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ABSTRACT
This paper presents a performance analysis on a novel engine concept, currently under
development, in order to achieve hybrid air-breathing rocket technology. A component-level
approach has been developed to simulate the performance of the engine at Mach 5, and the
thermodynamic interaction of the different working fluids has been analysed. The bypass
ramjet duct has also been included in the model. This facilitates the improved evaluation of
performance parameters. The impact of ram drag induced by the intake of the engine has
also been demonstrated. The whole model is introduced into a multi-platform application for
aeroengine simulation to make it accessible to the interested reader. Results show that the
bypass duct modelling increases the overall efficiency by approximately 7%. The model cal-
culates the specific impulse at approximately 1800 seconds, which is 4 times higher than any
chemical rocket.

Keywords: component modeling; cycle analysis; performance simulation; multi-platform
application

NOMENCLATURE
Symbols

Cp Specific heat at constant pressure (kJ kg−1 K−1)

D Drag (kN)

f Fuel-to-air ratio of bypass duct

F Thrust (kN)
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H Enthalpy (kJ kg−1)

Isp Specific impulse (s)

M Mach number

ṁ Mass flow rate (kg s−1)

P Static pressure (bar)

Q̇ Heat transfer rate (W )

S Entropy (kJ kg−1 K−1)

T Static temperature (K)

V Velocity (m s−1)

�P Pressure difference (bar)

�T Temperature difference (K)

Subscripts
amb Ambient

comb Combustion

exbp Exit from bypass

H2 Hydrogen

He Helium

in Inlet

inf Infinite stream conditions

n1 Normal Mach number before oblique shock wave

n2 Normal Mach number after oblique shock wave

o Overall

obl Conditions after oblique shock wave

out Outlet

p Propulsive

th Thermal

Greek Symbols
β Oblique shock wave angle (deg)

γ Ratio of specific heats

δ Error

η Efficiency

θ Half the angle of intake cone (deg)

� Compression ratio

Abbreviations
AirC Air compressor

BB Bypass burners

CC Combustion chamber

CD Convergent – Divergent
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HeC Helium circulator

HeT Helium turbine

HT1 Hydrogen turbine number 1

HT2 Hydrogen turbine number 2

HX3 Heat exchanger number 3

HX4 Heat exchanger number 4

LEO Low earth orbit

LHP Liquid hydrogen pump

LHT Liquid hydrogen tank

PB Pre-burner

PC Pre-cooler

PRV Pressure ratio valve

RBCC Rocket-based combined cycle

RLV Reusable launch vehicle

SABRE Synergetic air-breathing rocket engine

SFC Specific fuel consumption

SSTO Single-stage-to-orbit

TBCC Turbine-based combined cycle

Trade Names
AeroEngineS Multi-platform application for aeroengine simulation

JavaScript text-based programming language

MATLAB Programming environment

NASA National Aeronautics and Space Administration

REL Reaction Engines Limited

SpaceX Space Exploration Technologies Corporation

1.0 INTRODUCTION
The technical and commercial feasibility of reusable single-stage-to-orbit (SSTO) vehicles, as
well as hypersonic aircrafts, is being considered for many years, worldwide. Several engine
types have been investigated to fit the missing parts of such concepts. The air-breathing
engines that may be suitable and allow propulsion up to hypersonic speeds are ramjets, scram-
jets, turbojets or a combination of them(1). These choices, however, impose major limitations
for both SSTO reusable launch vehicles (RLV) and hypersonic aircrafts.

Ramjets are much more simple devices, from a thermodynamic point of view(2), compared
to any other air-breathing engine. However, ramjet engines are not capable of achiev-
ing the aforementioned missions since they cannot produce static thrust and thus cannot
propel an aircraft or spaceplane from a standstill. A scramjet engine can achieve much
higher Mach numbers compared to a ramjet engine, but still cannot produce static thrust.
Additionally, it is one of the most demanding and complex engine concepts from an engi-
neering perspective(3–5). Turbojets and the engines that employ onboard work transfer to the
airflow are capable of operation from a standstill. This is a major advantage over engines
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employing solely ram compression. However, turbojets have a rapid thrust decay above Mach
3 due to the rise of the inlet temperature forcing a reduction in pressure ratio. In addition
to this, at speeds greater than Mach 2.5, the temperature prior to compression is very high
to be handled by the turbomachinery parts. Therefore, turbojets are limited in terms of their
operational Mach range(6).

Several engine concepts of hybrid air-breathing rocket technology have been developed
over the years of aviation and space missions. The main concepts are combinations of the air-
breathing engines mentioned above and rocket technology. These include the turbine-based
combined cycle engines (TBCC), which combine turbine engines with ramjet or scramjet
technology. The rocket-based combined cycle engines (RBCC), which combine ramjet or
scramjet with rocket technology, are also included(7). Both concepts face high technical diffi-
culties for mode conversion and thermal protection during hypersonic flight. Cooling the air
in advance is considered an effective way to address this difficulty.

Hybrid precooled air-breathing combined cycle engines, which are the main focus of this
study, have been rapidly developed to enable reusable vehicles(8). They extend the operating
range of turbomachinery by cooling the air upstream of the compressor(9–11). By pre-cooling
the air, the pressure ratio can be very high without hitting the spool speed or material lim-
its. In this way the engine can safely operate from sea level static conditions up to around
Mach 5 in the air-breathing mode. Beyond this speed, the cone of the intake moves forward
to block the airflow completely. The engine utilises onboard liquid oxygen, and the oper-
ation is similar to a rocket system, providing the thrust needed to achieve orbital velocities.
Additionally, since high-pressure ratios are achieved in the air-breathing mode, the same com-
bustion chamber and nozzle can be used in both air-breathing and rocket modes, reducing the
system mass. At present, the hybrid precooled combined-cycle engine is considered as one of
the key technologies for achieving SSTO reusable vehicles.

This type of engine has attracted wide attention mainly in terms of its application. The
use of this engine to power an SSTO aircraft-like spaceplane has been widely reported in
the open literature with detailed descriptions for both the technical and financial aspects
of the mission(12–16). Furthermore, the development status of such engines is reported in
the literature. However, it is mainly focused on the progress of the pre-cooler and other
key technologies, as well as the infrastructure of the RLV to be equipped with these
engines(9,10,17–23).

Additionally, some of the literature emphasises on the concept of the engine only(16,24,25),
and very few analytical calculations are presented(26–28). Few simulation models have been
developed(28,29) for hypersonic combined-cycle propulsion systems, based on performance
simulating software. Also, exergy analysis of similar engine concepts has been reported,
and cycle efficiency has been evaluated(29–31). In general, performance calculations of such
engines are very few in the public literature and the bypass of the engine, as well as the inlet
ram drag, are usually neglected.

In this paper, the performance analysis on a novel hybrid air-breathing rocket engine at
design point is presented. It is inspired by the engine concept of Synergetic Air-Breathing
Rocket Engine (SABRE), currently under development. The model developed in this study
accounts for the bypass duct, as well as intake ram drag. The importance of some key working
parameters is presented, via an error propagation analysis. The model is embedded into a
multi-platform application to be made widely available and exposed to the interested reader.
Finally, a preliminary cost analysis for an RLV is conducted to review the viability of such
concepts. However, during this study, it became obvious that this engine has numerous other
applications and could play a significant role in the future aerospace industry.

https://doi.org/10.1017/aer.2021.3 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.3


TSENTIS ET AL MULTI-PLATFORM APP-EMBEDDED MODEL... 1635

2.0 METHODOLOGY

2.1 Core engine configuration
The engine under investigation is a hybrid air-breathing rocket engine composed of the core
engine and the bypass burners which are placed circumferentially around the core nozzle. The
present study focuses on both parts of the engine. The core engine is mainly composed of the
intake, pre-cooler, compressor, turbine, combustion chamber and nozzle. As shown in Fig. 1,
a closed Brayton cycle between air and liquid hydrogen is introduced, with helium as the
medium. The air temperature after the inlet shock wave compression exponentially increases
with the increase in flight Mach number, hence the introduction of cooling is essential for the
successful operation of the engine. At design point, which is at an altitude of 25km and a flight
speed of Mach 5, the air temperature after the shock waves is approximately 1200K(32). After
the primary compression in the intake, the airflow gets deeply cooled down to temperatures of
120K by the intermediate cycle of helium in the pre-cooler (PC). The airflow is then directed
through the air compressor (AirC) to further raise its pressure to a level similar to that of a
rocket combustion chamber at approximately 150 bar.

After the compression in the AirC, the airflow is separated into two portions. One portion
is fed into pre-burner (PB) where the compressed air reacts with the liquid hydrogen fuel.
The combustion products are used in heat exchanger number 3 (HX3) to heat the helium up
to a steady temperature in order to supply the helium turbine (HeT) with constant working
conditions. The other portion is fed directly to the main combustion chamber (CC) to react
with the fuel-rich products from the PB. Liquid hydrogen is pumped from the tank (LHT) into
number 4 heat exchanger (HX4) via a conventional centrifugal liquid hydrogen pump (LHP).
At HX4 the liquid hydrogen is heated and vaporised, then drives the turbines number 1 (HT1)
and number 2 (HT2) before entering the PB at about 600K. After the energy transfer at HX3,
helium drives the HeT and then is cooled down to its initial temperature by the cold liquid
hydrogen at HX4. Thereafter, a pressure ratio valve (PRV) controls the pressure of helium in
order to provide steady pressure to the helium circulator (HeC) to allow for a new cycle to
start over.

The cycle configuration as used to model the core engine is shown in Fig. 1. The interme-
diate closed Brayton cycle of helium is introduced in the engine in order to make use of the
heat extracted from the air at the pre-cooler. It also works as a barrier between the hot air and
the liquid hydrogen.

2.2 Core component-level modeling
A component-level model, based on the cycle illustrated in Fig. 1, is developed in a modern
programming environment (MATLAB) to evaluate the performance of the core engine. The
energy conservation principles are applied for each component of the cycle and integrated
through a system of equations. Several parameters of the core engine operation at the design
point, in terms of temperatures and pressures, are necessary for the modeling and are extracted
from the publicly available data(33). The mass flow rates of the working fluids, as well as the
temperature and pressure of every station, are the main variables calculated. This enables the
performance of the engine to be evaluated. The model is an iterative process, which calculates
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Figure 1. Thermodynamic cycle of the engine core [11, 29].

the operating parameters of the core engine for every station of each working fluid until the
net thrust produced, reaches a certain value.

The following operating conditions are considered in this study:

• The helium outlet temperature of PC is limited to 950K due to material temperature
limitations(9,10,21).

• The pressure ratio of AirC is derived based on the air outlet pressure after the compression,
which is set to 145 bar(8).

• The pressure of He entering the PC is approximately 200 bar(21,35).
• The helium inlet temperature of HeT remains constant through the whole air-breathing

ascent at a value of 1080K(28,29).
• The targeted net thrust at a flight speed of Mach 5 and an altitude of 25km is set to

1050kN(8,29,33).

2.2.1 Intake

The intake of the engine constitutes of a cone which angle is set to 40 degrees. When the
engine reaches speeds over Mach 1, a dual shock wave system appears at the inlet. This
system remains at a constant position throughout the whole air-breathing ascent through the
movement of the cone. The ambient pressure and temperature are calculated by the flight
altitude and Mach number. Considering the air compression at the intake an adiabatic process
and given the flight Mach number, the Mach number at the end of the shock wave system,
as well as the temperature and pressure, can be calculated using the analytical shock waves
equations. Thus, the parameters of the airflow past the normal shock wave can be obtained
accurately as a function of flight Mach number. Equations (1–3) give static pressure and
temperature, as well as the Mach number after the shock wave system, as calculated in this
study(34).

⎧⎪⎪⎨
⎪⎪⎩

Mn1 = M1 · sin (β)

Mn2 =
√

1+ γ−1
2 ·Mn1

2

γ ·Mn1
2 − γ−1

2

· · · (1)
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⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Mobl = Mn2
sin(β−θ)

Pobl = P1 ·
[
1 + 2·γ

γ+1 · (Mn1
2 − 1

)]

Tobl = T1 ·
(

2+(γ−1)·Mn1
2
)

(γ+1)·Mn1
2·

(
1+ 2·γ

γ+1

)
·(Mn1

2−1)

· · · (2)

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M2 =
√

1+ γ−1
2 ·Mobl

2

γ ·Mobl
2− γ−1

2

P2 = Pobl ·
[
1 + 2·γ

γ+1 · (Mobl
2 − 1

)]

T2 = Tobl ·
(

2+(γ−1)·Mobl
2
)

(γ+1)·Mobl
2·

(
1+ 2·γ

γ+1

)
·(Mobl

2−1)

· · · (3)

The angle β is determined by the angle θ of the intake cone and the flight Mach num-
ber. τhe conditions at Eq. (2) are referring to the station between the oblique and the normal
shock wave. Equations (1–3) are evaluated by comparing the results regarding the air tem-
perature after the normal shock wave, which is the temperature prior to PC, to the data from
references(11,32).

2.2.2 Heat exchangers

The analytical calculation of the parameters of the heat exchangers, in terms of heat transfer
and pressure drop, is not the main focus of this study. Thus, for the pre-cooler, a pressure
drop of about 0.5 bar is assumed based on the literature(35) and the conservation of energy
transferred between helium and air is applied. The performance of heat exchangers number
3 and 4 is calculated in the same way. The pressure drop in these heat exchangers is neglected.
This is because the similar pressure levels of the working fluids in these heat exchanges, as
well as their compact design, is expected to give acceptable pressure losses(9,35). The gov-
erning equation of the heat exchangers, as implemented in this study, is described by Eq. (4)
where ideal energy transfer is assumed. This approach would be more accurate if a factor was
introduced in the equation to account for practical limitations in the heat exchangers design
and should be considered in future work.

Q̇hot = Q̇cold ⇒ (ṁ · Cp · �T)hot = (ṁ · Cp · �T)cold · · · (4)

2.2.3 Turbomachinery

The HeT drives the AirC; therefore, the work of the two turbomachines is approximately the
same. Given the fact that the engine is still under development, the mechanical efficiency
remains unknown. In this paper, a mechanical efficiency of 0.99 is assumed based on other
turbomachinery applications in civil aviation(2,45). A similar approach is adopted for the other
pairs of turbines and compressors of the core engine. The pressure ratio of the AirC is deter-
mined by the CC pressure level needed for rocket operation. The isentropic equations of
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Figure 2. Ramjet engine schematic.

turbomachinery are also included in the system to calculate the pressure and temperature at
different stations, using an isentropic efficiency to account for losses.

2.2.4 Combustion chambers

The operating parameters before and after the PB and CC are calculated by the system equa-
tions, and no analytical calculation for the combustion process is used in this study. This is
to reduce the amount of time needed to simulate the performance of the engine. Additionally,
a more accurate method to obtain these parameters is expected to have a minor effect on the
overall engine performance. The combustion efficiency used is 0.95, and the pressure drop
at the PB is assumed to be 15% due to injection phenomena. The pressure drop in the CC is
neglected, based on the assumption of isobaric combustion.

2.2.5 Nozzle

A conventional bell nozzle, normally used in rocket systems, is employed in this analysis in
order to calculate the exit parameters of the engine core. The design point is assumed to be the
optimal operating condition for the nozzle so that the exit pressure is equal to the ambient and
the nozzle is not under or over expanded. The nozzle performance is thus calculated based
on the adiabatic equilibrium assumption. Friction and boundary layer losses are ignored and
gases do not change their composition during the expansion process.

2.2.6 Other systems

Several other components are important for the operation of the engine such as the PRV and
LHP. The PRV is used in the cycle to adjust the pressure of helium, in order to be maintained
constant and provide steady state operating conditions to the HeC. Temperature losses caused
by the PRV are expected to be minor and are neglected. Liquid hydrogen is pumped via LHP,
which is considered a conventional centrifugal pump, normally used for rocket engines, with
high pressure ratio and stored in LHT at liquefaction conditions.

2.3 Bypass ramjet component-level modeling
The bypass duct of the engine is also modeled. This facilitates the improved evaluation of per-
formance parameters of the hybrid air-breathing rocket engine in the hypersonic atmospheric
ascent. The bypass duct of this engine is a pure ramjet engine and the model is based on ram-
jet equations neglecting, at first, some connections with the core engine. Figure 2 illustrates
the schematic and the stations of the ramjet engine as it is used in this modeling.

An intake system, where one oblique and one normal shock wave appears, is adopted.
Inlet conditions are similar to the hybrid engine under investigation, rather than any ramjet
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engine. The shock waves system is depicted in Fig. 2. The model calculates the performance
parameters of the ramjet engine, as well as the static and total pressures and temperatures at
every station as shown in the engine schematic.

2.3.1 Bypass intake

The intake shock wave system is calculated in the same way as for the core engine, since the
two engines share the same intake geometry.

2.3.2 Bypass combustion process

Since there is no downstream turbine, a ramjet combustor can safely operate at stoichiometric
fuel-to-air ratios. This implies a combustor exit stagnation temperature of the order of 2,200K.
Additionally, a pressure loss of 5% is used to account for some pressure drop during the
combustion process, based on other typical ramjet engines. These conditions are described
by Eq. (5).

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P2 = P1 − �Pcomb

�Pcomb = 0.05 · P1

f = 0.035

· · · (5)

2.3.3 Bypass nozzle

At the exit of the engine, the airflow gets expanded through the nozzle. In this study, it is
assumed that the nozzle expands the gas ideally, but suffers from a total pressure drop of
�n = 0.92. Moreover, the altitude is considered to be the design point for the nozzle, thus
the pressure at the exit is equal to that of the atmosphere. The model calculates the specific
thrust produced by the ramjet engine as illustrated by Eq. (6) as well as other performance
parameters (e.g. SFC, Isp, ηp, ηth, ηo, etc.)(2).

Fnet

ṁo
= (1 + f ) · Vexbp ·

[
1 + 1

γ · Mexbp
2

·
(

1 − P0

P4

)]
− Vinf · · · (6)

2.4 Model integration
The model of the core engine is adjusted to the conditions and operating parameters of the
engine under investigation, the hybrid air-breathing rocket engine. However, the ramjet engine
model provides the performance of a ramjet engine with only few similar characteristics to the
engine under investigation (e.g. the intake system). Further adjustments are needed in order to
integrate it to the whole engine model. The integration is achieved through the introduction of
some key working parameters of the core engine model to that of the ramjet engine. The key
parameters are the flight Mach number and altitude, as well as the amount of liquid hydrogen
diverted from the core to the BB (bypass burners). This point is located between stations
number 5 and 6 of the hydrogen cycle (Fig. 1.). It is assumed that the diverted amount of
liquid hydrogen is 15% of the total amount of fuel needed to achieve the targeted net thrust.
In this way, the ramjet engine is adjusted to the core engine in order to produce an integrated
model with improved accuracy. The engine composed of both the core and bypass is shown
in Fig. 3, and the integrated engine model is based on this configuration.
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Figure 3. Engine schematic in air-breathing mode.

The core engine is supplied with more liquid hydrogen than what is needed for combustion.
The excess amount of cold hydrogen is required for the cooling of helium at HX4, which is
at very high temperatures as it provides the cooling of the incoming air. The amount of liquid
hydrogen, not needed for combustion, is diverted to the BB before it goes to the PB. At lower
flight Mach numbers less hydrogen is required for cooling, thus more going into the BB, so
the bypass produces more thrust. Also, the bypass is making use of the excessive airflow
which cannot pass to the core engine and would induce extra drag. Therefore, the bypass duct
is designed to exploit the excessive amounts of hydrogen and air, depending on the flight
segment and Mach number. At the same time, it contributes to the overall thrust, and so it
improves the performance and the efficiency of the engine.

3.0 RESULTS
The model is calculating the static conditions of pressure and temperature at every station
of the engine, as well as the overall performance. The thermodynamic cycles of the different
working fluids are analysed in this section. Additionally, a small variation analysis is con-
ducted to examine the performance of the engine at slightly different operating conditions
than at the design point. The impact of the inlet ram drag on the required fuel mass flow to
achieve the targeted thrust, as well as the effect of the bypass duct on the overall performance
are demonstrated. Due to the uncertainty in some parameters, an error propagation analysis
is presented to evaluate the importance of accuracy in such variables. The integrated model
is embedded into a multi-platform application where the concept is explained and the perfor-
mance of the engine is made widely available. Finally, a preliminary cost analysis examines
the market viability of a reusable launch vehicle, supported by the hybrid air-breathing rocket
engines.

3.1 Engine thermodynamic analysis
In this section, the thermodynamic interactions of the working fluids of the engine are shown
as produced by the model. This is very important for aircraft engines, since cycle analysis is
necessary for both assessment and optimisation of the engine. The cycles of air, helium, as
well as air in the bypass, are presented. Figure 4 illustrates the H-S diagram of the main cycle
of the core engine.

This cycle depicts the thermodynamic processes of air and combustion products. As
expected, at the beginning, air is compressed at the intake by two shock waves, increasing
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Figure 4. Core engine thermodynamic cycle.

the entropy of the system. The reason for the decrease in entropy is that inside the PC, helium
extracts heat from air. This causes a huge increase in the entropy of helium cycle as shown in
Fig. 5(a). Following the cooling process, air is compressed in the AirC and directed to CC for
combustion. The diagram also shows the amount of air, diverted to the PB and HX3, before
going to CC and finally expanded in the nozzle. Again, the decrease in entropy at HX3 is
explained by the rise in entropy of the helium cycle at this component, as helium extracts heat
from the hot PB combustion products.

Figure 5 illustrates the cycle of helium loop (a) and that of the airflow diverted to the bypass
ramjet duct (b). The model calculation of the operating parameters of these cycles, produces
a closed Brayton cycle for the helium loop and an open Brayton cycle for the bypass duct
as expected for both cases, thus adding credibility to the model. As mentioned above, the
cooling process at the PC creates a huge increase in the entropy of helium, which is presented
as a decrease in the air-hydrogen loop. The same phenomenon is observed at the heat transfer
process of HX3, since helium is extracting some heat from the airflow. The cycle analysis is
an essential step in assessing the performance of an engine.

3.2 Small variation analysis
In order to examine which parameters have a significant impact on the results, a small vari-
ation analysis is conducted. The variables examined, among others, are the fuel-to-air ratio,
flight Mach number and the PC outlet temperature of helium. This analysis is carried out for
the core of the engine without accounting for the inlet ram drag.

Since the model is developed for the design point, it is only possible to investigate the
behavior of the engine in a very close range of Mach 5, which is from Mach 4.8 to 5.2. Even in
this Mach range, some working parameters slightly change (e.g. the altitude). However, small
changes can be accepted in order to improve understanding of the engine operating principles.
Figure 6 shows that a slightly less amount of liquid hydrogen is necessary when trying to
achieve the same thrust, but flying with a higher Mach number. However, the impact on the
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Figure 5. Thermodynamic cycles of: (a) Helium and (b) Bypass ramjet duct.

overall efficiency is not minor. That is because of the severe impact that the Mach number has
on the propulsive efficiency, hence in the overall efficiency as well. This diagram demonstrates
that fuel mass flow rate of the core engine changes slightly along the whole atmospheric
ascent. The highlighted point refers to the design point of Mach 5, and its projections on the
axes correspond to the values of hydrogen mass flow rate and overall efficiency of the core
engine at this point.

The mass flow rate of hydrogen is connected to the mass flow rate of helium directly by
Eq. (7). Thus, if less mass of helium could achieve the same cooling effects, this would
improve the fuel efficiency, because the cycle would require less mass of liquid hydrogen.
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Figure 6. Variation of hydrogen mass flow rate and overall efficiency with flight Mach number.

Equation (7) is based on ideal energy transfer, and a heat-exchanger design limitation factor
should be used in future work to reflect more accurate and realistic conditions.

Q̇He = Q̇H2 ⇒ ṁHe · CpHe · (�THe)HX 4 = ṁH2 · CpH2
· (�TH2 )HX 4 · · · (7)

Figure 7(a) illustrates the potential improvement in SFC, provided that the temperature
limitation of 950K of helium PC outlet temperature could be increased to a higher value.
An increase of 40K would result in approximately 9% improvement in SFC. The limitation
comes from the selected material for the helium tubes in the PC. Additionally, Fig. 7(b) shows
the impact of fuel-to-air ratio on the propulsive, thermal and overall efficiency of the core
engine. As expected, fuel-to-air ratio is the major influencing factor of the engine thermody-
namic performance. A reduction in fuel-to-air ratio from 0.09 to 0.07 advances the thermal
efficiency by approximately 12%, but propulsive efficiency changes slightly. This is because
thermal efficiency is strictly connected to the fuel mass flow rate, while propulsive efficiency
is a correlation between exit and flight velocity, both changing slightly with fuel-to-air ratio.
Although a combined cycle engine is more complicated, it behaves similarly to air-breathing
aircraft engines.

3.3 Effect of inlet ram drag and bypass ramjet duct
The impact of both the inlet ram drag and the bypass duct on the performance and operation
of the engine is examined because it is expected to have a major effect at hypersonic flight
speeds. Figure 8(a) presents the effect of inlet ram drag on the fuel mass flow rate of hydrogen
required to achieve the targeted thrust. The investigation presented here for the inlet ram
drag effect, is based on the core model, without accounting for the bypass duct. The inlet
ram drag term is calculated directly by Eq. (8)(2). The required hydrogen mass flow rate to
achieve a certain thrust value is calculated when neglecting the ram drag term and when
considering it.

Dram = ṁcore · Vinf · · · (8)
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Figure 7. Variation of: (a) SFC with helium PC outlet temperature and (b) Efficiencies with fuel-to-air ratio.

The ram drag induced by the air at the intake has a significant effect on the operation of the
engine (Fig. 8(a)). The targeted net thrust is the same for both cases. The required mass flow
rate of liquid hydrogen is almost doubled when accounting for the inlet ram drag. Moreover,
it is important to notice the trend of the diagram. As the targeted net thrust is getting higher,
the impact of the inlet ram drag is getting more and more intense. The inlet ram drag in
hypersonic systems is important because the increase in thrust is equivalent to an increase in
flight Mach number.

Figure 8(b) presents the effect of the bypass modeling, on the core engine model, in terms
of the impact on the overall efficiency of the engine. The addition of the bypass in the core
model, improves the overall efficiency of the engine by 7%. This is mainly due to the increase
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Figure 8. Impact of: (a) Inlet ram drag on fuel mass flow rate and (b) Bypass ramjet duct on the overall
efficiency.

in the airflow while the required fuel mass flow rate is slightly higher. Thus, more thrust is
produced with no major increase in fuel consumption. The bypass ramjet duct, as calculated
in this study, produces approximately 20% of the thrust at the design point.

3.4 Error propagation analysis
Given the fact that the concept of the hybrid air-breathing rocket engine is still under devel-
opment, there is some uncertainty surrounding several operating parameters of the model.
An error propagation analysis is conducted, in order to examine the effect of this uncertainty
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on the overall performance of the engine. The selected parameters for this analysis, are the
ambient pressure and temperature, and the heat capacity ratio γ of gas at the CC.

3.4.1 Method

The overall uncertainty of a system can be calculated by examining the logarithmic derivative
of the equation relating the unknown quantity to the known variables(36). A maximum pos-
sible uncertainty can then be computed by summing the appropriate uncertainty terms. This
approach also allows to verify the importance of each uncertainty term and is described by
Eq. (9).

δf =
{[ (

∂ f

∂x

)
· δχ

]2

+
[ (

∂ f

∂y

)
· δy

]2

+
[ (

∂ f

∂z

)
· δz

]2

+ . . .

} 1
2

· · · (9)

where f is any function under investigation and δ is the error of each uncertainty term.
This analysis is conducted only for the core engine model. This is because the integrated

model is more complicated, and it would only impose complexity in the calculations without
improving understanding of the error propagation behaviour.

3.4.2 Results and discussion

Equation (9) is applied to calculate the error of the air temperature after the normal shock
wave T2 based on the error of ambient temperature using Eq. (1–3). The error in helium mass
flow rate is calculated, based on the previous error in T2, by using the energy conservation
equation between air and helium at the PC, which is described by Eq. (10)(44).

Q̇Air = Q̇He ⇒ ṁAir · CpAir · (T2Air − T3Air

)
PC

= ṁHe · CpHe · (T3He − T2He )PC · · · (10)

Additionally, the error in the air pressure after the normal shock wave P2 is calculated based
on the error of ambient pressure, using Eq. (1–3). The error in efficiencies is calculated based
on the error of heat capacity ratio γ in the CC as shown in Table 1. The Variable Errors shown
in Table 1 are based on differences between several literature values(34,46). The results are as
follows: ⎧⎪⎨

⎪⎩
δTamb
Tamb

= ± 0.018 [%]

δPamb
Pamb

= ± 0.38 [%]
⇒

⎧⎪⎨
⎪⎩

δṁHe
˙mHe

= ± 0.02 [%]

δP2
P2

= ± 0.39 [%]
· · · (11)

δγ

γ
= ± 0.41 [%] ⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δηth
ηth

= ± 1.41 [%]

δηp
ηp

= ± 0.03 [%]

δηo
ηo

= ± 0.97 [%]

· · · (12)

Equation (11) shows that an error in ambient temperature or pressure, gives approximately
the same error in the calculation on the mass flow rate of helium or pressure after the normal
shock wave, respectively. The equations relating those terms are linear, thus the propagation
of the initial error is minimised. On the other hand, Eq. (12) shows that an error of about 0.4%
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Table 1
Estimation of errors in selected parameters

Parameter Value Variable Error δx/x [%]

Tamb [K] 216.65 0.04 0.018
Pamb [bar] 0.025273 0.0001 0.38

γ [ - ] 1.22 0.005 0.41

Table 2
Engine performance at design point

Parameter Model Data Error

Isp [s] 1832 1838 0.32 [%]
ηp [%] 69.3 – –
ηth [%] 57.14 – –
ηo [%] 39.6 – –

SFC [gr/kN/s] 55.7 – –
Tin PC [K] 1217.8 1223 0.5 [%]
Tout PC [K] 122 123 0.8 [%]

in the heat capacity ratio, results to an overall error of 1.4% in thermal efficiency, which is
over three times higher. The error of propulsive efficiency is very low, because the final value
is a correlation between the squared values of flight and gas exit velocities. This results to an
overall uncertainty of about 1% in efficiency. The large uncertainty produced in the overall
efficiency is caused by the exponential nature of the equations calculating the performance of
the engine (e.g. Exit Mach number, Exit temperature).

This analysis demonstrates the importance of accuracy in some parameters of the model.
It is essential to select the correct values of some key parameters such as the heat capacity
ratio γ in order to calculate the results more accurately. In addition, the error propagation to
the final variable is determined by the nature of the equations involved. Finally, this analysis
illustrates the difficulties in developing a model for off-design point operation, since much
more uncertainties will rise.

3.5 Model evaluation
Table 2 provides several key parameters, as produced by the model, describing the perfor-
mance of the engine at the design point in comparison with available data in the literature.
The compared values include the engine specific impulse(1,8,9), as well as air inlet and outlet
temperatures from the PC(35,47). As shown in Table 2, the developed component-level model
is in good agreement with the data available in the literature, with a maximum error of 0.8%.
The values of Table 2 are the results of the integrated model, including the inlet ram drag.

At the design point, the output of the model for the specific impulse of the engine is 1832s.
This is slightly lower than the J-58 turbojet engine of SR-71 cruising at Mach 3.2 and 4 times
higher than most chemical rockets. The overall efficiency of the engine is approximately 40%.
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Figure 9. Input parameters template for hybrid air-breathing rocket engine as found in AeroEngineS
application.

3.6 The multi-platform application AeroEngineS
The multi-platform application “AeroEngineS”, which stands for “AeroEngine Simulation”,
has been developed at Aristotle University of Thessaloniki. Its main goal is to simulate
the performance of aeroengines, in terms of calculating several working conditions of the
engines(37). The application is calculating the mass flows of the working fluids, pressures and
temperatures at each station of the engine, as well as the performance parameters such as
thrust, efficiencies, SFC, etc. Additionally, there are templates available for the calculation of
aircraft emissions at different flight conditions, the prediction of compressor map operating
points, as well as the calculation of the distance between two airports. Hence, the application
has a general use in several topics concerning the aviation field. “AeroEngineS” can be found
online or as a mobile application, and it is constantly being updated and new templates, con-
cerning several aeronautical topics, are being added(38). This study resulted in the enrichment
of the application with two more templates — one for the hybrid air-breathing rocket engine,
and one for a ramjet engine — thus widening the range of the application into the supersonic
and hypersonic propulsion field.

3.6.1 Hybrid air-breathing rocket engine template

The final model of the hybrid air-breathing rocket engine is converted to JavaScript and
embedded into “AeroEngineS”. Figure 9 shows the template of the hybrid air-breathing rocket
engine as seen in the “AeroEngineS” application. A description provides an explanation of
the main concept of the simulation as well as the schematic of the core engine cycle.

The user may alter the flight speed in a region near Mach 5, which is from 4.8 to 5.2,
since the model is developed to operate at the design point. Also, the user has the option to
include the ram drag induced by the intake, thus getting a picture of the effect of the ram
drag on the performance of the engine. Several thermodynamic parameters can be changed as
well, such as the PC outlet temperature of helium, the fuel-to-air ratio of the bypass burners
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Figure 10. Input parameters template for ramjet engine as found in AeroEngineS application.

and the efficiency of some components of the core engine. The user can thereby get a better
understanding of the engine concept as well as examine the performance when altering several
key parameters. Pressing the Start Simulation button, the user obtains the mass flow rates of
each working fluid, the static pressures and temperatures at each station found in the cycle,
and also the performance parameters of the engine.

3.6.2 Ramjet engine template

Based on the model initially developed for the bypass duct of the engine under investigation,
a new template for a ramjet engine is added in the application. The user may change the
flight speed and altitude, the inlet diameter of the engine, as well as several thermodynamic
parameters. These include fuel-to-air ratio and efficiency, in terms of pressure drop, of the
combustion and expansion process. The user obtains the same format of results as mentioned
for the case of the hybrid air-breathing rocket engine. Figure 10 shows the input parameters
template of the ramjet engine as seen in the application. A description provides an explanation
of the main concept of the simulation as well as the schematic of the ramjet engine.

The schematics embedded in Figs. 9 and 10, correspond to the core engine cycle and the
ramjet engine layout as found in Figs. 1 and 2, respectively.

3.7 Preliminary cost analysis of an RLV
For the completion of this study, a preliminary cost analysis is conducted to evaluate the
market viability of an RLV. The selected vehicle is an aircraft-like spaceplane, using two of
the engines under investigation. This study is mainly based on data available in the literature,
and the main goal is to examine the conditions under which a concept like this could be viable
or even profitable for the investor.

In space industry, the manufacturer is also the operator in most cases. This is found to be
the main problem for the case of an RLV because of its large research and development costs.
Space launches are expected to increase exponentially in the future, which makes the concept
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Table 3
Cost of several space transportation systems

Payload to Cost per Cost per kg of
System LEO [kg] Launch [M] payload [/kg] Reference

Saturn V 130000 743 5715,4 NASA(40)

Space Shuttle 29000 600 20689,6 NASA(41)

Falcon 9 22800 62-expendable 2719,3 SpaceX(42)

Falcon Heavy 63800 150-expendable 2351,1 SpaceX(42)

RLV fleet: 1 15000 40 2667 REL(39)

RLV fleet: 5-10 15000 10 667 REL(39)

more appealing. A comparison with other space systems is essential for the results. Table 3
provides the cost of several space transportation systems, as well as the expected cost of the
RLV based on literature data(39). The acquisition cost of the RLV used in this study, including
the research and development costs, is approximately 18 billion $(13).

In this analysis, the concept is examined from six different perspectives, and conclusions
are drawn. The main factors examined are the stakeholders, the motivation, the upcoming
demand in space market, the degree of reusability (e.g. a spaceplane with no upper stage is
100% reusable), the fleet number and, finally, the size of the spaceplane itself(43).

Based on the data in the available literature as well as in Table 3, the following conclusions
are drawn for the market viability of an RLV:

i. The viability of an RLV on entry into service, is not assured, mainly due to the huge
acquisition cost required, from a single operator.

ii. The cost per launch could lower to 40 million with one operational RLV and to 10 million
with a fleet of 5–10, thus generating even more space launches.

iii. The cost per kilogram of payload into orbit might be an important factor of comparison
between space transportation systems, but it is not the most critical, mainly because of
its connection to the size of the system.

iv. Space launches are expected to increase in the next years, hence an RLV will become
much more suitable to serve the demand.

v. A concept like this would probably need several public and private subsidies before being
able to become viable, even with the predicted increase in the space launches.

vi. A different approach of the space market, similar to that of the civil aviation indus-
try, where a manufacturer constructs the RLV and sells it to several operators, seems
much more viable for this concept and able to address the big acquisition cost
problem.

4.0 CONCLUSIONS AND FUTURE WORK
A thermodynamic analysis and simulation of a hybrid air-breathing rocket engine has been
presented. This is facilitated through the development of a component-level, app-embedded
model, including both the core engine and the bypass duct. The operation of the engine, at
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the design point of Mach 5 and altitude of 25km, is analysed. The main conclusions are as
follows:

• In this analysis the thermodynamic cycles of air and helium in the core as well as the air in
the bypass are presented. The operating principles of the engine are thereby demonstrated.
This is essential for the improvement of cycle efficiency and optimisation of the engine.

• The small variation analysis has shown that an increase of 40K of the helium PC outlet
temperature may result in an improvement of approximately 9% in SFC. Thus, the sig-
nificance of the heat exchanger design for the overall engine efficiency is demonstrated.
Fuel-to-air ratio is found to be the main influencing factor of the engine performance.

• An error propagation analysis reveals that an initial uncertainty of 0.4% in the heat-capacity
ratio of the combustion chamber leads to an error of approximately 1.4% in the thermal
efficiency. Thus, the importance of some key parameters on the final performance results
is outlined.

• The developed model for the hybrid air-breathing rocket engine is embedded into a multi-
platform application. The concept of the engine is explained. The effect of the inlet ram
drag and other key working parameters on the engine performance, is made widely avail-
able. Hypersonic flight using precooled combined cycle engines is thereby exposed to the
interested reader.

• Market viability of a reusable launch vehicle is examined through a preliminary cost anal-
ysis. This is found to be depending on several factors, owing to the huge acquisition cost,
and becomes viable only under certain conditions. These include several public or private
investments and a totally different approach to the space market similar to the civil aviation
industry.

• The inlet ram drag has a significant impact on the engine performance at hypersonic speeds,
thus it should not be neglected in the modeling. The results on the engine performance
show good agreement with data found in the open literature, with a maximum calculation
error of 0.8%.

• The bypass duct produces approximately 20% of the targeted net thrust of the engine at
the design point, as calculated by the model. It also improves the overall efficiency by 7%,
thus it is a very important factor for the modeling and should not be neglected.

• The model calculates the specific impulse of the engine at approximately 1800s, which is
about 4 times higher than any chemical rocket. This engine concept is the most suitable for
a single-stage-to-orbit mission, and advantageous in numerous other applications.

Currently, the enrichment of the model with added functions is under development in order
to evaluate the off-design point performance of the engine. Additionally, future work will be
focused on developing a transient model to simulate the whole atmospheric ascent, based on
the existing model for the design point. The multi-platform application will be updated with
the latest changes.
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