc. 16 (1977), 371-378.
[2] Agya Ram, "On p-adic modular forms and p-adic zeta functions" (PhD thesis, Panjab University, Chandigarh, India, 1979).

Department of Mathematics,
Centre for Advanced Study in Mathematics,
Panjab University,
Chandigarh 160014, India.

