OH A COMMUTATIVITY THEOREM
 FOR SEMI-SIMPLE RINGS

Murtaza A. Quadri and Mohd. Ashraf

In this note a theorem proved by $A b u-K h u z a m$ and Yaqub has been improved as follows: let R be a semi-simple ring such that for all x, y in R there exists a positive integer $n=n(x, y)$ for which either $(x y)^{n}+(y x)^{n}$ or $(x y)^{n}-(y x)^{n}$ is central. Then R is commutative.

1. Introduction

Abu-Khuzam and Yaqub [1] proved that if R is a division ring such that for all x, y in R there exists a positive integer $n=n(x, y)$ for which $(x y)^{n}-(y x)^{n}$ is in the centre of R, then R is commutative. In this note we give a much shorter and simpler proof for this theorem. We improve the theorem as follows. "Let R be a semi-simple ring such that for all x, y in R there exists a positive integer $n=n(x, y)$ for which either $(x y)^{n}+(y x)^{n}$ or $(x y)^{n}-(y x)^{n}$ is central. Then R is commutative." Moreover we give an example which shows that the result does not hold for arbitrary rings.

As usual $2(R)$ denotes the centre of the ring R and for any $x, y \in R, \quad[x, y]=x y-y x$.

Received 5 November 1984.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/85 \$А2.00 +0.00 .

2.

The following lemma is due to Herstein [2].
LEMMA 2.1. Let R be a ring having no non-zero nil ideals in which for every $x, y \in R$ there exist integers $m=m(x, y) \geq 1$, $n=n(x, y) \geq 1$ such that $\left[x^{m}, y^{n}\right]=0$. Then R is commutative.

Now we begin with the following
LEMMA 2.2. Let R be a division ring such that for all x, y in R there exists a positive integer $n=n(x, y)$ for which $(x y)^{n}+(y x)^{n} \in Z(R)$. Then R is commutative.

Proof. Let x, y be non-zero elements of R. By hypothesis, there exists a positive integer $n=n\left(x y^{-1}, y\right)$ such that

$$
\left(\left(x y^{-1}\right) y\right)^{n}+\left(y\left(x y^{-1}\right)\right)^{n} \in z(R) .
$$

This implies that $x^{n}+y x^{n} y^{-1} \in Z(R)$ and hence

$$
\left(x^{n}+y x^{n} y^{-1}\right) y=y\left(x^{n}+y x^{n} y^{-1}\right)
$$

which gives

$$
x^{n} y+y x^{n}=y x^{n}+y^{2} x^{n} y^{-1}
$$

and we have

$$
\left(x^{n} y+y x^{n}\right) y=\left(y x^{n}+y^{2} x^{n} y^{-1}\right) y,
$$

that is, $\left[x^{n}, y^{2}\right]=0$. Hence, by Lemma 2.1, R is commutative.
3.

The following lemma is due to Posner [3].
LEMMA 3.1. Let R be a prime ring of $c h \neq 2$ and d_{1}, d_{2} derivations of R such that the iterate $d_{1} \cdot d_{2}$ is also a derivation. Then one at least of d_{1}, d_{2} is zero.

Now we give an alternate and simple proof of the following result proved by Abu-Khuzam and Yaqub [1].

LEMMA 3.2. Let R be a division ring such that for all x, y in R there exists a positive integer $n=n(x, y)$ for which $(x y)^{n}-(y x)^{n} \in Z(R)$. Then R is commutative.

Proof. If ch $R=2$, then we are through by Lemma 2.2. If ch $R \neq 2$, then proceeding on the same lines as in the case of Lemma 2.2, we get

$$
\begin{equation*}
x^{n} y^{2}+y^{2} x^{n}-2 y x^{n} y=0 \tag{1}
\end{equation*}
$$

With $y=x+y$ in (1) we have

$$
\begin{equation*}
\left[x^{n},[x, y]\right]=0 . \tag{2}
\end{equation*}
$$

Let I_{r} denote the inner derivation by $I_{r}: x \rightarrow[r, x]$; then (2) becomes

$$
I_{x} n_{x}^{I}(y)=0
$$

Thus, by Lemma 3.1, we have either $x \in Z(R)$ or $x^{n} \in Z(R)$. If $x^{n} \in Z(R)$ then $\left[x^{n}, y\right]=0$ and by Lemma 2.1, we get $x \in Z(R)$. Hence in every case $x \in Z(R)$ and thus R is commutative.

LEMMA 3.3. Let R be a primitive ring such that for all $x, y \in R$ there exists a positive integer $n=n(x, y)$ for which either $(x y)^{n}+(y x)^{n}$ or $(x y)^{n}-(y x)^{n}$ is central. Then R is commutative.

Proof. If R is not a division ring, then, since R is a primitive ring for which either $(x y)^{n}+(y x)^{n}$ or $(x y)^{n}-(y x)^{n}$ is central, the ring D_{2} of all 2×2 matrices over some division ring D will be a homomorphic image of a subring of R and will satisfy either $(x y)^{n}+(y x)^{n} \in Z(R)$ or $(x y)^{n}-(y x)^{n} \in Z(R)$. In particular if we choose $x=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $y=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$, neither $(x y)^{n}+(y x)^{n} \in z(R)$ nor $(x y)^{n}-(y x)^{n} \in Z(R)$, which gives a contradiction. Hence R must be a division ring. Consequently, by Lemma 2.2 and Lemma 3.2 respectively, R is commutative.

Further if R is a semi-simple ring such that for all $x, y \in R$
there exists a positive integer $n=n(x, y)$ for which either $(x y)^{n}+(y x)^{n}$ or $(x y)^{n}-(y x)^{n}$ is central, then R is a sub-direct sum of primitive rings R_{α} each of which as a homomorphic image of R satisfies the hypothesis placed on R and hence, by Lemma 3.3, R is commutative. This proves our main theorem.

THEOREM. Let R be a semi-simple ring such that for all x, y in R there exists a positive integer $n=n(x, y)$ for which either $(x y)^{n}+(y x)^{n}$ or $(x y)^{n}-(y x)^{n}$ is central. Then R is commutative.

The ring of 3×3 strictly upper triangular matrices over a ring provides an example to show that the above theorem is not valid for arbitrary rings.

References

[1] Hazar Abu-Khuzam and Adil Yaqub, "A commutativity theorem for division rings", Bull. Austral. Math. Soc. 21 (1980), 43-46.
[2] I.N. Herstein, "A commutativity theorem", J. Algebra 38 (1976), 112-118.
[3] E.C. Posner, "Derivations in prime rings", Proc. Amer. Math. Soc. 8 (1957), 1093-1100.

Department of Mathematics, Aligarh Muslim University, Aligarh 202001, India.

