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ON A CURIOUS PROPERTY OF BELL NUMBERS
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Abstract

In this paper we derive congruences expressing Bell numbers and derangement numbers in terms of each
other modulo any prime.
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1. Introduction

Let Bn denote the nth Bell number, defined as the number of partitions of a set of
cardinality n (with B0 = 1). In 1933 Touchard [2] proved that for any prime p we
have

Bp+n ≡ Bn + Bn+1 (mod p) for all n = 0, 1, 2, . . . . (1.1)

Thus it is natural to look at the numbers Bn (mod p) for n < p. In [1], the first author
discovered experimentally that for a fixed positive integer m the sum

∑p−1
n=0 Bn/(−m)n

modulo a prime p not dividing m is an integer independent of the prime p, a typical
case being

p−1∑
n=0

Bn

(−8)n
≡−1853 (mod p) for all primes p 6= 2.

In this note we will prove this fact and give some related results.
Our theorem involves another combinatorial quantity, the derangement number Dn ,

defined either as the number of fixed-point-free permutations of a set of cardinality n
(with D0 = 1) or by the explicit formula

Dn = n!
n∑

k=0

(−1)k

k!
(n = 0, 1, 2, . . . ). (1.2)
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THEOREM 1.1. For every positive integer m and any prime p not dividing m we have∑
0<k<p

Bk

(−m)k
≡ (−1)m−1 Dm−1 (mod p). (1.3)

Using
∑

0<m<p(−m)n−k
≡−δn,k (mod p) for k, n ∈ {1, . . . , p − 1}, we

immediately obtain a dual formula for Bn (n < p) in terms of D0, . . . , Dp−2.

COROLLARY 1.2. Let p be any prime. Then for all n = 1, . . . , p − 1 we have

(−1)n Bn ≡

p−1∑
m=1

(−1)mmn Dm−1 (mod p).

Combining the case n = p − 1 of this corollary with the congruence

p−1∑
k=0

(−1)k Dk ≡

p−1∑
k=0

(
p − 1

k

)
Dk = (p − 1)! ≡ −1 (mod p),

we get the following further consequence of Theorem 1.1.

COROLLARY 1.3. For any prime p we have

Bp−1 ≡ Dp−1 + 1 (mod p).

For the reader’s convenience we give a small table of values of Bn and Dn .

n 0 1 2 3 4 5 6 7 8

Bn 1 1 2 5 15 52 203 877 4140
Dn 1 0 1 2 9 44 265 1854 14833

We will prove Theorem 1.1 in the next section and derive an extension of it in
Section 3.

2. Proof of Theorem 1.1

We first observe that it suffices to prove (1.3) for 0< m < p, since both sides are
periodic in m (mod p) with period p. For the left-hand side this is obvious and
for the right-hand side it follows from (1.2), which gives the expression (−1)n Dn ≡∑
∞

r=0(−1)r
∏

0≤s<r (n − s) (mod p) for Dn (mod p) as the sum of a terminating
infinite series of polynomials in n.

We will prove (1.3) for 0< m < p by induction on m. Denote by Sm the sum on
the left-hand side of (1.3), where we consider the prime p as fixed and omit it from
the notation. Since Dn = nDn−1 + (−1)n for n = 1, 2, 3, . . . (obvious from (1.2)), we
have to prove the two formulas

S1 ≡ 1 (mod p), mSm ≡ S1 − Sm+1 (mod p). (2.1)
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Recall that the Bell numbers can be given by the generating function
∞∑

n=0

Bn
xn

n!
= eex

−1, (2.2)

equivalent to the well-known closed formula

Bn =
1
e

∞∑
r=0

rn

r !
.

Since the function y = eex
−1 satisfies y′ = ex y, this also gives the recursive definition

B0 = 1, Bn+1 =

n∑
k=0

(
n

k

)
Bk for all n ≥ 0. (2.3)

This recursion is the key ingredient in proving (2.1).
For the first formula in (2.1) we use (2.3) with n = p − 1 to obtain

S1 =

p−1∑
k=1

(−1)k Bk ≡

p−1∑
k=1

(
p − 1

k

)
Bk = Bp − B0 (mod p),

so it suffices to prove that Bp ≡ 2 (mod p). This is a special case of Touchard’s
congruence (1.1), but can also be seen by writing (2.2) in the form

∞∑
n=0

Bn
xn

n!
= ex
+

∑
1<r<p

(ex
− 1)r

r !
+

x p

p!
+ O(x p+1)

to get Bp/p! = 1/p! + (p-integral)+1/p!.
Now using Fermat’s little theorem and (2.3), we obtain

−mSm ≡

p−2∑
n=0

(−m)p−1−n
n∑

k=0

(
n

k

)
Bk

≡

p−2∑
k=0

(−1)k Bk

p−k−2∑
r=0

(
p − k − 1

r

)
m p−k−1−r (r = n − k)

≡

p−2∑
k=0

(−1)k Bk((m + 1)p−1−k
− 1)≡ Sm+1 − S1 (mod p)

for 1≤ m ≤ p − 2. This completes the proof of (2.1) and the theorem.

3. An extension of Theorem 1.1

We now give an extension of Theorem 1.1 from the Bell numbers Bn to the
Touchard polynomial Tn(x), defined by

Tn(x)=
n∑

k=0

S(n, k)xk . (3.1)
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The numbers S(n, k) occurring here are the Stirling numbers of the second kind, which
can be defined in at least four different ways:
• combinatorially as the number of partitions of a set of n elements into k

nonempty subsets;
• by the generating function

∞∑
n=0

S(n, k)
xn

n!
=
(ex
− 1)k

k!
(k ≥ 0); (3.2)

• by the recursion relation

S(n, k)= kS(n − 1, k)+ S(n − 1, k − 1) (n, k ≥ 1) (3.3)

together with the initial conditions S(n, 0)= S(0, n)= δn,0;
• by the closed formula

S(n, k)=
k∑

j=0

(−1)k− j jn

j !(k − j)!
. (3.4)

From the first or third of these we see that Tn(1)= Bn , so the following result includes
Theorem 1.1 as the special case x = 1.

THEOREM 3.1. For any prime number p and any positive integer m not divisible by p,

(−x)m
∑

0<n<p

Tn(x)

(−m)n
≡−x p

m−1∑
l=0

(m − 1)!
l!

(−x)l (mod pZp[x]), (3.5)

where Zp denotes the ring of p-adic integers.

Observe that this congruence of polynomials implies the congruence

∑
0<n<p

Tn(x)

(−m)n
≡

1

(−x)m−1

m−1∑
l=0

(m − 1)!
l!

(−x)l (mod p)

for any p-adic integer x not divisible by p, special cases being∑
0<n<p

Tn(x)

(−2)n
≡

x − 1
x

(mod p) for p 6= 2,

∑
0<n<p

Tn(x)

(−3)n
≡

x2
− 2x + 2

x2 (mod p) for p 6= 3,

∑
0<n<p

Tn(x)

(−4)n
≡

x3
− 3x2

+ 6x − 6

x3 (mod p) for p 6= 2.

PROOF OF THEOREM 3.1. One can prove Theorem 3.1 by a slight modification of the
argument used for Theorem 1.1, replacing the recursion (2.3) for the Bell numbers by
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the analogous recursion

T0(x)= 1, Tn+1(x)= x
n∑

k=0

(
n

k

)
Tk(x) for n ≥ 0

for the Touchard polynomials. But it is in fact easier to prove this congruence of
polynomials for each coefficient separately. We first observe that, just as in the
case of Theorem 1.1, it suffices to consider m among 1, . . . , p − 1, since by setting
l = m − 1− r we can rewrite (3.5) in the form∑

0<n<p

Tn(x)

(−m)n
≡

∞∑
r=0

( ∏
1≤s≤r

(m − s)

)
(−x)p−1−r (mod pZp[x][[x

−1
]])

in which both sides depend only on m (mod p). (Note that the expression on the
right is a polynomial modulo p, since

∏
1≤s≤r (m − s) is divisible by p for r ≥ p.)

Comparing the coefficients of xk on both sides of this identity, we see that it suffices
to prove the congruence

p−1∑
n=k

S(n, k)

(−m)n
≡

∏
0<s<p−k

(s − m) (mod p) (3.6)

for m and k in {1, . . . , p − 1}. We can do this in two different ways.
• By downward induction on k. For k = p − 1 both sides of (3.6) reduce to 1

modulo p, and from the recursion (3.3) we get

p−1∑
n=k−1

S(n, k − 1)
(−m)n

=

p−1∑
n=k−1

S(n + 1, k)− kS(n, k)

(−m)n

≡ (−m − k)
p−1∑
n=k

S(n, k)

(−m)n
(mod p)

for 1< k < p, showing that the truth of (3.6) for k implies its truth for k − 1.
Here we have used the fact that S(p, k)≡ 0 (mod p) for 1< k < p, which can
be seen either from the combinatorial definition of the Stirling numbers (the
group Z/pZ acts freely by translation on the set of its partitions into k nonempty
subsets, so p|S(p, k)) or else from the generating function (3.2) (because the
coefficient of x p on the right-hand side of (3.2) is p-integral for 1< k < p).

• From the closed formula (3.4) for S(n, k) together with the easily verified fact
that

∑
0<n<p(− j/m)n is congruent to −1 (mod p) if j ≡−m (mod p) and to

0 (mod p) otherwise. This gives∑
0<n<p

S(n, k)

(−m)n
≡
(−1)k+m

k!

(
k

p − m

)
(mod p)
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for k and m in the range under consideration. If k < p − m then(
k

p − m

)
= 0 and

∏
0<s<p−k

(s − m)= 0.

If k + m ≥ p, then the congruence that we have to prove is

(−1)k+m

(p − m)!(k + m − p)!
≡ (−1)k

(m − 1)!
(k + m − p)!

(mod p),

and this is clear since
( p−1

m−1

)
≡ (−1)m−1

≡ (−1)m(p − 1)! (mod p). This
completes the proof of (3.6) and of Theorem 3.1. 2
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