ON VECTOR SPACES OF CERTAIN MODULAR FORMS OF GIVEN WEIGHTS: ADDENDUM

A.R. Aggarwal and M.K. Agrawal

The statement $f = \lim_{\rightarrow} g_t$ used in proving Theorem 2 of [1] needs explanation. This was pointed out to us by Professor S. Raghwan of Tata Institute of Fundamental Research, Bombay, and we gave the explanation of this in [2]. For the sake of completeness we give here the full proof of the theorem; filling the gap in the proof. We use the same notations and definitions as those of [1]. Also for simplicity of notation we write k_{mn} , g_{mn} and a_{mn} to mean $k_{m,n}$, $g_{m,n}$ and $a_{m,n}$ respectively. We need the following lemma.

. LEMMA. Let $p \ge 5$ be a prime number and u an even integer such that $0 \le u < p-1$. Further let $\{g_m\}$ be a family of all modular forms over $SL_2(Z)$ such that

 $k_m \equiv u \mod (p-1)$

for all m, where k_m denotes the weight of the modular form g_m . Then for each n = 0, 1, 2, ..., there exist non-negative integers a(n) and b(n), satisfying

- (i) $4a(n) + 6b(n) + 12n \equiv u \mod (p-1)$, and
- (ii) $k_{mn} = \{k_m (4a(n)+6b(n)+12n)\}/(p-1)$ are non-negative integers for $0 \le n < d_m$, where d_m denotes the dimension of vector space of modular forms over $SL_2(Z)$ of weight k_m .

Received 15 February 1982.

475

Proof. Arrange $\{d_m\}$ in ascending order of magnitude. Let k_{m_i} be the least among the weights of modular forms of dimension d_i in the family $\{g_m\}$. Then $\{k_{m_i}\}$ are also in ascending order.

For $0 \le n < d_0$, we have $k_{m_0} - 12n \ge 0$ and not equal to 2. Therefore for these n, we can choose non-negative integers a(n) and b(n) such that $4a(n) + 6b(n) = k_{m_0} - 12n$. Then

$$4a(n) + 6b(n) + 12n = k_m \equiv u \mod (p-1)$$
.

As $k_{m_0} \leq k_m$ for all m, therefore k_{mn} are non-negative integers for $0 \leq n < d_0$ and for all m. Proceeding as above we can find non-negative integers a(n) and b(n) for $d_i \leq n < d_{i+1}$, i = 0, 1, 2, ..., satisfying the required conditions.

REMARK. Let S be any subfamily of the family of all modular forms $\{g_m\}$ with weights k_m satisfying $k_m \equiv u \mod (p-1)$. Then the same choice of a(n) and b(n), as is done for this family of all modular forms in the lemma, will work for the subfamily S also.

For a given prime $p \ge 5$ and k = (s, u), u as above, construct a(n) and b(n) for each n. Consider

$$f_m = Q^{a(n)} R^{b(n)} \Delta^n E_{p-1}^{sn}$$

where $s_n = \{s_{-}(4a(n)+6b(n)+12n)\}/(p_{-1})$. It follows from Theorem 1 of [1] that f_n is a *p*-adic modular form of weight *k*. Writing 'q' series expansion for f_n , that is,

$$f_n = \sum_{m=0}^{\infty} a_m^{(n)} q^m$$
, with $a_m^{(n)}$ in Q_p ,

we see that $a_m^{(n)} = 0$ for $0 \le m < n$ and $a_n^{(n)} = 1$. We now give a complete proof of Theorem 2 of [1].

THEOREM. f is a p-adic modular form of weight k = (s, u) if and only if $f = \sum_{n=0}^{\infty} a_n f_n$ with $v_p(a_n) \to \infty$ as $n \to \infty$.

Proof. Suppose first that f is a $p\mbox{-adic}\mbox{ modular}$ form of weight k . Write

$$f = \sum_{m=0}^{\infty} b_m^{(0)} q^m, \quad b_m^{(0)} \quad \text{in} \quad Q_p.$$

The Fourier series expansion of $f - b_0^{(0)} f_0$ has no constant term, therefore we can write

$$f - b_0^{(0)} f_0 = \sum_{m=1}^{\infty} b_m^{(1)} q^m$$
 with $b_m^{(1)}$ from Q_p

Similarly, we can write

$$f - b_0^{(0)} f_0 - b_1^{(1)} f_1 = \sum_{m=2}^{\infty} b_m^{(2)} q^m \quad \text{with} \quad b_m^{(2)} \quad \text{from} \quad Q_p \; .$$

Repeating this process t times, we can write

$$f - \sum_{n=0}^{t} b_{n}^{(n)} f_{n} = \sum_{m=t+1}^{\infty} b_{m}^{(t+1)} q^{m} \text{ with } b_{m}^{(t+1)} \text{ from } q_{p}$$

This means that we can find $b_n^{(n)}$ in q_p , n = 0, 1, 2, ..., such that as a formal series in q, we have

$$f = \sum_{n=0}^{\infty} b_n^{(n)} f_n$$

Writing a_n for $b_n^{(n)}$, we see that

$$f = \sum_{n=0}^{\infty} a_n f_n$$
, with a_n in Q_p .

Now we shall prove that $v_p(a_n) \to \infty$ as $n \to \infty$. Choose a sequence $\{g_m\}$ of modular forms converging to f. Then the sequence $\{k_m\}$ of their weights converges to k in X. Therefore $\{k_m\}$ converges to s in

 Z_p . For the family $\{g_m\}$ we construct a(n), b(n) and k_{mn} as in the lemma. For each m, define

$$g_{mn} = Q^{a(n)} R^{b(n)} \Delta^{n} E_{p-1}^{k_{mn}}$$
 for $n = 0, 1, ..., d_{m}-1$,

where d_m is the dimension of the vector space $M(k_m)$ of modular forms of weight k_m . Then g_{mn} are modular forms of weight k_m and constitute a basis for $M(k_m)$. Therefore for each m, we can write

$$g_m = \sum_{n=0}^{\infty} a_{mn} g_{mn}$$
, with $a_{mn} = 0$ for $n \ge d_m$.

Now $k_{mn} = (k_m - 4a(n) - 6b(n) - 12n)/(p-1)$ are integers (may be negative for large n) for all m and all n. Define, for each n,

$$s_n = (s - (4a(n) + 6b(n) + 12n))/(p-1)$$

Then $s_n \in \mathbb{Z}_p$, as $k_m \neq s$ in \mathbb{Z}_p . Therefore $k_{mn} \neq s_n$ for each nand this convergence is uniform in n. Therefore $\begin{bmatrix} k_{mn} \neq s_n \\ p-n \neq p_{p-1} \end{bmatrix}$ uniformly in n. Hence $g_{mn} \neq f_n$ uniformly in n.

Now

(*)
$$f - g_m = \sum_{n=0}^{\infty} (a_n f_n - a_{mn} g_{mn})$$
$$= \sum_{n=0}^{\infty} a_n (f_n - g_{mn}) + (a_n - a_{mn}) g_{mn}$$

As $g_m \neq f$ and $g_{mn} \neq f_n$ uniformly in n, therefore given a positive integer N, we can find a positive integer m_0 such that for each $m \geq m_0$, we have

$$v_p(f-g_m) > N$$
,

and

$$v_p(f_n - g_{mn}) > N$$
 for all $n \ge 0$.

478

$$v_p(a_n - a_{mn}) > N$$

In particular,

$$v_p(a_n - a_{m_0}n) > N$$
 for all $n \ge 0$.

But $a_{m_0^n} = 0$ for $n \ge d_{m_0^n}$. Hence $v_p(a_n) > N$ for $n \ge d_{m_0^n}$. This shows that $v_p(a_n) \to \infty$ as $n \to \infty$.

Conversely suppose now that $f = \sum_{n=0}^{\infty} a_n f_n$, with $v_p(a_n) \to \infty$ as $n \to \infty$. Take $g_t = \sum_{n=0}^{t} a_n f_n$. Then g_t is a *p*-adic modular form of weight k. Since $v_p(a_n) \to \infty$ as $n \to \infty$ and $v_p(f_n) = 0$, so g_t is a convergent sequence with its limit equal to f. Hence f is a *p*-adic modular form of weight k.

References

- [1] A.R. Aggarwal and M.K. Agrawal, "On vector spaces of certain modular forms of given weights", Bull. Austral. Math. Soc. 16 (1977), 371-378.
- [2] Agya Ram, "On p-adic modular forms and p-adic zeta functions" (PhD thesis, Panjab University, Chandigarh, India, 1979).

Department of Mathematics, Centre for Advanced Study in Mathematics, Panjab University, Chandigarh 160014, India.