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MICRO-METEOROLOGICAL CONDITIONS FOR 
SNOW MELT 
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(Institut fiir Meteoroiogie und Geophysik, Universitat Innsbruck, A-6020 Innsbruck, Austria) 

ABSTRACT. The energy budget of a snow or ice surface 
is determined by atmospheric variables like solar and 
atmospheric long-wave radiation, air temperature, and 
humidity; the transfer of energy from the free atmosphere 
to the surface depends on the stability of the atmospheric 
boundary layer, where vertical profiles of wind speed and 
temperature determine stability, and on surface conditions 
like surface temperature (and thus surface humidity), 
roughness, and albedo. 

This paper investigates the conditions exactly at the 
onset or the end of melting using air temperature, 
humidity, and as the radiation term the sum of global and 
reflected short-wave plus downward long-wave radiation. 
For the turbulent exchange in the boundary la~'er, examples 
are computed with a transfer coefficient of 18.5 W m-2 K-1 

which corresponds to the average over the ablation period 
on an Alpine glacier. Ways to estimate the transfer 
coefficient for various degrees of stability are indicated in 
the Appendix. 

It appears from such calculations that snow may melt 
at air temperatures as low as -10 ° C and may stay frozen at 
+IO°C. 

I. INTRODUCTION 

The fact that snow melts at a temperature of Ts = 
o °c has often lead to the simplified assumption that it also 
melts at air temperatures of Ta = 0

0 
C. This statement dis­

regards the intricacies of the energy budget of the snow 
surface in which radiation fluxes and turbulent exchange of 
latent heat operate independently of air temperature. In the 
following, a formulation is derived that permits the assess­
ment of the meteorological conditions for snow melt in 
terms of absorbed radiation, humidity, and temperature of 
the atmospheric boundary layer above the snow surface. 

The treatment of the problem is essentially an exercise 
in micro-meteorology. The partition of the energy budget 
obeys the conservation of energy law and is formally 
straightforward. Its application to real snow, however, is 
complicated by three facts: 

(i) The separate variables chosen to describe a particular 
situation are not entirely independent, for instance, the 
atmospheric vapor density Pva is limited by air 
temperature Ta' and the long-wave downward radiation 
flux L l is to a certain degree coupled to Ta and pva· 
Such interconnections need to be considered when 
specifying a particular set of variables and will be 
explicitly stated in two examples in the text. 

(ii) Because of the diurnal variation of the energy fluxes, 
stationarity is only approximated. 

(iii) The transfer of heat through a turbulent boundary layer 
depends on external parameters such as wind speed and 
air temperature as well as internal ones like surface 
temperature and surface roughness. 

In view of these complications, an a priori 
determination of the transfer coefficient is not attempted 
here. A value of 18.5 W m-2 K- I , as found from long-term 
observations on Alpine firn and ice (Kuhn, 1979), was used 
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Fig. 1. Air temperature Ta at the onset of melting for 
various values of absorbed radiation R = S l - Sf + L l 
and water-vapor density pva. Curves show saturation and 
20% relative humidity. The dotted line is explained in the 
text. This diagram is valid for a thermal resistance 
rH = 65 s m-I (equivalent to a transfer coefficient 
aH = 18.5 W m-2 rl at Pa = 1.2 kg m-s). 

in the quantitative examples in section IV and in Figure I. 
Various ways of expressing turbulent-heat transfer and its 
dependence on stability are briefly summarized in the 
Appendix. 

n. PARAMETERIZATION OF THE ENERGY BUDGET 

Energy f1uxes at the surface balance such that the sum 
of short-wave (S l, Sf) and long-wave (L l, Lt) radiation 
fluxes, sensible (H), and latent (V) turbulent-heat fluxes are 
available for either changing the temperature or the phase 
of the snow at a rate Q. 

Sl - St + Ll - Lt + H + V = Q. (I) 

.Surface .temperature Ts' air temperature Ta' and vapor 
denSIty of aIr Pva and surface Pvs are obvious choices of 
meteorological parameters in specifying this budget. As 
downward long-wave f1uxes L l are only weakly related to 
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Ta (while L f is unambiguously tied to T s)' the first three 
of the four radiation terms are taken as one independent 
variable 

R = S 1 - Sf + L 1. (2) 

The turbulent fluxes are taken to be proportional to 
the d iff erences (Ts - Ta) and (Pvs - Pva)' where the 
factor of proportionality can be expressed as a transfer 
coefficient, or resistance, which depends on stability as 
explained in the Appendix. The budget can then be written 
as 

Q 
'v 

(3) 

where ES is the surface emissivity and is approximately 
equal to unity, 0 = 5.67 x 10-8 W m- 2 K -4 is the Stefan­
Boltzmann constant, Pa is the air density, c is the specific 
heat of air, 'H and 'v are the resistance toP heat and vapor 
transfer, respectively, Lv = 2.5 MJ kg-! the latent heat of 
evaporation, and the other terms have been explained 
before. 

Considering that surface vapor density is determined by 
surface temperature 

(4) 

there are four independent variables (R, Ts' Ta' and Pva) 
and one dependent variable Q for given values of Pa, 'H' 
and 'v in Equation (3). 

Ill . MELTING CONDITIONS 

At
o 

the onset (or cessation) of melting, however, Q = 0, 
Ts.= O. C, .EsoT: ~ .315 W m-2

, and ~~s = 4.8 x 10-3 kg m- 3
. 

ThIs sItuatIOn faclhtates the analysIs of Equation (3) by 
reducing the number of variables to three (R, Ta' and Pva)' 
each one of which can be studied as it reacts to the other 
two. That means, for given values of Rand Pv ' there is 
only one value of Ta that fulfils the condition 01 incipient 
melting. 

By taking partial 
determine the values 

derivatives in Equation (3), one can 
of (BTa/BPva)R' (BTa/BR)p , (BRI 

va 
BPva)I;;' which may be considered as sensitivity coefficients 
that indicate how much one variable has to change in order 
to compensate for an imbalance caused by one of the 
others. 

VI. NUMERICAL EXAMPLES 

Choosing, for example, values for Pacp = 1200 J kg-! 
K - l and rH = 'v = 65 s m-I, Equation (3) becomes 

R 315 + 18 .5Ta - 185 + 3.85 x 104 Pva = 0 (5) 

or Ta 27 .0 - R118.5 - 2.08pva ' 

From this equation, the sensitivity coefficients can be 
derived 

which means that a decrease in atmospheric vapor density 
by I g m-3 must be counterbalanced by an increase in air 
temperature of 2. I K or, in other words, less condensation 
(stronger evaporation) is compensated by an increased flu x 
of sensible heat towards the surface . 

Similarly, 

(7) 

A decrease in absorbed radiation by 1 W m- 2 needs to be 
compensated by an increase of T by 0.054 K. Inspecting 
the reciprocal of this value, one 1inds that it is equal to 
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PaCp'H- l and thus to the transfer coefficient for sensible 
heat. 

Finally, 

(8) 

A decrease in atmospheric vapor density by I g m-3 requires 
an increase in absorbed radiation by 38.5 W m -2 for com­
pensation. 

It is clear from Equations (3) and (5) that the co­
efficients just described are independent of the value of the 
respective third variable (R, Pva' Ta) but that they change 
with the assumptions made for Pa and 'H or r v' 

Let us now use the example in Equation (5) in order 
to estimate a reasonable range of air temperatures under 
which melting might be expected. 

For a given value of absorbed radiation R, the 
maximum conceivable air temperature wiII occur in an 
absolutely dry atmosphere. A somewhat less stringent lower 
limit for Ta is set at Pva = p~a(Ta)' 

In Figure I, which shows a graphical solution of 
Equation (5), the two limits P~a and Pva = 0 are entered 
as weII as the more likely lower limit of 20% relative 
humidity. 

The extreme values of Ta for melting conditions are 
further determined by extremes of R. Although these cannot 
be calculated exactly, some likely situations wiII be discussed 
in the foIIowing examples. 

1. Minima of R 
During darkness, when S 1 and Sf vanish, R = L 1, 

minima of which are to be expected under a clear sky. L 1 

is a function of the respective vertical profiles of T, PV ' 

and of other emitting trace gases, but it can be sufficiently 
approximated by L1 = 0.7071 for Alpine, clear-sky 
conditions. 

An approximate expression for the minimum value of 
R can then be derived by inserting R = 0.7071 into 
Equation (5). The solution is the dotted line on Figure 1, 
which shows that at 20% relative humidity, JO ° C is a likely 
maximum value of Ta above non-melting snow. 

2. Intermediate values. R = Lt 
A particular situation arises when the absorbed 

radiation equals that emitted (L f = 3 I 5 W m -2 for T = 
O°C). Equation (5) then describes Ta as the dry-bulb te~p­
erature of a psychrometer for a fixed wet-bulb temperature 
of 0 ° C and BT al Bpva can be recognized as the psychro­
metric constant. 

3. Maxima of R 
From Equation (2), maxima of R are to be expected 

for snow exposed to a normaIIy incident solar beam under 
conditions of high atmospheric transparency (maximum S 1), 
low albedo (minimum Sf) with warm, humid air (maximum 
L 1) . Extremes of S 1 and L L are unlikely to occur simul­
taneously; as a matter of fact, the vertical changes BS 11 Bz 
and BL1 / Bz are nearly equal and opposite under Alpine 
conditions. In Figure I, high values of R are associated 
with low values of Ta which is found in extra-polar moun­
tains. 

In order to avoid excessive speculation, let us use mid­
summer, Alpine measurements (Wagner, 1979, 1980) over an 
almost horizontal snow surface (S 1 = 1020 W m -2 L 1 = 

280 W m- 2 ) and an extreme albedo of 0.2 as appli~able to 
dirty glacier ice or a thin, translucent ice cover on a dark 
rock. This means S! = 204 and R = 1096 W m -2, yielding a 
debatable Ta = -32 C. This result is questionable, as it im­
plies a strong lapse-rate above the snow, and turbulent 
exchange should be significantly higher than initially 
assumed. If we take only half the resistance as before in 
Equation (5), (now rH = 32 s m-I) the resulting t becomes 
-160C. a 

V. CONCLUSIONS 

Since a change in resistance by a factor of 2 is not at 
all unreasonable and may occur in smaII space and time 
intervals, it is impossible to make a quantitative but 
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generally true statement about the upper and lower limits of 
Ta' except, maybe, that the range _10° < Ta < +lO°C is 
likely to be encountered above snow at the beginning or 
end of melting (Q = 0). 

Figure I treats both stable (Ta> O°C) and unstable 
situations with the same heat-transfer resistance but it is 
not intended to suggest that rH might be a constant for 
snow. To predict a value of rH' a number of micro­
meteorological hypotheses need to be resolved and values of 
Ta' u, u. ' and Zo need to be known, as described in the 
Appendix. However, for c1imatological applications of the 
present problem, the range of rH is small and likely to be 
centered around the value of 65 s m-I found in the ablation 
period of an Alpine glacier. 

Considering that the determination of rH is a crucial 
problem in calculating the energy budget, we may even 
venture to use a form of Equation (3) to determine rH = r v 
from measurements of R, Ta' and Pva at a time when 
Q = 0 

rH = rv = 
Pacpll.T + Lvll.pv 

R - 315 
(9) 

taking care that R is sufficiently different from 315 W m- 2 . 
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APPENDIX 

The turbulent fluxes of sensible heat H and of latent 
heat V are defined here as positive when energy flows to 
the surface. According to the gradient hypothesis, they can 
be expressed 

With 

and neglecting g/cp « aT/az, 

-1 aT 
H = PaCpKU. ~H -a- and V 

Inz 

(A.I) 

(A.2) 

L KU 41 -1~ 
V • v alnz 

The desired form with finite differences and a bulk 
transfer number 

is obtained by integration of Equations (A.3) from the 
surface (zo) to the level of measurements. 

and 

z 
V f ~vd(lnz) = Lv KU.(pva(z) - pvs )' 

Zo 

(A.5) 

Comparison of Equations (AA) with Equations (A.5) yields 

(A.6) 

and with ~v 

(A .7) 

which can be expressed as a function of wind speed by 
inserting for u. from the logarithmic wind profile 

z 
u(z) = K-

1
U. J ~Md(1nz) (A .8) 

Zo 

where ~M is the stability function for momentum flux . 
The function 41 was determined from experiments as re­

viewed by Brutsaert (1982), Bush (1973) or Carson and 
Richards ('1978), among others. The simplest expression holds 
for stable layering where 

and a = 5, approximately. 
The Monin-Dbukhov length is 

L* (A.10) 
KgH(1 + 0.07H/ V) 

using the notation and sign convention of this paper. 
The stability functions may also be expressed in terms 

of the Gradient-Richardson number Ri 

Ri 
g (aT/Bz + g/cp)(l + 0.007H/V) 

T (Bu/az) 2 

~ ~ _aT~/....:a-=z"... 
T (au/ az)2' 

(A.II) 

Under stable conditions (~M = 4lH) 

Ri (A.12) 

(A.3) from which a useful approximation can be derived with 
a = 5 

where K is the von Karman constant, u. is the friction 
velocity , and ~ is a function of stability. 
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4lM (I - 5Rir1 
'" 1 + 5Ri. (A.13) 
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