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Abstract

Objectives: Extrapolation is often required to inform cost-effectiveness (CE) evaluations of
immune-checkpoint inhibitors (ICIs) since survival data from pivotal clinical trials are seldom
complete. The objectives of this study were to evaluate the accuracy of estimates of long-term
overall survival (OS) predicted in French CE assessment reports of ICIs, and to identify models
presenting the best fit to the observed long-term survival data.
Methods: A systematic review of French assessment reports of ICIs in the metastatic setting
since inception until May 2020 was performed. A targeted literature review was conducted to
collect associated extended follow-up of randomized controlled trials (RCTs) used in the CE
assessment reports. Difference between projected and observed OS was calculated. A range of
standard parametric and spline-based models were applied to the extended follow-up data from
the RCT to determine the best-fitting survival models.
Results: Of the 121 CE assessment reports published, 11 reports met the inclusion criteria. OS
was underestimated in 73 percent of the CE assessment reports. The mean relative difference
between each source was�13 percent (median:�15 percent; IQR:�0.4 to 26 percent). Models
providing the best fit were those that could reflect nonmonotonic hazards.
Conclusions: Based on the available data at the time of submission, longer-term survival of ICIs
was not fully captured by the extrapolationmodels used inCE assessments. Standard and flexible
parametric models which can capture nonmonotonic hazard functions provided the best fit to
the extended follow-up data. However, these models may still have performed poorly if fitted to
survival data available at the time of submission to the French National Authority for Health.

The introduction of immune-checkpoint inhibitors (ICIs) over the last decade has represented a
major development in cancer treatment (1). Single-agent or combination ICI therapies have been
approved for many advanced cancers, and their clinical application continues to grow (2). ICIs
have a different mechanism of action compared to standard therapies such as chemotherapies or
targeted therapies. Whereas the latter directly target cancer cells, ICIs target immunocompetent
cells and stimulate them to attack and eliminate the tumors (3). Unlike standard therapies, which
act to slow tumor growth and metastasis, ICIs offer significant benefits on the tumor eradication
and long-term remission (4). In clinical trials, to date, as well as in real-world studies, ICIs have
demonstrated their efficacy in extending overall survival (OS) compared to standard therapies
(5–9).

All new treatments require a health technology assessment (HTA) to inform decisions on
reimbursement or pricing. In France, HTA is performed by the National Authority for Health
(“Haute Autorité de Santé” [HAS]) (10). Under certain conditions, cost-effectiveness
(CE) assessment is mandatory (11). The CE analyses require economic models to quantify the
incremental impact of the new intervention on costs and on health outcomes compared to the
current standard of care over a lifetime or a specified period (12–15). At the time of submission to
HAS, the duration of follow-up of randomized controlled trials (RCTs) for cancer treatments is
often limited. Unless most patients have died by the end of follow-up, extrapolation of OS over a
predefined time horizon is required to estimate the long-term benefit of the intervention (12;13).
The accuracy of such estimates is heavily dependent on the choice of the model used to
extrapolate the data; inappropriate selection can contribute to unreliable and biased CE results.

Until recently, standard parametric models were the preferred method for extrapolating
observed survival data in health economic models developed for cancer treatments (13;16;17).
However, the shapes of the hazard functions from these models can capture both within and
beyond the trial, but are limited and may be unsuitable for estimating the lifetime benefit of ICI.
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There is growing evidence that more sophisticated, flexible survival
models may be better able to capture delayed treatment responses
and long-term survival observed with these drugs (18). Modeling
the “tail” of Kaplan–Meier (KM) curves is particularly challenging
(19;20), even though this is critical for the assessment of ICIs, where
a plateau may occur at unknown times and levels after initiation of
therapy (6). The publication of extended follow-up data from RCTs
is an opportunity to assess retrospectively the accuracy of OS
predictions in CE assessments and to explore differences in best-
fitting models between the CE assessments and medium- or long-
term data from RCTs of ICIs.

The objectives of this study were twofold. The first objective was
to evaluate the accuracy of estimates of long-term OS predicted in
French CE assessment reports for ICIs. This involved comparison
of OS extrapolated from RCT data available at the time of submis-
sion to actual OS data collected during extended follow-up of these
same RCTs. The second objective was to identify models providing
the best fit to the observed survival data from extended follow-up
and to compare the difference in restricted mean survival time
(RMST) of these projections with the ones selected in the CE
assessments.

Methods

Identification and Selection of CE Assessment Reports

The HAS Web site was searched for all published assessments of
pharmaceutical products by the economic evaluation committee
(CEESP) of the HAS since inception (2013) until 15 May 2020
(cutoff) (21). Only assessments related to ICIs indicated for the
treatment of advanced or metastatic cancer were retained. In a
second step, the clinicaltrial.gov Web site, PubMed database, and
conference proceedings for the American and European Societies
for Clinical and Medical Oncology were searched for publications
of longer-term follow-up data from the RCTs used in the CE
assessment. The search algorithm is presented in Supplementary
Material 2.

For the first phase of the study, RCTs were retained if at least
6 months of extended follow-up data since those used in the CE
assessment report were available to identify potential differences
between projected and observed OS. This cutoff was selected
assuming it would be difficult to observe difference in OS in a
shorter time frame than 6 months. For the second phase, at least
18months of extended follow-up data from the RCTswere required
to provide sufficient additional OS data for fitting a set of models.

Data Extraction

The following information from the RCTused in theCE assessment
reports was extracted: nonproprietary name of the ICI, the indica-
tion, RCT identifier, the duration of follow-up for OS, and the
maturity of data, defined as the proportion of deaths across all
patients included in the ICI arm at the time of the data cutoff. The
type of model selected to extrapolate OS, the selected time horizon,
and OS at specific landmarks were retrieved from the French CE
reports. In the published reports of extended follow-up of the RCT,
duration of follow-up and survival probabilities with confidence
intervals at similar time points to those selected in the assessment
report were extracted. OS were documented at the most robust
available follow-up date, which was identified as either the one
reported in the publication or, if not relevant, an earlier date
where at least 10 percent of the patients were still at risk (22).

The extraction was performed separately by two operators (S.B. and
V.G.). Disagreements between operators were resolved through
discussions with senior authors (J.C. and S.R.).

Data Analysis

Extrapolated survival curves obtained from French CE assess-
ments were digitized and then plotted in R software to evaluate
the reliability of the digitization and obtain long-term survival
predictions. Kaplan–Meier curves for OS for the ICIs in the
identified clinical trials with extended-follow-up were digitized
using Engauge Digitizer v3.0. We then applied the Guyot algo-
rithm on Kaplan–Meier curves from clinical trials to obtain
pseudo-individual patient data (IPD) (23). The accuracy of digi-
tizationwas validated by comparingmedianOS between the RCTs
and the pseudo-IPD and with visual inspection between the
generated and published Kaplan–Meier curves.

Part 1: Descriptive Comparison of OS between Extrapolated and
Actual Data from Extended Follow-up of RCTs

Difference in OS was calculated between the most robust follow-up
time points in the extended follow-up of RCT and the same time
points of the extrapolated OS curves in the CE assessment reports.
The relative difference was expressed as a percentage of the observed
survival probability, and the absolute difference was expressed as a
percentage point difference. In the absence of a robust method to
quantify the precision of these differences, they were assigned to
one of four classes, considered negligible (≤�5 percent), minor
(>�5 percent and <�11 percent), moderate (≥�11 percent and
<�20 percent), and major (≥�20 percent).

Relative differences results were presented according to the
cancer type, the extended follow-up available, the model used for
extrapolating OS in the CE assessment report, and the maturity of
data at the time of the submission.

Part 2: Evaluation of Extrapolation Methods

Different extrapolation models were applied to the pseudo-IPD
generated from the OS Kaplan–Meier curves with at least
18 months of extended follow-up. Methods for extrapolation of
survival data used approaches recommended in the published
literature as directed in the HAS methods guide (13;14;18;24).
Standard parametric models (Gompertz, Weibull, log-logistic,
lognormal, gamma, and generalized gamma) and spline-based
models (normal, odds, and hazard with one and two knots) were
tested. For one-knot spline model, the knot was located at 50 per-
cent survival. For two-knot spline model, these knots were placed
at 33 percent and 67 percent survival, the flexsurv R package
default (24). The number of knots was limited to avoid being
too specific to the curve. Cox proportional hazards regression
model were not tested since data were not complete in most
extended follow-up RCTs (12).

Goodness of fit of the different extrapolations to the extended
follow-up RCT OS data was assessed using Akaike’s information
criterion (AIC) (25) and the Bayesian information criterion (BIC)
over the entire KM curve (26). All the models were classified
according to their associated AIC. Models with the lowest AIC
and BICwere selected and defined as the best-fit and second best-fit
models (27). To confirm the selection, the goodness of fit of the
model to the smoothed hazard rate was evaluated (28), as well as the
projected versus observed OS.
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Extrapolated survival curves selected in the CE report were
digitized and presented (i.e., “Submitted function”) to observe the
differences between the extrapolation made at the time of the
submission and the ones with extended follow-up of RCT.

The RSMT, estimated as the area under the survival curve over a
given time horizon (29), was calculated for both the best-fit models
and the second best-fit models. Finally, the difference in RMST
between the extrapolation from the CE assessment and the one
selected in our analysis was calculated.

All survival analyses were implemented on RStudio Software
v4.0.0. Extrapolations with standard parametric or spline-based
models were performed using flexsurv R package, (24;30), whereas
hazard plots were produced with muhaz R package (28).

Results

Identification of CE Assessment Reports

Overall, 121 CE assessment reports were available on the HASWeb
site, but only seventeen were related to ICIs in advanced or meta-
static cancer (Figure 1). Six of themwere excluded from the analysis
due to the lack of published 6-month extended follow-up data
(n = 4), the analysis population difference between the assessment

report and the extended follow-up of RCT (n = 1), or the CE
assessment report was a resubmission (n = 1). The characteristics
of the remaining eleven assessments studied in Part 1 are presented
in Table 1. The seven assessments evaluated in Part 2 are presented
in Table 2.

Five assessment reports presented the CE of pembrolizumab as
monotherapy or in combination with chemotherapy. The other
reports were related to either nivolumab in monotherapy (n = 4),
nivolumab in combinationwith ipilimumab (n= 1), or durvalumab
(n = 1). The selected CE reports referred to assessments in lung
cancer (n = 6), melanoma (n = 2), renal cell carcinoma (RCC;
n= 2), and urothelial cancer (n= 1). Themedian follow-up of RCT
at the submission ranged from 8.3 to 25.9 months. For six of the CE
assessment reports, the extrapolationwas performed from random-
ization, whereas a piecewise approach was adopted in the remain-
ing five reports. In the first case, a variety of statistical models were
used for the extrapolation. For the piecewise approach, the initial
section of the survival curve was modeled using the Kaplan–Meier
function up to a predefined time point, whereafter an exponential
(n = 3) or a log-logistic model (n = 1) was applied. For pembro-
lizumab in metastatic melanoma, an “atypical” approach was con-
sidered (Kaplan–Meier curve for the 60 first weeks and then OS
data from pooled clinical trials and a registry).

Figure 1. PRISMA flow diagram illustrating the selection of French cost-effectiveness assessment reports selection.
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Table 1. Characteristics of Selected Case Studies

Study Immune-checkpoint inhibitor Indication RCT

Duration of
the follow-up
at the CE

assessment
report (mo)

Maturity
of dataa

Extrapolation
model selected in
the French
assessment report

Duration of the
follow-up in the

extended
follow-up of
RCT (mo)

Landmark
of OS

analysis
(mo)

Extrapolated
survival (%)

Observed
survival (%) and

95% CI

1 Durvalumab 1L laNSCLC PACIFIC (31) 25.9 38% PFS: generalized
gamma

PSS: exponential

33.3 (32) 36 (32) 62.6 57.0 [52.3; 61.4]

2 Nivolumab 2L mNSCLC (SQ) CheckMate 017 (33) 10.6 64% Log-logistic 62.6 (34) 60 (34) 10.7 12.3 [7.4; 18.5]

3 Nivolumab 2L mNSCLC (NSQ) CheckMate 057 (35) 17.2 71% Log-normal 62.7 (34) 60 (34) 10.9 14.0 [10.2; 18.3]

4 Nivolumab 1L mMelanoma CheckMate 066 (36) 18.5 38% HR over
exponential

38.4 (37) 36 (37) 41.6 51.2 [44.1; 57.9]

5 Nivolumab 2L RCC CheckMate 025 (38) 14.0 45% Spline two-knot
normal

64 (39) 60 (39) 19.0 26.0 [21.0; 30.0]

6 Nivolumab/ipilimumab 1L RCC CheckMate 214 (40) 25.2 33% HR over log-
normal

42 (41) 42 (41) 50.5 52.0 [47.4; 57.1]

7 Pembrolizumab 2L mNSCLC KeyNote 010 (42) 13.1 41% KM þ exponentialc 42.6 (43) 36 (43) 25.0 34.5 [29.0; 40.1]

8 Pembrolizumab (and
chemotherapy)

1L mNSCLC (SQ) KeyNote 407 (44) 8.3 31% KM þ exponentialc 14.3 (45) 24 (45) 36.0 37.2 [32.3; 44.7]d

9 Pembrolizumab (and
chemotherapy)

1L mNSCLC (NSQ) KeyNote 189 (46) 10.5 31% KM þ exponentialc 23.1 (47) 24 (47) 47.3 45.5 [42.2; 52.8]d

10 Pembrolizumab 1L mMelanoma KeyNote 006 (48) 13.8 32% “Atypical
approach”b,c

57.7 (49) 60 (49) 32.2 38.7 [34.2; 43.1]

11 Pembrolizumab 2L mUC KeyNote 045 (50) 14.1 N.A. KM þ log-logisticc 40.9 (51) 36 (51) 23.0 20.7 [15.6; 25.4]d

aProportion of patients dead at the data cutoff across all patients randomized in the immune-checkpoint inhibitor arm.
bUnusual approach: Kaplan–Meier curve for the 60 first weeks followed by external data (Schadendorf et al. until 6.2 yr and Balch et al. between 6.2 yr and 10 yr).
cThese models were performed piecewise, with the survival Kaplan–Meier curve until a selected time point, and the data extrapolated thereafter. For the other evaluations, extrapolation started from randomization.
dConfidence interval calculated from the digitization.
Abbreviations: 1L, first line; 2L, second line; FU, follow-up; HR, hazard ratio; KM, Kaplan–Meier; la, locally advanced;m,metastatic; N.A., not available; NSCLC, non small-cell lung cancer; NSQ, non squamous cell; OS, overall survival; RCC, renal cell carcinoma;
RCT, randomized controlled trial; SQ, squamous cell; UC, urothelial carcinoma.
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Extended OS Follow-up Available

For the eleven retained RCTs for which at least 6-month extended
follow-up data were available, the mean additional duration of this
extended follow-up period was 28.2 months (range: 6–52 mo;
Table 1). The available extended follow-up duration was less than
1 year in two case studies, and more than 3 years in four studies.

Comparison of Extrapolated and Observed OS from Extended
Follow-up of RCT

Actual long-term OS was underestimated in 73 percent of the CE
assessment reports (n = 8). Overall, the mean relative difference
was �13 percent (range: �38 percent, þ10 percent [Figure 2];
median: �15 percent; IQR: �26 percent, 0.4 percent). The mean
absolute percentage point difference was �3 percent (range:
�10 percent;þ6 percent; Supplementary Material 3). In five cases,
the extrapolated survival fell outside the 95 percent confidence
interval of the OS observed in the extended follow-up. OS was
under or overestimated by more than 5 percent in the majority of
CE assessment reports (n = 8). In six cases, long-term OS was
underestimated by >5 percent, including five cases where it was
underestimated by greater than 20 percent (i.e., major; Figure 2).
Only two CE assessment reports overestimated the long-term OS
with a difference greater than 5 percent (namely, durvalumab in
nonsmall-cell lung cancer [NSCLC] and pembrolizumab in urothe-
lial carcinoma). Negligible differences were observed in the remain-
ing three CE opinions. Unreliable estimates of OS were observed
across all types of ICIs and indications.

Unreliable estimates greater than 5 percent of OS were observed
whatever the model used to fit the data (Figure 2). However, the
discrepancy between estimated and observed OS was larger for
RCTs with longer extended follow-up since the cutoff date for
extrapolation used in the CE assessment report. This underestima-
tion was most pronounced when the extended follow-up was
greater than 3 years, with amean relative difference of�25 percent.

In addition, no trend was observed between the maturity of the
data (number of events at the time of the submission) at the time of
the CE assessment reports and the accuracy of the OS predictions
(Figure S9 in Supplementary Material 4).

Exploratory Evaluation of Extrapolation Methods

Seven CE opinions (52–58) had the required ≥18 months of
extended follow-up to be included in Part 2 of the study. The time
horizon for extrapolation was 10 years in all cases with the excep-
tion of the study of pembrolizumab in urothelial carcinoma
(5 years). Four reports concerned studies of nivolumab, and the
remaining three pembrolizumab. Overall, extrapolated OS was
underestimated in 71 percent of the assessment reports. Only one
projection overestimated the long-term OS (pembrolizumab in
urothelial carcinoma; KeyNote 045). Overall, the relative difference
in OS between the extrapolated and observed values was at least of
10 percent. No single model consistently provided the best fit to the
observed data in the extended follow-up RCT, although the gener-
alized gamma model performed the best in three of the seven
(43 percent) data sets evaluated (Table 2). The best-fit selected
model in our study was the same as that used for the CE assessment
report in only one case, namely the log-logistic function used for
assessment of nivolumab in NSCLC based on the CheckMate
017 study. In four out of seven cases, the difference in RMST
between the best-fit extrapolation and that used in the CE Ta
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assessment report was at least 5 months over the predefined time
horizon (RMST ranging from �1.7 to 17.0 mo).

The models that provided the second best fit were also com-
pared. The RMST ranged from �2.0 to 16.4 months (Table 2).
Spline one-knot normalmodel was the second best fit in three cases.
The difference in RMST between the best and second best fit was
limited.

The benchmark between the best-fit models and the one used in
the CE assessment report for all studies is provided in Supplemen-
tary Material 1.

Discussion

This is the first study assessing the accuracy of predicted OS in
French CE assessment reports for ICIs.We found that predicted OS
was underestimated in 73 percent of these assessment reports, with
a mean difference of 13 percent. This mismatch between predicted
and observed OS was even more pronounced when the extended
follow-up duration was ≥3 years. In most assessment reports, the
long-term benefit of ICIs does not seem to be adequately captured
by the models used to extrapolate data from RCTs with limited
follow-up available at the time of submission. The clinical devel-
opment of ICIs has resulted in an increased interest in the use of
models with a greater degree of flexibility than standard parametric

models. These models include piecewise, spline-based models,
mixture models, cure models, and landmark models (12). The
objective of these models is to reflect appropriately the complex
hazard function of ICIs due to potential delayed responses to
treatment and the existence of long-term survivors (18). In the
selected CE assessment reports, only standard parametric, piece-
wise, and spline-basedmodels were tested. Only one CE assessment
report (see study (10)) used external data to directly inform the
extrapolationmodel. This raises questions on the reasonswhy other
modeling approaches (59) were not considered. One possible
explanation is that the acceptability of these new approaches for
HTAs undertaken by the French health authorities is currently
unknown, as their recommendations on extrapolation of survival
data are limited (14). The National Institute for Health and Care
Excellence (NICE) technical support document on flexiblemethods
for survival analysis may provide the impetus to address this
need (18).

The modeling of the long-term benefit of ICIs is an important
field of research. A number of survival extrapolation case studies
have been published, resulting in similar conclusions, although the
study design or the drug indications have differed. A recent study
reviewed eleven STAs from the NICE (16). Overall, the standard
parametric or piecewise survival models underestimated OS at the
midpoint between the maximum follow-ups of the initial and most

Figure 2. Relative difference between extrapolated and observed OS in extended follow-up of randomized clinical trial (RCT). Studies are numbered as in Table 1. The numbers
above or below the columns indicate the relative difference between the extrapolated overall survival (OS) estimate and the observed OS, expressed as a percentage. Gray columns:
negligible difference (≤�5 percent); blue columns: minor overestimation of survival (>5 percent and <10 percent); beige columns: moderate underestimation of survival
(>10 percent and <20 percent); green columns: major underestimation of survival (≥20 percent). The bars above the graph indicate the additional duration of follow-up
(FU) between the cutoff point in the RCT used in the extrapolation and that used in the long-term extension of the same RCT. Cancer type: M, melanoma; NSCLC: non small-cell lung
cancer; RCC: renal cell carcinoma; UC: urothelial carcinoma. Therapy: CT, chemotherapy; D, durvalumab; I, ipilimumab; ICI, immune-checkpoint inhibitor; N, nivolumab;
P, pembrolizumab. Extrapolation function: exp, exponential; GG, generalized gamma; HR, hazard ratio; KM, Kaplan–Meier; LL, log logistic; LN, log normal; nov, “atypical” approach;
Spline-2k-N, spline two-knot normal.
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mature Kaplan–Meier curve by �9.2 percent and þ4.6 percent.
This results in absolute difference are close to the ones from our
study. However, we also reported relative differences that showed
larger differences. From our perspective, relative differences are
more appropriate, as they take into account the differences in
survival prognosis between different cancer types, and in the
amount of additional long-term follow-up data available as
opposed to absolute differences. Another study evaluated the CE
assessment reports of ICIs by the Norwegian Medical Agency
(n = 7) and the Dental and Pharmaceutical Benefits Board
(n = 7) (60). Overall, long-term OS under ICI treatment was again
underestimated in 79 percent of the assessment reports (n= 11/14).

In the second part of this study, we assessed the performance of a
variety of extrapolation models in predicting long-term survival for
ICIs. The models providing the best fit were those that could reflect
nonmonotonic hazards (i.e., generalized-gamma, log logistic, and
lognormal). Thesemodels are able to fit survival data for treatments
that exhibit unimodal hazard functions (i.e., hazards that initially
increase, but at some point of time gradually decrease). In addition,
flexible parametric spline models also provided a suitable fit to the
observed data.

Model selection can have a considerable impact on the lifetime
survival benefit, as highlighted in the difference in RMST between
the best-fit model and the extrapolated OS used in the assessment
report. In two thirds of the CE assessment reports (n= 4/7), the OS
was underestimated by at least 5 months (and up to 17 mo)
compared to the best-fit estimate over the predefined time horizon.
Such an underestimate of the survival benefit is likely to have a
significant impact on the assessment of CE.

A number of studies have compared the accuracy of different
extrapolation approaches in modeling long-term survival of can-
cer patients receiving ICIs. From the data of the CheckMate
057 trial, different models were tested for predicting long-term
survival following nivolumab treatment in advanced non-squa-
mous NSCLC (61). In this analysis, log-logistic, log-normal, and
generalized-gamma functions provided better goodness of fit and
more accurate estimates of long-term survival. The same
researchers have also performed a similar study using data from
four RCTs of nivolumab (62). They concluded that models with
nonmonotonic hazards were consistently associated with better
statistical fit and more accurate prediction of long-term survival
for ICI monotherapies, consistent with the findings of the present
study (62). Finally, Klijn et al. have compared the accuracy over
time of a range of extrapolation methods to predict OS of patient
treated with nivolumab based on IPD from CheckMate 025 study
(63). All extrapolation methods underestimated long-term OS
compared to observed data with the exception of mixture models.
However, a log-logistic function performed well across all data-
base locks, which is also consistent with the results observed in this
study.

The main limitation of this study is the limited sample size.
However, this study constitutes a comprehensive review of the
French CE assessment reports of ICIs at the advanced or metastatic
stage of the cancer. The number of CE reports evaluating ICIs in the
adjuvant treatment setting was extremely limited, and since con-
clusions may differ according to the treatment setting, they were
not selected. Although we compared the performance of a range of
extrapolationmodels, we did not cover all types ofmodels currently
available. For some of these, such as landmark models, IPD is
necessary and access to such data is challenging. For piecewise
models, there is currently no consensus on how to determine the

switching point, so we did not apply such approaches. However, we
did consider the majority of models that have been used in CE
assessment reports to date. We acknowledge that testing mixture
models, cure models, and landmark models would be of interest, in
the light of the recent NICE technical support document (18).
There are also several emerging extrapolation models that show
promise. A recent simulation study suggests that dynamic survival
models and general additive models worth consideration, particu-
larly when longer-term follow-up data are available and/or the
patient sample size is reasonable (64). Fitting extrapolation models
to immature survival data is inherently fraught with uncertainty. If
data are poor, there is a danger that no model will provide reliable
predictions of long-term survival. In this study, there was no
external validation to help inform the choice of model, which is a
frequent issue in CE assessment reports (14). The use of external
survival data from mature early phase trials, cancer registries, or
expert opinion is a critical part of the extrapolation model selection
and validation process. This is important since models that provide
a good visual and statistical fit to the observed data do not neces-
sarily provide reliable estimates of long-term survival, as found in
this study. However, it is also accepted that at the time of submis-
sion to HTA agencies, external data for the intervention are often
limited, and the generalizability of any long-term survival data
found for the comparatormust be carefully considered. To improve
the robustness of these findings, it will be relevant to perform a
similar analysis on progression-free survival and OS once longer
follow-up data become available for all the RCTs, and to consider a
higher number of CE assessment reports. This complementary
objective to the present research would also provide an opportunity
to integrate the comparator arm from the RCTs, to assess relative
differences in survival and the impact of underestimating between-
group differences on the CE assessment. To evaluate the real impact
of such survival differences on the CE ratio, the changes in RMST
should translate into a difference in quality-adjusted life-year. An
additional area of research would be to assess which of the survival
functions we examined provided the best predictive accuracy when
fitted to the data available at the time of the CE assessment. Finally,
it would also be interesting to compare the performance of the
selected models in assessment reports from other HTA agencies.
For example, agencies in England andWales, Sweden, and Norway
have used different models to estimate long-term survival following
treatment of RCC with nivolumab, although the data source was
identical (CheckMate 025) (63).

In conclusion, models selected in the French CE assessment
reports systematically underestimate longer-term survival of
patients treated with ICIs, sometimes markedly so. This may lead
to a significant impact on the results of economic evaluations, and
on the decisions regarding pricing of the treatment. It is therefore
important to test a large range of models, to assess the clinical
plausibility of the extrapolation used, and to identify any observed
or expected variation in the hazard ratio over time. In line with the
observed results, spline models and parametric distributions that
can model unimodal hazards may be worth considering at least in
sensitivity analysis in HAS submissions.
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