A CHARACTERIZATION OF THE NORMAL AND
WEIBULL DISTRIBUTIONS

V. Seshadri*

(received April 7, 1968)

1. Introduction. Let \(X \) and \(Y \) be two independent normal variates each distributed with zero mean and a common variance. Then the quotient \(X/Y \) has the Cauchy distribution symmetrical about the origin. Of particular interest in recent years has been the converse problem and examples of non-normal distributions with a Cauchy distribution for the quotient have been illustrated by Mauldon [9], Laha [2; 3; 4] and Steck [10].

Characterization problems for the normal distribution based on the independence of suitable statistics and the sample mean have also been considered by several authors [1; 5; 6; 7; 8]. In Section 2, we obtain a characterization of the normal distribution by considering the independence of the sum of squares of \(X \) and \(Y \) and their quotient \(X/Y \).

If \(X \) and \(Y \) are independently distributed as normal variates with zero mean and a common variance, we find that not only does the quotient \(X/Y \) follow the Cauchy law but is independent of the random variable \(X^2 + Y^2 \). This property of independence provides the characterization of the normal law. A similar property of independence between \(X^m + Y^m \) and \(X/Y \) for the Weibull distribution is studied in Section 3.

2. A characterization of the normal law. We need the following two theorems for proving the main result about the normal law.

* This work was done while the author was a Fellow of the Summer Research Institute of the Canadian Mathematical Congress in 1967.
(a) THEOREM (Lukacs) [7]. Let \(X_1 \) and \(X_2 \) be two non-degenerate and positive random variables such that \(X_1 \) and \(X_2 \) are independent. The random variables \(U = X_1 + X_2 \) and \(V = X_1 / X_2 \) are independently distributed if and only if both \(X_1 \) and \(X_2 \) have the gamma distribution with the same scale parameter.

(b) THEOREM (Laha) [3]. Let \(X \) and \(Y \) be two independently and identically distributed random variables having a common distribution function \(F(x) \). Let the quotient \(w = x/y \) follow the Cauchy law distributed symmetrically about the origin \(w = 0 \). Then \(F(x) \) has the following properties:

(i) it is symmetric about \(x = 0 \);
(ii) it is absolutely continuous and has a continuous density function \(f(x) = F'(x) > 0 \).

THEOREM. Let \(X \) and \(Y \) be two independently and identically distributed random variables with a common distribution function \(F(x) \). Let the quotient \(W = X/Y \) follow the Cauchy law distributed symmetrically about \(W = 0 \), and be independent of \(U = X^2 + Y^2 \). Then the random variables \(X \) and \(Y \) follow the normal law.

Proof. Applying Lukacs' Theorem to the random variables \(X^2 \) and \(Y^2 \), we find that \(X^2 / Y^2 \) is independent of \((X^2 + Y^2) \) and hence both \(X^2 \) and \(Y^2 \) have the gamma distribution with the same scale parameter \(\alpha \). If \(X^2 \sim G(\lambda_1, \alpha) \) and \(Y^2 \sim G(\lambda_2, \alpha) \) from the fact that \(W = X/Y \) is Cauchy it is clear that \(V = 1/(1 + W^2) \) has the Beta distribution \((0, 1) \) with parameters \((1/2, 1/2) \). But \(V = Y^2 / (X^2 + Y^2) \) has the Beta distribution with parameters \((\lambda_2, \lambda_1) \) and hence \(\lambda_1 = \lambda_2 = 1/2 \). The density function of \(X^2 \) is therefore

\[
g(x^2) = \left(\frac{\alpha}{\sqrt{\pi}} \right) x^{-1} \exp(-\alpha x^2).
\]

From Laha's Theorem, (i) \(F(x) \) is symmetric about \(x = 0 \), and (ii) \(F(x) \) is absolutely continuous with a continuous probability density function \(f(x) = F'(x) > 0 \). Therefore \(f(x) = f(-x) \). From (A), we have

(letting \(G(.) \) denote the distribution function of \(x^2 \) that

258
\[\mathbb{P}(X < \lambda) = \int_{-\sqrt{\lambda}}^{\sqrt{\lambda}} \mathbb{P}(x < \lambda) = F(\sqrt{\lambda}) - F(-\sqrt{\lambda}) = 2F(\sqrt{\lambda}) - 1. \]

Hence \(g(\lambda) = f(\sqrt{\lambda})/\sqrt{\lambda} \) (\(\lambda > 0 \)) so that \(f(\sqrt{\lambda}) = \sqrt{\lambda} g(\lambda) \). Thus \(f(x) = \frac{1}{\sqrt{\alpha \pi}} \exp(-\alpha x^2) \) which is the normal density function.

3. A characterization of the Weibull distribution. If \(X \) and \(Y \) are independently distributed as gamma variates with parameters \((\lambda_1, \alpha)\) and \((\lambda_2, \alpha)\), we observe that \(X + Y \) is independent of the scale invariant function \(X/Y \). On the other hand if \(X \) and \(Y \) are independent normal variables then \(X^2 + Y^2 \) and \(X/Y \) are independent. We find that for the Weibull distribution given by

\[p(x) = \theta \lambda x^{\lambda-1} \exp(-\theta x^\lambda), \quad \lambda > 1, \quad \theta > 0, \quad x > 0 \]

it turns out that \(X^\lambda + Y^\lambda \) is independent of the quotient \(X/Y \). This motivates the following characterization of the Weibull law.

Theorem 2. Let \(X \) and \(Y \) be two positive and independently distributed random variables such that the quotient \(V = X/Y \) has the p.d.f. given by \(f(v) = \lambda v^{\lambda-1} / (1 + v^\lambda)^2 \), where \(v > 0 \) and \(\lambda > 1 \). The random variables \(X \) and \(Y \) have the Weibull distribution with the same scale parameter if \(X^\lambda + Y^\lambda \) is independent of \(X/Y \).

Proof. We apply Lukacs' theorem to the positive and non-degenerate random variables \(X^\lambda \) and \(Y^\lambda \) and note that both \(X^\lambda \) and \(Y^\lambda \) must have the gamma distribution with the same scale. Let the parameters be \((\lambda_1, \theta)\) and \((\lambda_2, \theta)\) respectively. Since the distribution of \(V \) is known we can obtain the distribution of \(W = 1/(1 + V^\lambda) \). It is \(g(w) = 1 \) \((0 < w < 1)\). \(W \) is a Beta variable \((0, 1)\) with parameters \((1, 1)\). Since \(X^\lambda \) and \(Y^\lambda \) are gamma variables \(Y^\lambda/(X^\lambda + Y^\lambda) = W \) has the Beta distribution \((0, 1)\) with parameters \((\lambda_2, \lambda_1)\) and so \(\lambda_1 = \lambda_2 = 1 \). Therefore the distribution of \(X^\lambda \) is \(p(x^\lambda) = \theta \exp(-\theta x^\lambda) \) and the distribution of \(X \) is found to be \(p_1(x) = \theta \lambda x^{\lambda-1} \exp(-\theta x^\lambda) \). The same distribution can be derived for \(Y \) and the proof is complete.
REFERENCES

McGill University

260