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We present a versatile perturbative calculation scheme to determine the leading-order
correction to the mobility matrix for particles in a low-Reynolds-number fluid with
spatially variant viscosity. To this end, we exploit the Lorentz reciprocal theorem and
the reflection method in the far field approximation. To demonstrate how to apply the
framework to a particular choice of a viscosity field, we first study particles in a finite-size,
interface-like, linear viscosity gradient. The extent of the latter should be significantly
larger than the particle separation. Both situations of symmetrically and asymmetrically
placed particles within such an odd symmetric viscosity gradient are considered. As a
result, long-range flow fields are identified that decay by one order slower than their
constant-viscosity counterparts. Self-mobilities for particle rotations and translations are
affected, while for asymmetric placement, additional correction appears for the latter. The
mobility terms associated with hydrodynamic interactions between the particles also need
to be corrected, in a placement-specific manner. While the results are derived for the
system of two particles, they apply also to many-particle systems. Furthermore, we treat
the viscosity gradients induced by two particles with temperatures different from that of
the surrounding fluid. Assuming a linear relation between fluid temperature and viscosity,
we find that both the self-mobilities of the particles as well as the mobility terms for
hydrodynamic interactions increase for hot particles and decrease for cold particles.

Key words: colloids, general fluid mechanics

1. Introduction

Hydrodynamic interactions between particles of approximately spherical shape are of great
importance for many areas in research and industry, including colloid dynamics (Rex
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& Löwen 2008), polymers (Kirkwood & Riseman 1948), deposition processes (Dabros
1989), and active systems such as microswimmers (Najafi & Golestanian 2004; Ishikawa,
Simmonds & Pedley 2006; Pooley, Alexander & Yeomans 2007; Pande & Smith 2015;
Ziegler et al. 2021) and Janus particles (Sharifi-Mood, Mozaffari & Córdova-Figueroa
2016). Due to the small length scales involved, the corresponding hydrodynamic flows are
dominated by viscous friction rather than by fluid inertia. In this regime, the Navier–Stokes
equations reduce to the Stokes equations, which can be solved analytically at spatially
constant viscosity for many geometries. Since viscosity gradients are abundant in both
living and non-living environments, such as bacterial biofilms (Wilking et al. 2011), mucus
layers (Swidsinski et al. 2007) and interfaces between fluids of different viscosities (Qiu
& Mao 2011), it is natural to ask how the hydrodynamic interactions change in viscosity
gradients. In physical systems, such viscosity gradients can e.g. arise as a consequence
of the viscosity’s dependence on temperature (Oppenheimer, Navardi & Stone 2016),
shear rate (Wells & Merrill 1961) or solvent concentration (Goldsack & Franchetto 1977).
The simplest example of such an environment is a linear viscosity gradient, i.e. a region
in the fluid where the viscosity changes linearly with the position in space. Another
experimentally relevant example is the viscosity perturbation induced by temperature
contrasts between the interacting particles and the surrounding fluid (Kroy, Chakraborty &
Cichos 2016; Oppenheimer et al. 2016). In both cases, results have already been obtained
for the mobilities of single particles (Datt & Elfring 2019; Oppenheimer et al. 2016), while
only little is known for the interaction between several particles.

In their seminal paper on microswimmer behaviour in a viscosity gradient, Liebchen
et al. (2018) estimated an upper bound for the amplitude of the leading-order correction
for the Oseen tensor within an infinite linear viscosity gradient, but neglected those terms
in their subsequent analysis of swimmer behaviour in a viscosity gradient. Subsequently,
Laumann & Zimmermann (2019) calculated the first-order correction to the Oseen tensor
in an infinitely large linear viscosity gradient . However, to the best of our knowledge, no
explicit results are yet available in the literature for the corrections to the full mobility
matrix of two particles in non-homogeneous environments. Also, the studies mentioned
did assume viscosity gradients that extend infinitely, although inevitably this introduces
negative viscosity in some parts of the fluid. To avoid this, we consider explicitly viscosity
gradients that, while being larger than the separation between both particles by at least
an order of magnitude, are yet of finite size, and thus avoid negative fluid viscosity.
For the second application of particles with a temperature difference with respect to the
surrounding fluid, no results are yet available for the interactions between particles.

We fill this gap, providing the leading-order correction to the mobility matrix associated
with the interaction of particles at large separations for both a large viscosity gradient as
well as for viscosity perturbations due to the particle temperature. In the former case,
we find, surprisingly, that the correction terms, which are to leading order linear in the
viscosity gradient, scale constant in the distance between both particles. This is in contrast
to the Oseen tensor, which decays with the first power of the inverse distance. For a
particle subject to a torque, the correction to the flow field is scaling with the first power
of the inverse distance to the particle, while the constant viscosity flow scales with the
second power. Also, we discover that asymmetric particle placement in an odd symmetric
viscosity gradient or an asymmetry in the domain of the viscosity gradient introduce an
additional mobility term. This term has a non-negligible impact on both the self-mobility
as well as the interaction between the two particles.

For particles with a temperature difference with the surrounding fluid, we find that the
presence of a second hot or cold particle changes the self-mobility of the first particle.

943 A29-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

42
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.421


Hydrodynamic particle interactions in linear and radial viscosity

The effect is proportional to the inverse particle separation. The mobility term associated
with hydrodynamic interaction between the particles is altered proportional to the second
power of the inverse distance.

The paper is structured as follows. First, we introduce the problem of calculating the
mobility matrix in non-constant viscosity in § 2, before we give a short derivation of the
perturbative first-order correction to the mobility matrix following Oppenheimer et al.
(2016) (§ 3). We then employ a reflection method in order to expand the correction in
the inverse separation of both particles, deferring the explicit calculation of the first-order
terms to the Appendix. In § 4, we present results for two particles in a linear viscosity
gradient of finite size, where we focus first on symmetric placement of particles in the
gradient (§ 4.1), and second describe the additional terms arising when the particles are
placed asymmetrically in the gradient (§ 4.2). As a second application, we focus on the
mobility of a two-particle system with a temperature contrast between the particles and
the fluid at infinity (§ 5). Section 6 concludes the paper. We also provide a list of symbols
in table 1.

2. Formulation of the problem

We aim to calculate the mobility matrix for two spherical particles of equal radius a with
relative distance s between the centres of both particles, which are suspended in a fluid
with position-dependent viscosity η(r). We assume that the fluid viscosity is given by

η(r) = η(0) + ε η(1)(r), (2.1)

where η(0) is the reference viscosity, ε < 1 is the perturbation parameter, and r is the
position in the fluid. Upper indices in brackets correspond to orders in ε. We assume that
the viscosity perturbation is at most of the order of η(0), such that ε corresponds to the
ratio of the magnitudes of viscosity perturbation and the constant-viscosity background.
The Reynolds number (Purcell 1977) associated with the particles is assumed to be zero,
such that the fluid is described by the incompressible Stokes equations (Kim & Karilla
2005, p. 9)

∇ · σ (r) = 0, ∇ · u(r) = 0. (2.2a,b)

Here, u(r) denotes the fluid velocity, σ (r) is the stress tensor defined as

σ (r) = −p(r) I + 2 η(r) E(r), (2.3)

and the bold centred dot denotes contraction of the last index of the preceding quantity with
the first index of the following quantity, as scalar products of vectors and matrix–vector
products. Also, p(r) denotes the pressure in the fluid, E(r) = (∇u(r) + (∇u(r))T)/2 is the
strain rate in the fluid, and I is the 3 × 3 identity matrix. The symbol T denotes matrix
transposition.

Due to the linearity of the Stokes equations, there exists a linear relation between the
(angular) velocities (Ub and Ωb) of each particle and the hydrodynamic forces/torques
(F hydro

b and T hydro
b ) that the fluid exerts on each particle b = 1, 2. To shorten notation for

the subsequent calculations, we introduce generalised velocity and force vectors:

U = (U1, U2, Ω1, Ω2), Fhydro = (F hydro
1 , F hydro

2 , T hydro
1 , T hydro

2 ). (2.4a,b)

The components of both vectors as well as of the resistance and mobility matrix (R and
μ) defined below will be referred to by upper indices P, Q, which adopt the values t
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Symbol Values/Components Explanation

Dimensionless quantities and scalar fields
Pe Péclet number
Re Reynolds number
Pr Prandtl number
a particle radius
s = |s| distance between particles
d half of the total extent of the linear viscosity gradient
η viscosity
ε perturbation parameter
κ = a/d ratio of particle radius and gradient extent
α coefficient relating fluid viscosity and temperature
b, c, e, f {1, 2} particle numbers
P, Q {t, r} indices denoting translational (t) and rotational (r) degrees of

freedom
i, j, k, l {x, y, z} spatial indices
V fluid volume
p(r) fluid pressure
T(r) fluid temperature
Tb temperature of particle b
Cm

b coefficient of the monopolar temperature field around particle b
Sb surface of particle b

Vectorial quantities
ei unit vector in spatial direction i
r = (x, y, z) position vector
rb position vector of particle b
s = r2 − r1 separation vector between particles 1 and 2
n surface normal vector directed into the fluid
u(r) fluid velocity field
U {Ub, Ωb} generalised velocity vector, with components velocity and angular

velocity
F hydro {F hydro

b , T hydro
b } generalised hydrodynamic force vector, with components

hydrodynamic force and torque
F {F b, T b} generalised external force vector, with components external force and

torque
H (1) = ∇η(1) vectorial first-order viscosity gradient
Cd

b coefficient of the dipolar temperature field around particle b

Tensorial quantities
I 3 × 3 unit matrix
0 3 × 3 matrix with all entries zero
σ (r) fluid stress tensor
E(r) fluid strain rate
R RPQ

bc resistance matrix
μ μ

PQ
bc mobility matrix

B BP
b normalised strain rate in the two-particle system

P PP
b normalised strain rate in the one-particle system

Table 1. List of symbols.

(translation) or r (rotation), and lower indices b, c denoting the particle number (1 or
2). Thereby, significant brevity of the subsequent equations is achieved. We note that
this notation is different to a common alternative where F, U, T and Ω are used as
indices for the translational and rotational degrees of freedom. The conversion between
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Hydrodynamic particle interactions in linear and radial viscosity

the two notations is straightforward, e.g. U t
1 = U1, (Fhydro)r

2 = T hydro
2 and Rtr

11 = RFΩ
11 .

The resistance matrix with components RPQ
bc is then defined by

(Fhydro)P
b =:

∑
Q,c

RPQ
bc · UQ

c . (2.5)

Since in the regime of low Reynolds numbers the particle inertia and thus acceleration
forces are negligible compared to friction, the hydrodynamic forces on each particle have
to equal the negative external forces applied, F b = −F hydro

b , and similarly for torques,
T b = −T hydro

b . This implies

F = −Fhydro, (2.6)

with F = (F 1, F 2, T 1, T 2). The mobility matrix with components μ
PQ
bc is then defined as

UP
b =:

∑
Q,c

μ
PQ
bc · FQ

c , (2.7)

and hence μ = −R−1.
For the case of constant fluid viscosity η(0), the mobility matrix is given up to O(s−2)

by (Dhont 1996, pp. 248–256)

μ(0) = 1
6πaη(0)

⎛
⎜⎜⎜⎜⎝

I T 0 V
T I −V 0

0 V
3

4a2 I 0

−V 0 0
3

4a2 I

⎞
⎟⎟⎟⎟⎠ , (2.8)

with

T := 3a
4s

(
I + s ⊗ s

s2

)
, (2.9)

V = 3a
4s3 (s×), (2.10)

and the tensor product denoted by ⊗. Furthermore, s := r2 − r1 is the separation vector
between the positions of the two particles, s = |s| and 0 is the 3 × 3 matrix with all entries
zero. The tensor (s×) is defined as (s×) := εikjskei ⊗ ej, where ei is the unit vector in the
direction associated with the spatial index i, εikj is the Levi–Civita symbol and we imply
summation over repeated spatial indices.

3. Derivation of the correction term to the mobility matrix

We now make use of the Lorentz reciprocal theorem to derive the first-order correction
in ε to the mobility matrix of a two-particle system, with particles at positions r1 and
r2. Specifically, we consider two systems, where the first has constant viscosity η(0)

everywhere in the fluid, and the second is described by the perturbed viscosity profile
η(r) (Oppenheimer et al. 2016). Quantities in the first system will carry a superscript (0)

associating them with constant viscosity, whereas quantities corresponding to the second
system will carry no superscript in parentheses. In both systems, the particles translate and
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rotate with velocities U (0) and U , respectively, inducing velocity, pressure and stress fields
{u(0)(r), p(0)(r), σ (0)(r)} and {u(r), p(r), σ (r)}, respectively. To shorten notation, we will
omit the position-dependence in the following and use explicit notation only for the sake
of clarity when necessary. Following the derivation of the standard Lorentz reciprocal
theorem (Appendix A, and Oppenheimer et al. 2016), we arrive at the relation∑

P,b

FP
b · U (0)P

b −
∑
P,b

F (0)P
b · UP

b = 2
∫

V
[η(r) − η(0)]E : E(0) dV. (3.1)

Here, V denotes the fluid volume and E : E(0) the contraction of the last two indices of E
with the first two indices of E(0). Naturally, while for η(r) = η(0) one obtains the standard
Lorentz reciprocal theorem, we here obtain a relation between the generalised velocities
and forces, and a correction term involving the viscosity perturbation and the strain rate in
the fluid.

For given particle positions, the fluid velocity at each point is a linear expression in the
forces and torques acting on the particles. Therefore, we can express the strain rates E and
E(0) as products of the normalised strain rates B and B(0) with respect to the forces and
torques acting on the particles, and the generalised forces

E =:
∑
P,b

BP
b · FP

b , E(0) =:
∑
P,b

B(0)P
b · F (0)P

b . (3.2a,b)

Inserting this expansion together with (2.7) and the analogous equation for the constant
viscosity case into (3.1), we obtain∑

P,Q,b,c

(FP
b · μ

(0)PQ
bc · F (0)Q

c − F (0)P
b · μ

PQ
bc · FQ

c )

= 2
∫

V
[η(r) − η(0)]

∑
P,Q,b,c

(BP
b · FP

b ) : (B(0)Q
c · F (0)Q

c ) dV. (3.3)

Both sides are linear in F and F (0), which are undetermined variables up to here. Hence
by suitably renaming the summation indices, using the symmetry of the mobility matrix
(Jeffrey & Onishi 1984), and factoring out F and F (0) (Appendix B), we obtain

μ
PQ
bc = μ

(0)PQ
bc − 2

∫
V

[η(r) − η(0)]BP
b

•· B(0)Q
c dV. (3.4)

Here, we follow the notation used in Oppenheimer et al. (2016), defining

BP
b

•· B(0)Q
c :=

∑
k,l

(BP
b )kli (B

(0)Q
c )klj ei ⊗ ej. (3.5)

Realising that η(r) − η(0) = ε η(1)(r) and that we can expand B = B(0) + O(ε1), we find
that the ε1 correction to the mobility matrix depends on only the normalised strain rate in
a constant-viscosity fluid, B(0)P

b , instead of BP
b . Consequently, for the ε1 correction to the

mobility matrix, we obtain

μ
(1)PQ
bc = −2

∫
V

η(1)(r) B(0)P
b

•· B(0)Q
c dV, (3.6)

which holds irrespective of the actual form of the gradient and the number of particles in
the system. Note that in Oppenheimer et al. (2016), the strain rates have been expanded
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Hydrodynamic particle interactions in linear and radial viscosity

with respect to the generalised particle velocities instead of the generalised forces. This
yields a similar result for the first-order correction to the resistance matrix rather than for
the mobility matrix.

While the normalised strain rate for a single particle in constant viscosity can be
obtained directly from the flow field associated with translation and rotation of a single
particle, in the case of two or more particles, one has to also account for the disturbance
flows that other particles induce in response to the flow field produced by a first particle.
Depending on whether the expansion of the strain rates is done with respect to the
generalised forces or velocities, these other particles must be assumed to be force- and
torque-free, or to have zero (angular) velocity in the calculation of the normalised strain
rates, respectively. By using a reflection method, one can account for all those disturbance
flows ordered by ascending powers of the inverse particle separation (Kim & Karilla 2005,
Chapter 8).

At this point, expanding the strain rates with respect to the generalised forces simplifies
the subsequent calculations drastically in comparison to an expansion with respect to the
generalised velocities. The reason for this is that the disturbance flow field induced by
a force- and torque-free particle scales to leading order with the local gradient of the
flow field in which it is immersed, namely the local strain rate of the flow, whereas a
particle with zero velocity induces, in general, a disturbance flow proportional to the local
flow field (Kim & Karilla 2005, p. 189). This is also clear intuitively: a force-free particle
translates and rotates according to the surrounding flow field, whereas a particle with
prescribed zero velocity must resist any external flow, inducing a stronger disturbance
flow.

A spherical particle located at the origin and subject to a force in a constant viscosity
fluid produces a flow field given by T trans(r)/(6πη(0)a) contracted with the external force,
with (Dhont 1996, p. 246) the Rotne–Prager tensor

T trans(r) :=
(

3a
4r

(
I + r ⊗ r

r2

)
+ a3

4r3

(
I − 3

r ⊗ r
r2

))
, (3.7)

and r = |r|. Similarly, the flow field induced by a particle subject to a torque is given by
T rot(r)/(8πη(0)a3) contracted with the applied torque, with (Dhont 1996, p. 248)

T rot(r) := −
(a

r

)3
(r×), (3.8)

being the rotlet. We then define the normalised single particle strain rates for translation
and rotation as the symmetrised gradient of the corresponding flow field, where we use
explicit index notation for the sake of clarity:

(P(0)t)kli(r) := 1
6πη(0)a

1
2

[∂k(T
trans)li(r) + ∂l(T

trans)ki(r)], (3.9)

(P(0)r)kli(r) := 1
8πη(0)a3

1
2

[∂k(T
rot)li(r) + ∂l(T

rot)ki(r)]. (3.10)

The normalised strain rates in the two-particle system, B(0)P
b , can then be expanded by

means of the reflection method (Appendix C) in terms of the single-particle strain rates as

B(0)t
b ≡ B(0)t

b (r) = P(0)t(r − rb) + P(0)s(r − rc) : P(0)t(rc − rb) + O(s−3), (3.11)

and
B(0)r

b ≡ B(0)r
b (r) = P(0)r(r − rb) + O(s−3). (3.12)
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Here, P(0)s denotes the normalised strain rate associated with the disturbance flow field
that a spherical particle immersed in a local strain rate induces (see Appendix C for
details).

We have worked out the reflection scheme up to O(s−2), which will suffice to calculate
the correction to the mobility matrix up to order O(s−1) in a linear viscosity gradient
and up to order O(s−2) for particles with a temperature contrast to the fluid. Inserting the
expansions (3.11) and (3.12) into (3.6), we see that the task of calculating the integrals
(3.6) reduces to calculating integrals of the form

Q(1)PQ
bc := −2

∫
V

η(1)(r) P(0)P(r − rb)
•· P(0)Q(r − rc) dV, (3.13)

for P, Q = t, r, s, as discussed in the following sections.

4. Particles in a large linear viscosity gradient

We first consider the mobility matrix of two particles within a large linear viscosity
gradient, i.e. with an extent d larger by at least an order of magnitude than the distance
s between the two particles, d � s (figure 1). For simplicity, we assume here that the
particles do not perturb the viscosity gradient. In particular, we assume that the viscosity
profile is given by

η(r) = η0 + εH (1) · r (4.1)

for all |r| < d, where H (1) is the vectorial gradient, and η0 is a constant viscosity
background. We introduce a second dimensionless parameter κ := a/d as the ratio of
bead radius and size of the viscosity gradient. Assuming that the particle distance is
sufficiently large as compared to the bead radius a � s, we restrict our calculation of the
correction to the mobility matrix to the leading orders in a/s, and include here all terms up
to O(s−1). This implies that for the remainder of the section on linear gradients, we impose
d � s � a. However, since in constant viscosity the leading-order approximations for the
mobility terms apply with errors below 5 % if the beads are separated by only 5 bead
radii, it is expected that the leading-order results for a viscosity gradient are of similar
accuracy at such distances. While these seem to be quite some restrictions, we emphasise
that viscosity gradients often occur on length scales of millimetres, in liquids filled with
micron-sized colloids or active swimmers (Stehnach et al. 2021).

A prototypical interface-like linear viscosity gradient is, without restriction of generality
along the y-direction, given by

η(r) = η0 +

⎧⎪⎪⎨
⎪⎪⎩

−εη0, y < −d,(
0, ε

η0

d
, 0
)

· r, −d ≤ y ≤ d,

εη0, d < y,

(4.2)

where r = (x, y, z). It describes a viscosity perturbation which is linear in an infinite slab of
diameter 2d and is constant in the two-half spaces separated by the slab with a continuous
transition (figure 1), avoiding negative viscosity. Such viscosity gradients can be expected
to be found e.g. at the interface of two immiscible fluids of different viscosities.

For linear viscosity gradients, we will generally choose the absolute reference viscosity
η(0), which defines the ε1 viscosity perturbation as η(1)(r) := (η(r) − η(0))/ε, to be the
viscosity at some point close to the interacting particles. In contrast, η0 defines the
viscosity perturbation via (4.2), and εη0 characterises the maximum viscosity contrast
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y

η(1)

η0

η0

d

d
s2a

s

x

y

d

d

η

∇η

(a) (b)

Figure 1. Sketch of the prototypical interface-like viscosity gradient. (a) Schematic of the position-dependent
viscosity. (b) Sketch of the linear fluid viscosity gradient. Darker blue denotes regions of higher viscosity,
and brighter blue denotes areas of lower viscosity. Particles can be placed close to the symmetry plane of
the gradient, as shown in green and discussed in § 4.1, or can be placed asymmetrically, shown in yellow and
discussed in § 4.2. Enlarged sections are used to illustrate the parameters a and s.

between the actual viscosity profile η(r) and the background viscosity. While we can
assume η(0) = η0 for the case of both particles being placed close to the plane of symmetry
in the interface-like gradient (§ 4.1), the distinction between η(0) and η0 becomes relevant
when both particles are placed away from the plane of symmetry. The corrections arising
in this more general case due to the broken symmetry are investigated in § 4.2.

4.1. Symmetrically placed particles in an odd symmetric viscosity gradient
In this subsection, we assume that the viscosity perturbation is odd symmetric with
respect to the origin, i.e. η(1)(−r) = −η(1)(r), and both particles are close to the centre of
symmetry, which we assume to be the origin of the coordinate system, i.e. |ri| � d. For the
interface-like viscosity gradient, which by definition satisfies the symmetry assumption,
this is the case if the particles are positioned close to the plane of symmetry characterised
by y = 0. Thus in this case we can assume for the reference viscosity η(0) = η0. It can be
shown that an infinite linear viscosity gradient, although associated with negative viscosity
in parts of the fluid, yields mathematically the same result for the correction to the mobility
matrix (§ D.1 of Appendix D) up to order ε1κ1 as the odd symmetric gradient. This allows
us to compare our results with previous works considering infinite gradients (Datt &
Elfring 2019; Laumann & Zimmermann 2019).

We defer the explicit calculation of the Q(1) terms, which can be done with the help of
a computer algebra system (Wolfram Research Inc. 2020), to Appendix D. The results are
presented in (D14) and (D18). Nonetheless, we use these results to calculate the mobility
matrix μ

(1)PQ
bc by inserting (3.11) and (3.12) into (3.6), and obtain, after applying the

reflection method,

μ
(1)tt
bc = Q(1)tt

bc +
∑
e /= c

Q(1)ts
be : P(0)t(re − rc) +

∑
f /= b

P(0)t(rf − rb)
•· Q(1)st

fc + O(s−3),

μ
(1)tr
bc = Q(1)tr

bc +
∑
f /= b

P(0)t(rf − rb)
•· Q(1)sr

fc + O(s−3),

μ
(1)rr
bc = Q(1)rr

bc + O(s−3),

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.3)
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where b, c, e and f are independent particle indices. We use the sum notation in (4.3) to
cover both cases, b = c and b /= c. It can, however, be shown (§ D.4 of Appendix D) that
the equations in (4.3) reduce to

μ
(1)PQ
bc = Q(1)PQ

bc + O(s−2) (4.4)

for the linear viscosity gradient, i.e. all other summands in (4.3) scale at most as O(s−2)
and can be neglected.

Including all terms up to O(s−1), the ε1κ1 correction to the mobility matrix then is given
by

μ(1) = 1
6πa(η(0))2

×

⎛
⎜⎜⎜⎜⎜⎝

−η(1)(r1) I −η(1)

(
r1 + r2

2

)
T + W

1
4

(∇η(1)×) −η(1)

(
r1 + r2

2

)
V + Y

−η(1)

(
r1 + r2

2

)
T − W −η(1)(r2) I η(1)

(
r1 + r2

2

)
V + Y

1
4

(∇η(1)×)

− 1
4

(∇η(1)×) −η(1)

(
r1 + r2

2

)
V + Y T − 3

4a2 η(1)(r1) I 0

η(1)

(
r1 + r2

2

)
V + Y T − 1

4
(∇η(1)×) 0 − 3

4a2 η(1)(r2) I

⎞
⎟⎟⎟⎟⎟⎠,

(4.5)

with

W := 3a
8s

(∇η(1) ⊗ s − s ⊗ ∇η(1)) (4.6)

and

Y := 3a
8s3 s ⊗ (s × ∇η(1)). (4.7)

The corrections to the translational and rotational self-mobilities of both particles, i.e.
the diagonal elements of (4.5), are proportional to the negative local value of the
viscosity perturbation, associating higher viscosity with lower bead self-mobilities as
expected. In fact, the corrections to the self-mobilities correspond to the first-order
term in a Taylor expansion of the constant-viscosity expressions with the local viscosity
η(rb) = η(0) + ε η(1)(rb) inserted, around ε = 0.

In contrast to the case of constant viscosity, the viscosity gradient couples the
translational and rotational modes of a single particle, i.e. a particle experiences rotation
when it is centrally subject to a force. Similarly, translation will appear if the particle is
subject to a torque. Assuming a force F acting on a particle, the resulting angular velocity
is given from (4.5) as

Ω = − 1
24πa(η(0))2 ∇η × F . (4.8)

This can be understood as an effect of the imbalance of the friction forces (Datt & Elfring
2019). On the side of higher viscosity, the particle experiences higher drag, while on the
side of lower viscosity, the effect is inverse. When a force perpendicular to the viscosity
gradient acts on a particle, it will therefore induce a rotation as if the particle adhered more
strongly on the side of higher viscosity. Similarly, a particle subject to a torque moves
translationally when the torque has a component orthogonal to the viscosity gradient. Our
findings here reproduce exactly the results presented in Datt & Elfring (2019) for infinite
viscosity gradients.
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Hydrodynamic particle interactions in linear and radial viscosity

In a more intricate fashion, the viscosity gradient alters the interaction between two
different particles. From the μ

(1)tt
21 term in (4.5), we see that the ε1κ1 component of the

interaction between two particles is composed of two terms. The first is the η(1)((r1 +
r2)/2)T term, which can be understood as an expansion of the constant viscosity
interaction, similarly to the μ

(1)tt
bb and μ

(1)rr
bb terms. Here, the viscosity is evaluated at

the geometric centre between the particles. The second term in the ε1κ1 component of
the interaction is associated with W . It gives rise to novel effects, in particular because it
introduces a velocity component orthogonal to the force, when the force is parallel to the
connection of both particles. This component is non-zero as soon as the viscosity gradient
has a component orthogonal to the connection of both particles.

For the purposes of illustration, we derive the ε1κ1 correction to the flow field produced
by a particle subject to some force F 1 within the viscosity gradient from the μ

(1)tt
21

component in (4.5), by treating the second sphere as a test particle. We assume that the
particle producing the flow is positioned at the origin of the coordinate system, r1 = 0,
where we also assume the viscosity perturbation to vanish, i.e. η(1)(r1) = 0. The first-order
correction to the flow field is then given as the velocity of the second particle located at
r2 = r,

u(1)
F (r) = U (1)

2

= 1
6πa(η(0))2

3a
8|r|

[
−(r · ∇η(1))

(
I + r ⊗ r

|r|2
)

− (∇η(1) ⊗ r − r ⊗ ∇η(1))

]
· F 1,

(4.9)

where the first contribution comes from the −η(1)((r1 + r2)/2)T term, and the second
contribution comes from the W term (figure 2). The colour in figure 2 indicates the
ratio between the ε1κ1 correction flow and the velocity U(0) = F1/(6πη(0)a) at which
the particle would move in constant viscosity η(0) when subject to the force F 1. This
correction flow field is divergence-free and hence satisfies the incompressibility condition
as expected. It is in agreement with the generalised Oseen tensor that was derived in
Laumann & Zimmermann (2019).

When the force F 1 is applied parallel to the viscosity gradient, it causes an ε1κ1 flow
directed inwards along the direction of the viscosity gradient, and a flow directed outwards
in the direction orthogonal to the gradient (figure 2a). When the force is acting in the
opposite direction, i.e. down the viscosity gradient, also the correction flow field inverts
(figure 2b), as a direct consequence of the linearity of the problem. Qualitatively, this effect
can be understood as follows: in the region above the particle, the fluid has higher viscosity
and hence will react more weakly to the force than a constant-viscosity fluid. Therefore,
the correction flow field is oriented oppositely to the force here. In the region below the
particle with decreased viscosity, the fluid reacts more strongly and the correction flow is
therefore parallel to the force.

When the force is acting perpendicular to the viscosity gradient (figure 2c), the
correction flow again follows the direction of the force in the region of lower viscosity,
and opposes it in the region of higher viscosity. On the axis perpendicular to the viscosity
gradient, a correction flow perpendicular to the force applied is found, such that again a
pattern of inwards flow and outwards flow is observed. When the force on the particle at
the origin acts in some arbitrary direction (figure 2d), the resulting flow field will be a
linear superposition of the flow fields in figures 2(a,c).

943 A29-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

42
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.421


S. Ziegler and A.-S. Smith

–100

–50

0

50

100

y/a

 

F1

∇η

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

u(
1

) (
r)

/(
κ
U

(0
) )

∇η

F1

–100

–50

0

50

100

–100 –50 0 50 100

y/a

x/a

F1

∇η

–100 –50 0 50 100

x/a

∇η

F1

(a) (b)

(c) (d )

Figure 2. The ε1κ1 contribution to the far field flow produced by a sphere subject to a force within the viscosity
gradient for different directions of the force. The colour indicates the ratio between the ε1κ1 correction flow
and the velocity U(0) = F1/(6πη(0)a) at which the particle would move in constant viscosity η(0) when subject
to the force F 1.

As an important consequence of the correction to the mobility matrix (4.5), the far field
correction flow at position r depends only on the direction of r but is constant with respect
to the absolute value of the distance, i.e. it does not decay radially. This contrasts with the
constant-viscosity Oseen tensor, which decays with the first power of the inverse distance
from the particle. However, this correction flow field is valid only as long as the particle
separation is, by order of magnitude, smaller than d. Therefore, the correction flow, being
proportional to εκ , always compares small to the Stokeslet flow field, which scales as a/s.
Consequently, the ratio of the correction to the constant-viscosity term at distances of O(s)
scales as εκ/(a/s) = εs/d. Inserting values from the experimental system in Stehnach
et al. (2021), we obtain ε ≈ 0.5 for the strongest viscosity gradient considered, which is of
total size 2d = 1 mm. Assuming that the interacting objects (particles or Chlamydomonas
cells of size of ∼ 10μm) have a distance of 100 μm, we find that the first-order correction
amounts to the order of 10 % of the constant-viscosity term.

The μ
(1)rt
21 term in (4.5) corresponds to the angular velocity Ω

(1)
F of particle 2 when

particle 1 is subject to a force. With r1 = 0 and r2 = r, we find

Ω
(1)
F (r) = Ω

(1)
2 = 1

6πa(η(0))2
3a

8|r|3 [(r · ∇η(1))(r×) + (r × ∇η(1)) ⊗ r] · F 1, (4.10)

where the first summand results from η(1)((r1 + r2)/2)V and the second summand results
from Y T.
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Figure 3. Far field ε1κ1 correction flow induced by a particle subject to an externally applied torque along
the direction indicated by the blue arrow, with the direction of the viscosity gradient (a) orthogonal to it, and
(b) parallel to it. The colours of the arrows indicate the ratio of the ε1κ1 correction flow and Ω(0)a, where
Ω(0) = 1/(8πη(0)a3)|T 1| is the angular velocity of the particle in constant viscosity η(0) when subject to the
torque T 1.

From the μ
(1)tr
21 term in the mobility matrix (4.5), we extract the flow field that a particle

subject to a torque induces in the viscosity gradient. Assuming that, similarly to before,
the viscosity perturbation vanishes at the position of the first particle, the velocity of the
second particle acting as a test particle is then given as

u(1)
T (r) = U (1)

2 = 1
6πa(η(0))2

3a
8|r|3 [(∇η(1) · r)(r × T 1) + r((r × ∇η(1)) · T 1)]. (4.11)

If a torque acts orthogonal to the viscosity gradient (figure 3a), then a correction flow
predominantly in the direction of ∇η × T 1 is induced. This result holds strictly at z =
0, while for z /= 0 an additional component of the flow in the z-direction is found. This
finding is intuitive since the particle itself moves in the same direction as a result of the
correction to its self-mobility. For a torque parallel to the viscosity gradient (figure 3b),
an additional rotating flow is observed that has the direction of rotation prescribed by
T 1 in the region of lower viscosity (here z < 0) and opposite direction in the region of
increased viscosity (here z > 0). In the plane z = 0, the correction flow vanishes. Also,
this is intuitive, because the fluid opposes the rotation more strongly in the region of higher
viscosity, thus resulting in a correction flow with opposite direction of rotation, and the
opposite effect in the lower-viscosity region.

In both cases, the correction flow decays radially as r−1, i.e. by one order slower than
in the constant-viscosity case where the rotlet decays as r−2. Similarly to the flow field
induced by a particle subject to a force, the correction flow field resulting from the linear
viscosity gradient decays by one order slower than the constant-viscosity field does, and
the ratio of the correction flow to the flow at constant viscosity scales as εs/d. A linear
viscosity gradient thus induces long-range interactions between the particles, as long as
the particle separation is much shorter than the size of the gradient.

The results presented here for the hydrodynamic interaction of particles in a linear
viscosity gradient are also valid for more than two particles (Appendix F) as three-body
effects decay quicker than 1/s, thus particle interaction is pairwise at the level of
approximation chosen here.
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4.2. Asymmetric particle placement in the viscosity gradient
In the previous subsection, we assumed that the viscosity perturbation is odd symmetric
and both particles are located close to the centre of symmetry or the central plane of the
interface-like gradient when compared to the gradient size d. Since in a realistic setting the
particle positions in the viscosity gradient are arbitrary, here we consider the interacting
particles at varying positions within a finite-size gradient, and calculate the effect of the
viscosity gradient compared to the interaction in constant viscosity with the local viscosity
as reference. But we require that first, the distance between both particles is still smaller
than the gradient size, s � d, and second, the distance of each particle to the boundary of
the linear gradient in any spatial direction is of the same order of magnitude as d, i.e. we
assume that both particles do not come close to the edge of the linear gradient at length
scales of d.

Considering the scaling properties of the integrand in (3.13), it can be shown that only
the term Q(1)tt

bc = μ
(1)tt
bc + O(s−2) is affected at order ε1κ1 if the particles are placed

asymmetrically within the gradient (yellow particles in figure 1). The other Q(1) terms
involving rotation remain unchanged (see § D.1 of Appendix D for details). Since the
integral (3.13) is linear in the viscosity perturbation, the correction is now given by

Q(1)tt
asym = − 2

(6πaη(0))2

∫
V

[η(1)(r) − η̃(1)(r)]
27a2

8|r − r0|6 (r − r0) ⊗ (r − r0) dV. (4.12)

Here, r0 is a reference point close to the positions of both particles, i.e. |rb − r0| � d
for b = 1, 2. η̃(1) = H (1) · (r − r0) denotes the linear viscosity gradient extended to
infinity, and η(0) = η(r0) is the corresponding reference viscosity, such that the first-order
viscosity perturbation vanishes at r0. As a consistency check, it can be verified easily
that (4.12) vanishes due to symmetry if η(1)(r) is odd symmetric about r0. We point out
that this correction applies to both the translational self-mobilities (μ(1)tt

bb ) as well as the
translational interaction terms in the mobility matrix (μ(1)tt

bc with b /= c). While here we
present the correction for particles placed asymmetrically in the interface-like gradient,
a similar correction arises if symmetry is broken by the shape of linear region of the
viscosity gradient.

The full first-order mobility matrix in the asymmetric case is then given by

μ
(1)
tot = μ(1) + μ(1)

asym = μ(1) +

⎛
⎜⎜⎜⎝

Q(1)tt
asym Q(1)tt

asym 0 0

Q(1)tt
asym Q(1)tt

asym 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ , (4.13)

where μ(1) is the result from (4.5). The correction due to asymmetry yields an additional
velocity term for both particles 1 and 2, if the sum of the forces on both particles does not
vanish:

Uasym
1 = Uasym

2 = Q(1)tt
asym · (F 1 + F 2). (4.14)

Notably, it is the sum of both forces that induces the additional velocity, such that a
force-free particle 1 experiences the same additional velocity from the asymmetry as
particle 2, if particle 2 is subject to a force.

To illustrate this effect, we consider the particles to be located near a point with y0 = y′
0d

within the interface-like viscosity gradient, where y′
0 is independent of d, and η(0) is the
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Figure 4. Additional velocity U = Uasym
1 due to asymmetric particle placement in dependence on the position

of both particles in the interface-like viscosity gradient. Since the particles have relative distance s � d, they
can be considered as located at the same position at scales of d. (a) The correction from asymmetry for a
force F = F 1 + F 2 applied along the y-axis. (b) The correction for a force applied along the x-axis. The colour
indicates the ratio between the ε1κ1 correction flow and the velocity U(0) = F/(6πη(0)a) at which a particle
would move in constant viscosity η(0) when subject to the force F .

reference viscosity at y0. The correction term Q(1)tt
asym in dependence of y0 is then calculated

in § D.5 of Appendix D

Q(1)tt
asym = 1

6πa(η(0))2
9a|∇η(1)|

16
arctanh( y0/d) (I + ey ⊗ ey). (4.15)

The dependence of this correction term on the relative position in the viscosity gradient
is illustrated in figure 4, with the arrows indicating the direction and the colour indicating
the strength of Uasym

1 = Uasym
2 .

In the half-slab with higher viscosity (y0 > 0 in figure 4), Uasym
1 is parallel to the force,

while in the other half of the slab it is directed oppositely to the force. Consistently with the
results for odd symmetric gradients, Uasym

1 vanishes in the central plane of the gradient.
Intuitively, this result can be understood as follows: particles placed in the half-slab of
higher viscosity have smaller distance to the edge of the linear gradient at higher viscosity
than to the low-viscosity edge. Then, relative to the particle position, the fraction of the
linear gradient with higher viscosity is smaller than the fraction with lower viscosity.
In comparison to an odd symmetric gradient, where those two fractions are the same, a
correction along the force is expected and observed, since the odd symmetric gradient
overestimates the viscosity in parts of the fluid. This is also clear from (4.12): for y0 > 0,
the actual viscosity is smaller than that associated with an odd symmetric viscosity profile
with respect to the particles’ position, thus the term in square brackets is negative for parts
of the fluid and zero otherwise. The remaining integrand is in general positive, thus the
overall result of (4.12) is also positive, corresponding qualitatively to a correction along
the direction of the applied force. For particles placed in the lower viscosity half-slab, the
effect inverses.

For |y0| � d/2, we have arctanh( y0/d) ≈ y0/d = O(1), and Q(1)tt
asym is of the same order

of magnitude as the first-order mobility term associated with hydrodynamic interaction
between the particles in (4.5). The correction due to asymmetry therefore alters the ε1κ1

correction flow produced by a particle significantly as soon as the particles are placed away
from the plane of symmetry of the interface-like gradient by a non-negligible fraction of
d. In figure 5, the correction flow field produced by a particle located at y0 = 0.5d with
respect to the constant-viscosity flow field at the local viscosity as a reference is displayed.
Comparison to the correction flow in a symmetric viscosity gradient (figure 2) shows that
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Figure 5. The ε1κ1 correction far field flow produced by a spherical particle subject to a force and placed
asymmetrically in the interface-like viscosity gradient at y0 = 0.5d, where the local viscosity at the particle is
taken as reference. In (a), the force acts along the y-direction; in (b), it acts along the x-direction. The colour
indicates the ratio between the ε1κ1 correction flow and the velocity U(0) = F1/(6πη(0)a) at which the particle
would move in constant viscosity η(0) when subject to the force F 1.

an asymmetry has a significant impact on the particle interactions, which is of the same
order of magnitude as the correction in the symmetric case. As a general rule, we find
that the effect from asymmetry leads to a stronger correction flow field towards the central
plane of the gradient, and to a weaker correction field towards the edge of the gradient.

Interestingly, the leading-order correction to the mobility matrix is affected even if the
symmetry of the viscosity gradient is broken at distances of O(d) from the particles,
while the viscosity profile at distances of O(s) is linear and thus odd symmetric near the
particles. This results ultimately from the scaling properties of (4.12) with respect to the
gradient size d: rescaling the coordinate system by d, the viscosity profile in terms of the
rescaled position is independent of d, while the remaining integrand factors out 1/d4 and
the volume element scales as d3. Consequently, the overall integral scales as 1/d ∼ ∇η(1)

(see § D.1 of Appendix D for details). As a result, the hydrodynamics in linear viscosity
gradients includes highly non-local effects proportional to the magnitude of the viscosity
gradient.

5. Interaction of hot particles

As a second application of the presented method, we calculate the interaction of spherical
particles with a homogeneous surface temperature that is different from the temperature
of the surrounding fluid. In contrast to the previous case of a linear viscosity gradient
assumed to be unperturbed by the presence of particles, the viscosity profile here emerges
as direct consequence of the particles’ presence. Hence we first calculate the viscosity
profile, and obtain from this the correction to the mobility matrix in a second step.

The dependence of fluid viscosity on temperature can often be approximated using
Andrade’s equation, η = A exp(b/T) (Andrade 1930), where A and b are fluid-specific
parameters. However, for small temperature contrasts, Taylor expanding Andrade’s
equation or one of its generalisations (Gutmann & Simmons 1952) yields a linear relation
between temperature and fluid viscosity, which we will use in the following. As a result, a
single hot particle induces a viscosity perturbation decaying with inverse distance from the
particle centre (figure 6), which in turn alters the self-mobility of the particle as shown in
Oppenheimer et al. (2016). However, to the best of our knowledge, no results are available
for the interaction of two hot particles, which we determine in the following.
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Cold particle
�T1 < 0

�T2 > 0

s

x

y
Hot particle

η

Figure 6. Exemplary sketch of the viscosity perturbation in the presence of a hot particle and a cold particle.
The fluid viscosity is smaller in the neighbourhood of the hot particle, and higher in the neighbourhood of the
cold particle.

For a two-particle system with prescribed homogeneous surface temperatures, we first
assume that a steady state is established by thermal conduction. Consequently, our model
requires that the steady state establishes on faster time scales than the particle temperature
changes. In practice, this is the case for beads with large heat capacities. The same would
occur for objects subject to constant heat radiation if the susceptibility of the particles is
different from that of the surrounding fluid. Second, our approach requires a small Péclet
number (Pe), which compares advective to thermal heat transport:

Pe = Ua
κ

= Re Pr, (5.1)

where U is the typical velocity in the fluid and κ is the thermal diffusivity; Re and Pr
denote the Reynolds and Prandtl numbers, and the latter depends only on properties of the
fluid (Leal 2007, p. 596).

The conduction-induced temperature field around a particle with homogeneous surface
temperature in a quiescent fluid, which decays as r−1, typically breaks down at a length
scale of O(a/Pe) (Leal 2007, p. 604). For the subsequent calculation, we assume that
s � a/Pe, i.e. the distance between the two interacting particles is smaller than the length
scale at which the temperature profile in the fluid becomes advection-dominated. Similarly
to the single particle mobilities (Oppenheimer et al. 2016), the corresponding correction
due to finite Pe then scales asymptotically as O(Pe2) and can be neglected in the limit of
small Péclet numbers. Indeed, for a micron-sized particle, for example, moving at a speed
of microns per second in water at room temperature, the Reynolds number is O(10−6), and
with Pr ∼ O(10) (Dincer & Zamfirescu 2015, Appendix B), the Péclet number is O(10−5),
such that the above assumptions are indeed valid e.g. for colloidal particles (Lu & Weitz
2013) separated by up to tens of radii.

Under these assumptions, the temperature field in the fluid is described by the heat
equation with prescribed homogeneous temperatures at the particle surfaces (T1 and T2
respectively) and at infinity (T0) as boundary conditions:

∇2T(r) = 0, T(r) = Tb for r ∈ Sb, T(r) → T0 for |r| → ∞, (5.2a–c)

where Sb is the surface of particle b. For a system consisting of two or more particles,
the temperature field can be approximated by a reflection scheme, where monopolar,
dipolar, etc. single-particle fields are superposed to match the boundary conditions up
to successively increasing order in the inverse particle separation, similarly to the fluid
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velocity field. We obtain for the temperature field including all terms up to O(s−2),

T(r) = T0 + Cm
1

a
|r − r1| + a2Cd

1 · (r − r1)

|r − r1|3 + Cm
2

a
|r − r2| + a2Cd

2 · (r − r2)

|r − r2|3 + O(s−3),

(5.3)

with

Cm
1 = ΔT1

(
1 + a2

s2

)
− ΔT2

a
s
, Cd

1 = −ΔT2
a2s
s3 , (5.4a,b)

Cm
2 = ΔT2

(
1 + a2

s2

)
− ΔT1

a
s
, Cd

2 = ΔT1
a2s
s3 . (5.5a,b)

Approximating the dependence of the viscosity on the temperature as linear, we find

η ≈ η(0) + ∂η

∂T

∣∣∣∣
T0

(T − T0) =: η(0) + α(T − T0), (5.6)

where α is the proportionality coefficient. For particles with a temperature contrast
relative to the fluid, it is natural to assume that η(0) is the viscosity at temperature T0.
Assuming that ΔT1 and ΔT2 are typically of the order of some ΔT , we define the
perturbation parameter ε := −α ΔT/η(0) as the relative change in viscosity associated
with ΔT compared to η(0) (Oppenheimer et al. 2016). Typically, α is negative, associating
hot particles (T > T0) with a decrease in viscosity, and cold particles (T < T0) with an
increase, thus ε is positive (Gutmann & Simmons 1952).

Using (5.6) and the definition of ε, the ε1 viscosity perturbation is given as

η(1) = −η(0) T(r) − T0

ΔT
. (5.7)

By inserting the expression for the temperature field (5.3), we obtain the explicit expansion
of the viscosity field:

η(1)(r) = η
(1)m
1

a
|r − r1| + a2η

(1)d
1 · (r − r1)

|r − r1|3 + η
(1)m
2

a
|r − r2|

+ a2η
(1)d
2 · (r − r2)

|r − r2|3 + O(s−3), (5.8)

with η
(1)m
b = −(η(0)Cm

b )/ΔT and η
(1)d
b = −(η(0)Cd

b)/ΔT , b ∈ {1, 2}.
Using (5.8), we first calculate the respective Q(1) terms (Appendix E) and from this

compute the ε1 correction to the mobility matrix. One can show that, up to O(s−2), the
corrections to the mobility matrix are given by the corresponding Q(1) terms (§ E.3 of
Appendix E):

μ
(1)PQ
bc = Q(1)PQ

bc + O(s−3). (5.9)
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We then find the ε1 correction to the mobility matrix given by

μ
(1)tt
bb = 1

6πaη(0)

[((
5
12

− 7a2

12s2

)
ΔTb

ΔT
+
(

7a
12s

− 9a2

8s2

)
ΔTc

ΔT

)
I + 9a2

8
ΔTc

ΔT
s ⊗ s

s4

]

+ O(s−3),

μ
(1)rr
bb = 1

6πaη(0)

[(
9

16a2 − 3
16s2

)
ΔTb

ΔT
+ 3

16as
ΔTc

ΔT

]
I + O(s−3),

μ
(1)tr
11 = 1

6πaη(0)

(
−ΔT2

ΔT
a(s×)

8s3

)
+ O(s−3) = −μ

(1)rt
11 ,

μ
(1)tr
22 = 1

6πaη(0)

(
ΔT1

ΔT
a(s×)

8s3

)
+ O(s−3) = −μ

(1)rt
22 ,

μ
(1)tt
bc = 1

6πaη(0)

(
9a2

8
ΔTb + ΔTc

ΔT
s ⊗ s

s4

)
+ O(s−3), b /= c,

μ
(1)tr
bc = μ

(1)rt
bc = μ

(1)rr
bc = O(s−3), b /= c.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.10)

The corrections to the translational and rotational self-mobilities of, say, particle 1 depend
at order s0 only on the particle’s own temperature, which alters the self-mobility similarly
as in the case when there is only one particle in the fluid (Oppenheimer et al. 2016). If
the particle is hot, i.e. T1 > T0, then the particle’s mobility increases, and it decreases for
T1 < T0.

In contrast to the case of a single particle, we find additional terms scaling as s−1 in
the first particle’s translational and rotational self-mobilities, which are proportional to the
temperature of the second particle at the distance s. This is because the temperature of
particle 2 induces a radially decaying temperature and viscosity field around it, which
can be approximated to leading order as constant near particle 1. In order to satisfy
the boundary condition for the temperature field at the surface of particle 1, a reflected
monopolar temperature field around particle 1 is induced. However, the reflected flow
field decays as r−1, where r is the distance from particle 1. Therefore, the effect due
to the incident field is stronger than the effect of the reflected field, and the mobility
of particle 1 indeed increases for a hot particle 2, and decreases if particle 2 has a
lower temperature than the fluid at infinity. Consequently, the ratio of magnitudes of the
correction to self-mobility due to the presence of the second particle and the single-particle
self-mobility of a neutral particle scales as εa/s.

While for a single particle with homogeneous surface temperature translation and
rotation do not couple (Oppenheimer et al. 2016), such coupling is observed at O(s−2)
in the presence of a second particle. This effect on, say, particle 1 can be understood as the
result of the gradient of the monopolar temperature field induced by particle 2. However,
also here a dipolar temperature field reflected from particle 1 arises to satisfy the boundary
conditions at the surface of particle 1, and weakens the effect of the incident temperature
gradient.

Considering the components associated with hydrodynamic interactions between
particles in (5.10), only the translational term is non-vanishing at our level of
approximation, and it scales as 1/s2. Interestingly, the translational interaction between
two particles increases proportional to the sum ΔT1 + ΔT2, i.e. it is irrelevant
whether the particle causing or experiencing the interaction has an altered temperature.

943 A29-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

42
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.421


S. Ziegler and A.-S. Smith

–100

–50

 0

 50

 100

–50  0  50  100

lo
g

1
0
[u

(1
) (
r)

/U
(0

) (
∆
T/

∆
T 1

)]

x/a

y/a

–6

–5

–4

–3

–2

–1

F1

Figure 7. The ε1 far field correction flow field produced by a hot particle with a force applied along
the x-direction. The colour indicates the ratio of the first-order correction flow and the velocity U(0) =
F1/(6πη(0)a), at which the particle would move if it had the same temperature as the surrounding fluid,
T1 = T0, and was subject to the force F 1.

This observation is in agreement with the fact that the mobility matrix is symmetric as
a result of the Lorentz reciprocal theorem (Jeffrey & Onishi 1984), a result that holds
independently of whether or not the viscosity is constant. Moreover, if one particle is
hotter and the other is colder than the fluid by the same amount, then the effects cancel
and the interaction between the particles is, up to order O(s−2), similar to the interaction
of two neutral particles.

Considering the second particle as a neutral test particle, i.e. ΔT2 = 0, for the far field
correction flow produced by particle 1 located at r = 0 with increased temperature ΔT1 >

0 and subject to a force F 1, we find

u(1)(r) = U (1)
2 = 1

6πaη(0)

9a2ΔT1

8r4ΔT
r(r · F 1). (5.11)

This flow field decays with the second power of the distance from particle 1 and is depicted
in figure 7. Along the direction of the force applied, the correction flow is parallel to the
force, thus enhancing the constant viscosity Stokeslet flow. This is reasonable since with
increased temperature, the viscosity around the particle is decreased and the flow field
becomes stronger. However, on the axis perpendicular to the force, the correction flow
vanishes, concentrating the correction flow along the direction of the force applied. As a
consistency check, we find that the divergence of the flow field (5.11) vanishes, thus the
flow satisfies the incompressibility condition. In contrast to a linear viscosity gradient, this
correction flow field decays more strongly than the constant-viscosity Stokeslet by one
order. The ratio of the first-order correction in the mobility term for particle interaction
and the constant-viscosity term thus also scales as εa/s, and hence can be important in
application.

In comparison to the case of linear viscosity gradients (§ 4), three-body effects affect the
correction to the mobility matrix already at the level of approximation considered, namely
at O(s−2). For instance, a third particle 3 will in general induce a reflected temperature
and viscosity field in response to the temperature of particle 2. At the position of particle
1, this reflected field then scales as 1/s2, assuming that all inter-particle distances are of
O(s). Consequently, the self-mobility of particle 1 will be altered at O(s−2) by a proper
three-body effect. Even more importantly, the correction to the mobility term associated
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Hydrodynamic particle interactions in linear and radial viscosity

with interaction between two particles 1 and 2 will also be altered at O(s−2) by the
temperature of a nearby particle 3. This is because particle 3 heats or cools the fluid in
between particles 1 and 2 in a similar way as particles 1 and 2 do.

6. Conclusion

In this work, we have presented a framework to calculate the first-order correction to the
mobility matrix of spherical particles in viscosity gradients, and have illustrated this result
for a large linear viscosity gradient and for the viscosity perturbations due to the particle
temperature in the limit of low Péclet number.

For a linear viscosity gradient, we have shown that the leading-order correction to the
interaction is independent of the distance between the particles, a result that is valid as
long as the particle separation is small compared to the size of the viscosity gradient. The
result found is in agreement with the generalised Oseen tensor derived in Laumann &
Zimmermann (2019). The increase in the exponent associated with the radial decay results
ultimately from the viscosity being a linear field and therefore lifting the exponent by
1 in the corresponding integrals. Similarly, the flow field produced by a particle subject
to a torque, which scales with the second inverse power of the distance to the particle in
constant viscosity, experiences a correction due to the viscosity gradient that decays slower
by one order. In contrast to the case of constant viscosity, a viscosity gradient induces
hydrodynamic particle interactions with a component orthogonal to the connection line
even if the force is applied along the separation. The ratio of the first-order correction to
the interaction terms in the mobility matrix and the corresponding constant-viscosity terms
scales as εs/d for both translation and rotation. In experimental systems (Stehnach et al.
2021), where the assumptions d � s � a are satisfied, the first-order correction thus can
amount to the order of 10 % of the constant viscosity term, thus the corrections presented
will be important. The results for the mobility matrix presented here are valid not only for
two-particle systems but extend, at the level of approximation chosen, to many particles
since three-body and higher-order effects decay quicker than 1/s. Therefore, the results
presented here are also applicable to dilute suspensions of many interacting particles.

In addition, we have shown that if both particles are placed away from the centre of
symmetry of the gradient, or if the gradient is not odd symmetric, then translational
self-mobilities and interactions have to be corrected with respect to the symmetric case
by an additional term. This feature is important since in experimental systems, viscosity
gradients are of finite size and the particle position can be arbitrary. This correction has,
to the best of our knowledge, not been reported yet. It alters, in particular, the far field flow
produced by a particle subject to an external force (figure 5) and becomes relevant already
when the particles are placed away from the centre of symmetry by only a fraction of the
gradient size. For asymmetric particle placement in an interface-like viscosity gradient,
the resulting flow field is typically stronger towards the centre of symmetry and is weaker
towards the edge of the viscosity gradient.

For particles at temperatures different to that of the surrounding fluid, we calculated
the resulting temperature and viscosity fields in the fluid using a reflection method. We
assumed that the Péclet number is small such that at length scales of the particle separation,
conductive effects dominate over advective effects. In this case, the self-mobilities of
both particles are increased for hot and decreased for cold particles already at the zeroth
order in s. At this order, our results are in exact agreement with the findings presented
in Oppenheimer et al. (2016). In addition, however, we found that at the next higher
order in the inverse particle separation, the self-mobilities become higher or lower by
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the presence of a nearby particle with increased or decreased temperature relative to the
surrounding fluid, respectively. Essentially, the second particle heats up or cools down the
environment of the first particle, and alters its mobility. The ratio of this effect and the
constant-viscosity self-mobility scales as εa/s, and thus becomes important for strong
temperature differences between particle and fluid. Finally, while for a single particle
with a homogeneous surface temperature no coupling between translation and rotation
is observed (Oppenheimer et al. 2016), such a term arises due to the presence of a second
hot or cold particle, and scales with the second inverse power of the particle separation.

The correction to the hydrodynamic interaction between two different hot or cold
particles scales to leading order with the second inverse power of the particle separation
and is proportional to the sum of the temperature differences of both particles with respect
to the fluid. Thus whether the particle producing the flow or the particle sensing the flow
has an increased or decreased temperature has no effect on the interaction between the
two. This is a consequence of the symmetry of the mobility matrix. In comparison to
the constant-viscosity Stokeslet, this correction term decays quicker by one order in the
particle separation, which coincides with the fact that the viscosity perturbation scales to
leading order as s−1. Consequently, the ratio of the first-order correction to the mobility
term associated with hydrodynamic interaction and the respective constant-viscosity term
also scales as εa/s.

In typical situations where the viscosity perturbation results from the dependence of
the viscosity on another quantity, such as e.g. temperature or solvent concentration,
the presence of the particles can affect an ambient viscosity gradient in dependence
of the boundary conditions imposed at the particle surface. In particular, it has been
demonstrated recently that the presence of a particle locally disturbs a linear viscosity
gradient in dependence of the particle’s heat conductivity and the boundary condition
applied (Shaik & Elfring 2021). The framework presented here can be applied to such more
complex situations by combining the tools presented for the specific cases of externally
prescribed linear gradients and hot particles. Namely, after calculating the viscosity profile
in the fluid emerging from e.g. the fluid temperature field, including the disturbances by the
particles, the calculation of the correction to the mobility matrix by the formulas presented
will involve both linear and radial viscosity fields. While the variety of such systems is
beyond the scope of this paper, we believe that the methodology presented will prove
useful for other researchers as it can be applied to the specific system of interest.

The results presented here may shed new light on many particulate systems featuring
non-constant viscosity. A notable example is the behaviour of microswimmers, which
are often modelled as machines composed of spherical particles (Najafi & Golestanian
2004; Friedrich & Jülicher 2012; Reigh, Winkler & Gompper 2012; Elgeti & Gompper
2013), in such an environment reigned by viscosity gradients. A main finding in Liebchen
et al. (2018) was that uniaxial swimmers, i.e. particle-based swimmers with all beads on
a common axis, do not adjust their swimming direction due to a viscosity gradient when
the ε1 correction to the particle interaction is neglected. Essentially, this is because all
forces act along the common axis such that this axis must be preserved in time. However,
our results show that in such an arrangement of the particles, the first-order correction
to the hydrodynamic particle interaction can induce particle motion orthogonal to the
common axis when the axis itself is not aligned with the gradient (figure 2c). Hence the
correction terms to particle interaction found here might allow for a rotation due to the
viscosity gradient also for uniaxial swimmers (Najafi & Golestanian 2004; Dombrowski
& Klotsa 2020; Hubert et al. 2021). Such a result would coincide with the recently reported
viscotaxis for uniaxial squirmers (Datt & Elfring 2019; Shaik & Elfring 2021).
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Also, the viscotactic behaviour of Chlamydomonas has recently been characterised
experimentally (Stehnach et al. 2021). Since modelling Chlamydomonas cells using a
triangular swimmer consisting of three beads (Rizvi, Farutin & Misbah 2018; Ziegler et al.
2019) has already been established in the literature (Friedrich & Jülicher 2012; Bennett &
Golestanian 2013), our results can be applied directly for a better understanding of their
behaviour in a viscosity gradient. Moreover, a more precise result for the correction to the
mobility matrix in terms of the inverse particle separation can also be used to understand
cilia and flagella within viscosity gradients, which also can be approximated by a set of
spherical particles (Reigh et al. 2012; Elgeti & Gompper 2013). We plan to address the
impact of our results on the viscotaxis of microswimmers in a future publication.

The results and methods presented here might also shed new light on the collective
behaviour of Janus particles driven by laser light (Buttinoni et al. 2012; Bäuerle et al.
2018), where the incident radiation leads to an increase in particle temperature and thus
also to viscosity gradients around the particles. Besides the context of microswimmers,
the results presented could also prove useful in sedimentation and centrifugation of
nanoparticles, which often feature density and viscosity gradients (Qiu & Mao 2011;
Plüisch et al. 2019), or in diffusion of particles or polymers through a pore featuring a
viscosity gradient (De Haan & Slater 2013). This holds in particular for systems with
higher particle concentration, where interaction effects become relevant. Furthermore,
viscosity gradients are abundant in biological environments with low Reynolds number
(Swidsinski et al. 2007; Wilking et al. 2011), and the results presented here may lead to a
better understanding of the interaction of active components therein.
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Appendix A. Derivation of the Lorentz reciprocal theorem

Finding the mobility and resistance matrix of an ensemble of particles in the general
case of non-constant viscosity corresponds to solving the boundary-value problem given
by the Stokes equations (2.2a,b) for the fluid velocity with the boundary conditions
(Oppenheimer et al. 2016)

u(r) = Ub + Ωb × (r − rb)∀ r ∈ Sb, u(r) → 0, p(r) → 0 for r → ∞, (A1)

at the surfaces of the particles Sb and at infinity, respectively. With prescribed (angular)
particle velocities Ub and Ωb, the hydrodynamic forces and torques acting on the particles
are obtained by Oppenheimer et al. (2016) as

F hydro
b =

∫
Sb

n · σ dS, T hydro
b =

∫
Sb

(r − rb) × (n · σ ) dS. (A2a,b)

They then yield the resistance matrix by means of (2.5). Here, dS denotes the infinitesimal
area element, and n the normal vector directed into the fluid. With these expressions at
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hand, we exploit the Lorentz reciprocal theorem to derive the first-order correction in ε to
the mobility matrix.

Following Oppenheimer et al. (2016), we calculate

0 = (∇ · σ ) · u(0) = ∇ · (σ · u(0)) − σ : ∇u(0)

= ∇ · (σ · u(0)) − (−pI + 2η(r) E) : ∇u(0) = ∇ · (σ · u(0)) − 2η(r) E : E(0), (A3)

where in the last step we have used that I : ∇u(0) = 0 due to incompressibility, and
E : ∇u(0) = E : E(0) because E is a symmetric tensor. By ’:’ we denote the contraction
of the last two indices of the first tensor with the first two indices of the second tensor, i.e.
E : E(0) := EklE

(0)
kl .

With the same argument we find that

0 = (∇ · σ (0)) · u = ∇ · (σ (0) · u) − 2η(0)E : E(0). (A4)

By taking the difference of (A3) and (A4), we obtain

∇ · (σ · u(0)) − ∇ · (σ (0) · u) = 2[η(r) − η(0)]E : E(0). (A5)

Under the assumption η(r) = η(0), the right-hand side vanishes and we arrive at the
Lorentz reciprocal theorem in its usual form.

Otherwise, we proceed by integrating (A5) over the whole fluid domain V . The left-hand
side can then be rewritten using the divergence theorem as an integral over the bounding
surface of the fluid. We assume fluid velocity to decay to zero at infinitely large distances
from the particles. This is justified as we consider intentionally only finite-size viscosity
gradients such that the viscosity is positive and bounded everywhere in the fluid. The
dissipation rate in the fluid is 2η(r) E : E (Kim & Karilla 2005), thus to avoid infinite
energy dissipation, E has to decay to zero at infinity. Therefore, the fluid at infinity may
only translate and rotate as a rigid body, which, however, we exclude by assuming a resting
lab frame for the fluid. Assuming that the velocity field can be expanded as a power
series in 1/r, its derivative thus has to decay quicker than 1/r towards infinity. By means
of (2.2a,b) and (2.3), this also holds for the decay of the pressure field. With bounded
viscosity, the integral over the bounding surface at infinity can be neglected due to the
scaling in r, and we only need to integrate over the particle surfaces:

−
∫

S1∪S2

n · σ · u(0) dS +
∫

S1∪S2

n · σ (0) · u dS =
∫

V
2[η(r) − η(0)]E : E(0) dV. (A6)

Using (2.6), (A1) and (A2a,b), we obtain (3.1).

Appendix B. Details on the contraction of the normalised strain rates

The strain rates E and E(0) are second-rank tensors, hence the normalised strain rates B
and B(0) are third-rank tensors with, using explicit index notation,

Ekl =
∑
P,b,i

(BP
b )kli (FP

b )i, (B1)

943 A29-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

42
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.421


Hydrodynamic particle interactions in linear and radial viscosity

and similarly for the strain rate in the constant-viscosity fluid E(0). Equation (3.3) then
reads explicitly as∑

P,Q,b,c

[(F (0)Q
c )j (μ

QP
cb )ji (FP

b )i − (FP
b )i (μ

(0)PQ
bc )ij (F (0)Q

c )j]

= −2
∫

V
[η(r) − η(0)]

∑
P,Q,b,c

(BP
b )kli (FP

b )i (B
(0)Q
c )klj (F (0)Q

c )j dV, (B2)

where the summation indices are already renamed suitably and we sum over repeated
spatial indices i, j, k, l. Using the linearity on both sides in F and F (0), we obtain

(μ
QP
cb )ji = (μ

PQ
bc )ij = (μ

(0)PQ
bc )ij − 2

∫
V

[η(r) − η(0)](BP
b )kli (B

(0)Q
c )klj dV, (B3)

where we also made use of the symmetry of the mobility matrix in the first step
(Oppenheimer et al. 2016). This is equivalent to (3.4). The symmetry of the mobility
matrix is a direct result from the Lorentz reciprocal theorem and is independent of the
viscosity field (Jeffrey & Onishi 1984).

Appendix C. Expansion of the strain rates using the reflection method

For an introduction to the application of reflection methods in low-Reynolds-number
hydrodynamics, we refer to Kim & Karilla (2005, Chapter 8). The extent to which the
reflection scheme has to be developed, i.e. the number of reflections necessary, depends
on the desired accuracy of the result for the mobility matrix in terms of the inverse particle
distance. We will develop the reflection scheme up to second order, i.e. such that the flow
fields are correctly described up to order O(s−2). From the subsequent application to first
a large linear viscosity gradient and second viscosity perturbations due to hot particles, it
will be apparent that this level of approximation suffices to calculate the correction to the
mobility matrix up to orders O(s−1) and O(s−2), respectively.

We first consider the expansion of B(0)t
b , corresponding to particle b being subject to

a force while the other particle c is force- and torque-free. At the zeroth order of the
reflection scheme, particle b induces a fluid flow given by T trans(r − rb) · F b/(6πη(0)a).
The normalised strain rate corresponding to a such flow field is given explicitly by

(P(0)t)kli(r) := 1
6πη(0)a

1
2

[∂k(T
trans)li(r) + ∂l(T

trans)ki(r)]

= 1
6πη(0)a

[
3ari

4r3

(
δkl − 3

rkrl

r2

)
+ 3a3

4r5

[
ri

(
−δkl + 5

rkrl

r2

)
− rkδli − rlδki

]]
.

(C1)

At the position of the other particle c, this flow field is decomposed conveniently in a
Taylor expansion, where higher derivatives of the flow field scale with higher powers of
1/s. Since particle c is force-free, the constant zeroth-order term in the Taylor expansion,
which scales as s−1, induces advection of particle c but not a disturbance flow field.
Similarly, the anti-symmetric component of the gradient of the flow field induces rotation
of the torque-free particle c but a zero disturbance flow. The only disturbance flow field
up to O(s−2) is due to the strain rate associated with the gradient of the flow field (Kim &
Karilla 2005, p. 196).
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For particle c immersed in a flow with local strain rate E local, the disturbance flow caused
by particle c is given as (Dhont 1996, p. 278)

udist(r) = −5
2

[( a
R

)3 −
( a

R

)5
]

(R̂ · E local · R̂)R −
( a

R

)5
E local · R =: Γ (R) : E local,

(C2)

where R := r − rc, R = |R|, R̂ is the unit vector along R, and Γ is a rank 3 tensor. The
strain rate corresponding to this disturbance flow field, Edist(r), can then be expressed with
respect to the original local strain rate E local as

Edist(r) = P(0)s(r − rc) : E local, (C3)

with

(P(0)s)mijk(R) = 1
2

[
∂mΓijk(R) + ∂iΓmjk(R)

]
= 5

2
RiRjRkRm

(
5

a3

R7 − 7
a5

R9

)
− 5

2
δimRjRk

(
a3

R5 − a5

R7

)
− 5

4
(RiRkδmj

+ RmRkδij + RiRjδmk + RmRjδik)

(
a3

R5 − 2
a5

R7

)
− a5

2R5 (δijδmk + δmjδik).

(C4)

In principle, higher-order derivatives of the zeroth-order flow within the reflection
scheme also give rise to disturbance flows. However, the second- and higher-order
derivatives of this flow decay at least as 1/s3 or quicker. The reflected disturbance flows
carry this factor as a prefactor and will also decay with at least the second inverse power
of the distance to particle c, since particle c is force-free. Consequently, those terms can
be neglected at our level of approximation.

From this, the normalised strain rate in the two-particle system can be expanded as

B(0)t
b ≡ B(0)t

b (r) = P(0)t(r − rb) + P(0)s(r − rc) : P(0)t(rc − rb) + O(s−3), (C5)

with b /= c, since P(0)t(rc − rb) is indeed the local normalised strain rate at the position of
particle c.

Second, we follow the same procedure for B(0)r
b , i.e. the normalised strain rate

corresponding to the fluid flow when particle b is subject to a torque while particle c
is force- and torque-free. Particle b induces a rotlet that corresponds to the normalised
strain rate

(P(0)r)kli(r) = 1
8πη(0)a3

1
2

[∂k(T
rot)li(r) + ∂l(T

rot)ki(r)]

= − 1
8πη(0)a3

3a3

2r5 (rkrmεmli + rlrmεmki). (C6)

However, the rotlet decays already with the second inverse power of the distance from the
particle, and again the constant term in a Taylor expansion of this flow at the position of
particle c does not induce a disturbance flow. We conclude that

B(0)r
b ≡ B(0)r

b (r) = P(0)r(r − rb) + O(s−3). (C7)
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Hydrodynamic particle interactions in linear and radial viscosity

Appendix D. Calculation of the Q terms for the linear viscosity gradient

Generalising from the interface-like viscosity gradient, the following calculation is not
restricted to this particular gradient, but applies to all viscosity perturbations of the form

η(1)(r) := η′(1)
( r

d

)
=: η′(1)(r′), (D1)

with the assumptions that the viscosity perturbation is linear around the origin (η′(1)(r′) =
H ′(1) · r′ for |r′| < C1, with C1 a constant of O(1)), and bounded by C2η0, i.e. |η′(1)(r)| ≤
C2η0 for all r′, with C2 a constant of O(1), and η′(1)(r′) is continuous. For the interface-like
viscosity gradient with reference viscosity η(0) = η0, we find

η′(1)(r′) :=

⎧⎪⎨
⎪⎩

−η0, y′ < −1,

(0, η0, 0) · r′, −1 ≤ y′ ≤ 1,

η0, y′ > 1.

(D2)

The constants C1 and C2 are introduced to allow also asymmetrical placement of the
interacting particles in e.g. the interface-like gradient of total diameter 2d. In this case,
the distance to the boundary of the linear gradient is smaller than d, but still O(d) by
assumption (§ 4.2), and the following calculation is valid.

D.1. Extension of the viscosity gradient
The calculation of the Q(1) terms (3.13) involves integration over the whole fluid domain
V , which in our model is R

3 with the volumes of both spheres, V1 and V2, excluded:

Q(1)PQ
bc := −2

∫
V

η(1)(r) P(0)P(r − rb)
•· P(0)Q(r − rc) dV. (D3)

In this subsection, we will show that under the assumptions made for the viscosity
perturbation, the Q(1) terms up to O(ε1κ1) can be calculated by

Q̃(1)PQ
bc := −2

∫
V

η̃(1)(r) P(0)P(r − rb)
•· P(0)Q(r − rc) dV, (D4)

with the extended viscosity perturbation η̃(1)(r) = (η̃(r) − η(0))/ε := (η0 + εH (1) ·
r − η(0))/ε for all r ∈ V . This holds as long as the viscosity perturbation is odd symmetric
and both particles have distances from the centre of symmetry that are smaller than d
by orders of magnitude. If one of those two assumptions does not hold, then one has to
include a correction term to (D4) as shown below.

From the explicit expressions (3.9), (3.10) and (C4), we know that P(0)t(r) decays to
leading order as r−2, whereas P(0)r(r) and P(0)s(r) decay to leading order as r−3. We
expand all normalised strain rates in (D3) and (D4) in a Taylor series around a position r0
that satisfies |rb − r0|, |rc − r0| � d, i.e. it is close to both particles compared to d. We
obtain, up to first order in the Taylor expansion,

P(0)P(r − rb) = P(0)P(r − r0) − (rb − r0) · ∇P(0)P|r0 + O(∇∇P(0)P)

= P(0)P(r − r0) +
{

O(|r − r0|−3), P = t,
O(|r − r0|−4), P = r, s.

(D5)

Thus the contraction P(0)P(r − rb)
•· P(0)Q(r − rc) will scale to leading order as |r − r0|−4

only when P = Q = t, and to leading order as |r − r0|−5 or lower for all other possible
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cases of P, Q. Moreover, for P = Q = t, the |r − r0|−4 term is given explicitly as

P(0)t(r − rb)
•· P(0)t(r − rc) = P(0)t(r − r0)

•· P(0)t(r − r0) + O(|r − r0|−5)

= 1
(6πaη(0))2

27a2

8|r − r0|4
(r − r0) ⊗ (r − r0)

|r − r0|2 + O(|r − r0|−5). (D6)

The error made by expanding the viscosity gradient to infinity is quantified as

Q(1)PQ
bc − Q̃(1)PQ

bc = −2
∫

V
[η(1)(r) − η̃(1)(r)]P(0)P(r − rb)

•· P(0)Q(r − rc) dV. (D7)

Here, η(1)(r) − η̃(1)(r) is by definition zero for |r| < C1d. Since the distances of both
particles from the boundary of the homogeneous linear gradient is O(d), all values of r
contributing to the integral (D7) due to non-zero η(1)(r) − η̃(1)(r) satisfy |r − r0| = O(d).
We thus express (D7) in terms of r′ := r/d and r′

0 := r0/d, and find that

η(1)(r) − η̃(1)(r) = η′(1)(r′) − η̃′(1)(r′), (D8)

where η̃′(1)(r′) := η̃(1)(r) is the rescaled, linearly extended viscosity perturbation. Thus
in the transformed integral, the factor η′(1)(r′) − η̃′(1)(r′) is independent of d, while the
leading-order term in (D6) factors out d−4 and the volume element yields a factor d3.
Apart from the overall factor d−1 ∼ κ , the integral (D7) is independent of d and can be
calculated, depending on η′(1)(r′), either numerically or also analytically. All contributions
from the higher-order terms in (D6) scale lower in d and thus can be neglected since we
are interested only in the correction linear in κ . However, assuming that the viscosity
perturbation is odd symmetric with respect to the origin, i.e. η(1)(−r) = −η(1)(r), and
that |rb|, |rc| � d, which means that we can choose r0 = 0, we find that the integral (D7)
vanishes at this order O(d−1) due to symmetry.

We conclude that for odd symmetric viscosity gradients and both particles close to
the centre of symmetry, extending the viscosity gradient to infinity leaves indeed the κ1

component of all Q(1) terms untouched, which simplifies the subsequent calculation of
the Q(1) terms. If one of these conditions is not satisfied, then we generally calculate the
Q(1) terms with the extended viscosity gradient, but will have to account for an additional
contribution to all Q(1)tt terms given by

Q(1)tt
asym = − 2

(6πaη(0))2

∫
V

[η(1)(r) − η̃(1)(r)]
27a2

8|r − r0|6 (r − r0) ⊗ (r − r0) dV. (D9)

Importantly, this correction applies to both the Q(1)tt
bc terms with b = c (self-terms) and

well as b /= c (cross-terms) in similar fashion.

D.2. Self Q terms
In order to calculate self-terms of the form of (D4) with b = c, we decompose the extended
viscosity gradient as

η̃(1)(r) = η̃(1)(rb) + η̃(1)(r − rb) =: η̃
(1)
cst + η̃

(1)
odd(r − rb). (D10)

This decomposition is sketched in figure 8.
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yrb

η
~(1)

η

η
~(1)
cst

η
~(1)
odd

Figure 8. Sketch of the decomposition of the viscosity gradient.

Both η̃
(1)
cst and η̃

(1)
odd(r − rb), as well as the contracted normalised strain rates, can be

expressed in spherical coordinates with the origin in rb. We find (Oppenheimer et al. 2016)

(P(0)t(r − rb)
•· P(0)t(r − rb))ij = 1

(6πη(0)a)2
9a6

8r8

([
3
( r

a

)4 − 6
( r

a

)2 + 2
]

rirj

r2 + δij

)
,

(D11)

(P(0)t(r − rb)
•· P(0)r(r − rb))ij = (P(0)r(r − rb)

•· P(0)t(r − rb))ji

= 1
48π2(η(0))2a4

9a6

4r8 εijkrk, (D12)

(P(0)r(r − rb)
•· P(0)r(r − rb))ij = 1

(8πη(0)a3)2
9a6

2r6

(
δij − rirj

r2

)
. (D13)

In order to perform the integration (D4), it is convenient to include the volume of the
other particle into the integration domain, such that the integral runs over r ∈ [a, ∞],
θ ∈ [0, π] and ϕ ∈ [0, 2π]. Since the contracted normalised strain rates decay at least
as r−4 or faster, and the viscosity gradient scales to leading order as r1, with r the
distance from the particle, the error made by including the volume of the other particle
scales at most as s−3 and can be neglected at our level of approximation. We obtain, by
straightforward integrations,

Q(1)tt
bb = − 1

6πa(η(0))2 η(1)(rb) I + O(s−3),

Q(1)rr
bb = − 1

8πa3(η(0))2 η(1)(rb) I + O(s−5),

Q(1)tr
bb = 1

24πa(η(0))2 (∇η(1)×) + O(s−4),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(D14)

where (∇η(1)×)ij := ∂kη
(1)εikj. Note that since both particles are well within the domain

where η(1) is homogeneously linear, we can use the original viscosity variation instead of
the extended one in the above expressions.

D.3. Cross Q terms
To simplify the calculation of the cross-terms Q(1)PQ

bc with b /= c and P, Q = t, r using
(D4), we first show that, being precise up to order s−1, we can include the volumes of both
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particles in the integration domain without affecting the result of the integral. To estimate
the error made by including the volume of – without restriction of generality – particle b
in the integration domain, we use a Taylor expansion of the strain rate corresponding to
the other particle c /= b around rb. If the translation/rotation mode associated with particle
c is Q = r or Q = s, then the corresponding strain rate at rb will scale as s−3 to leading
order. Since to leading order the viscosity variation scales linear and thus at most as s1, the
corresponding integral over the domain of particle b then scales at most as s−2 and can be
neglected.

If Q = t, then the translational strain rate corresponding to particle c will scale to leading
order as s−2 at rb. All higher-order terms in the expansion scale at least as s−3 and thus
can be neglected similarly to before. For the case P = t, the strain rate due to translation of
particle b is odd symmetric with respect to rb. Since it is contracted with the leading-order
term of the expansion of the product of viscosity variation times the normalised strain rate
corresponding to particle c, which is a constant near rb, the integration of the s−2 term
over the domain of particle b vanishes due to symmetry. Finally, if Q = t and P = r, then
we calculate explicitly the contraction of P(0)r(r − rb) with the leading-order term in an
expansion of P(0)t(r − rc) around rb. Assuming – without restriction of generality – b = 2
and c = 1, for the expansion around r2 = 0 we obtain

(P(0)r(r − r2)
•· P(0)t(r − r1))ij = (P(0)r(r) •· P(0)t(s))ij + O(s−3)

= P(0)r
kli (r) P(0)t

klj (s) + O(s−3)

= − 1
48π2(η(0))2

9sj

8r5s3

(
δkl − 3

sksl

s2

)
(rkrmεmli + rlrmεmki) + O(s−3)

= 1
48π2(η(0))2

9sj

8r5s3 3
sksl

s2 (rkrmεmli + rlrmεmki) + O(s−3), (D15)

where in the last step we have used the anti-symmetry of εijk, the Levi–Civita tensor.
Assuming without loss of generality that s = (0, 0, s), we find that the above contraction is
anti-symmetric with respect to z → −z. Namely, for any non-zero contribution of (D15),
both k and l must correspond to the z-direction as otherwise sksl vanishes. Due to the
anti-symmetry of the ε tensor, m cannot be associated with the z-direction, which proves
the anti-symmetry. The leading-order term in an expansion of the viscosity perturbation
is a constant, hence the integral of (D15) times the viscosity perturbation over the
volume of particle b vanishes up to order O(s−1) due to symmetry. This proves our
claim.

To calculate the cross-terms, we next decompose the viscosity gradient with respect to
the midpoint between the particles, rm = (r1 + r2)/2, as

η̃(1)(r) = η̃(1)(rm) + η̃(1)(r − rm) =: η̃
(1)
cst + η̃

(1)
odd(r − rm). (D16)

Without restriction of generality, we assume that the particles are positioned at r1 =
(0, 0, −s/2) and r2 = (0, 0, s/2). We employ bispherical coordinates, defined as (Moon
& Spencer 1988)

x = s
2

sin σ cos φ

cosh τ − cos σ
, y = s

2
sin σ sin φ

cosh τ − cos σ
, z = s

2
sinh τ

cosh τ − cos σ
, (D17a–c)
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Hydrodynamic particle interactions in linear and radial viscosity

with integration boundaries given as τ ∈ (−∞, ∞), σ ∈ [0, π] and φ ∈ [0, 2π]
corresponding to the complete R

3. The integration boundaries are independent of s, so
in order to obtain the integral up to O(s−1), it suffices to perform the corresponding Taylor
expansion on the integrand and integrate only terms up to O(s−1). Since this expansion
and the subsequent calculation are tedious, we employ Mathematica (Wolfram Research
Inc. 2020) to carry them out. We obtain finally

Q(1)tt
12 = (Q(1)tt

21 )T = 1
6πa(η(0))2

(
−η(1)

(
r1 + r2

2

)
T + 3a

8s
[∇η(1) ⊗ s − s ⊗ ∇η(1)]

)

+ O(s−2),

Q(1)rr
12 = Q(1)rr

21 = O(s−2),

Q(1)tr
12 = (Q(1)rt

21 )T = 1
6πa(η(0))2

(
−η(1)

(
r1 + r2

2

)
V + 3a

8s3 s ⊗ (s × ∇η(1))

)

+ O(s−3),

Q(1)tr
21 = (Q(1)rt

12 )T = 1
6πa(η(0))2

(
+η(1)

(
r1 + r2

2

)
V + 3a

8s3 s ⊗ (s × ∇η(1))

)

+ O(s−3).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(D18)

D.4. Proof of (4.4)
We first consider the case of b = c in (4.3). With f /= b and e /= c, we find that e =
f /= b = c, thus all Q(1) terms involving an upper index s are cross-terms. However,
cross-terms with an upper index s scale at most as s−1. First, including the volumes of
the particles in the integration domain implies an error of at most O(s−1) since each
normalised strain rate decays at least as s−2 and the viscosity gradient scales to leading
order only as s1. Consequently, the integrand scales at most as s−1 in the vicinity of
each particle. The remaining integral with the particle volumes included also scales at
most as s−1 because the normalised strain rates, expressed in bispherical coordinates
as described above, scale as s−3 (P(0)s) and at most as s−2 (the remaining one if it
is associated with translation). Also, the viscosity gradient scales linear in s and the
volume element of bispherical coordinates as s3, resulting in an overall decay ∼ 1/s
or quicker. Since this cross-term is contracted to a normalised strain rate in (4.3),
which decays at least as s−2, those contractions decay at least as 1/s3 and can be
neglected.

For the case b /= c, we find that e = b /= c = f and all Q(1) terms involving an upper
index s are self-terms. Self-terms of the form Q(1)ts

bb or Q(1)st
bb scale to leading order as s0

since they depend only on η̃
(1)
odd(r − rb) due to symmetries of the Q terms, which can be

seen from explicit calculations. Their contraction to a normalised strain rate thus scales
at most as s−2 and can be neglected, since we are only interested in terms of O(s−1).
Terms of the form Q(1)sr

bb are anti-symmetric in all three indices, which can be verified by
direct calculation, and thus vanish when two of those indices are contracted to a symmetric
normalised strain rate P(0)t.
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y ′
0

y′
1

1 + 2y′0

η
η′(1) – η

~′(1) = η′(1)
cor

η′(1)
cor,odd

η′(1)
cor,res

Figure 9. Sketch of the decomposition of η
′(1)
cor for y′

0 > 0.

D.5. Correction of the Q terms for particles placed asymmetrically in the interface-like
gradient

In order to calculate (4.15), we first assume, without restriction of generality, that r0 =
(0, y0, 0), exploiting the symmetry of the interface-like gradient in the x- and z-directions.
Introducing rescaled coordinates as in § D.1 and y′

0 = y0/d, we find that

Q(1)tt
asym = − 2

(6πaη(0))2

∫
V

[η′(1)(r′) − η̃′(1)(r′)]
27a2

8d|r′ − r′
0|6

(r′ − r′
0) ⊗ (r′ − r′

0) dV ′,

(D19)

where dV ′ = dx′ dy′ dz′ is the volume element in rescaled Cartesian coordinates. Since the
contraction P(0)t(r − r0)

•· P(0)t(r − r0) is, at the leading order O(|r − r0|−4), symmetric
under inversion with respect to r′

0, it is convenient to decompose the term

η′(1)(r′) − η̃′(1)(r′) =: η′
cor(r

′) (D20)

into a component η
′(1)
cor,odd(r

′) that is odd symmetric with respect to r′
0, and a residual

component η
′(1)
cor,res(r′) := η

′(1)
cor (r′) − η

′(1)
cor,odd(r

′) (figure 9).
With

η′(1)
cor (r′) =

⎧⎪⎨
⎪⎩

−H′(1)
y ( y′ + 1), y′ < −1,

0 −1, ≤ y′ ≤ 1,

−H′(1)
y ( y′ − 1), y′ > 1,

, (D21)

a possible definition for the odd symmetric component in the case of y′
0 > 0 is

η
′(1)
cor,odd(r

′) =

⎧⎪⎨
⎪⎩

−H′(1)
y ( y′ + 1), y′ < −1,

0 −1, ≤ y′ ≤ 1 + 2y′
0,

−H′(1)
y ( y′ − 1 − 2y′

0), y′ > 1 + 2y′
0,

(D22)

leaving the residual component as

η′
cor,res(r

′) =

⎧⎪⎨
⎪⎩

0, y′ < 1,

−H′(1)
y ( y′ − 1), 1 ≤ y′ ≤ 1 + 2y′

0,

−2H′(1)
y y′

0, y′ > 1 + 2y′
0.

(D23)

Here, we have assumed that H ′(1) = (0, H′(1)
y , 0). Due to symmetry, the contribution

of η′
cor,odd to the integral (D19) vanishes, and it remains to calculate the contribution
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from η′
cor,res. We obtain (Wolfram Research Inc. 2020)

− 2
∫

V
η′(1)

cor,res(r
′)

1
|r′ − r′

0|6
(r′ − r′

0) ⊗ (r′ − r′
0) dV ′ = η0πarctanh( y′

0) (I + ey ⊗ ey),

(D24)
and from this,

Q(1)tt
asym = 1

6πa(η(0))2
9a|∇η(1)|

16
arctanh( y′

0) (I + ey ⊗ ey). (D25)

A similar calculation for the case y′
0 < 0 shows that (D25) is also valid in this case.

Appendix E. Calculation of the Q terms for hot particles

E.1. Self Q terms
We first show that in the case of hot or cold particles, for a self Q(1) term of the form

Q(1)PQ
bb := −2

∫
V

η(1)(r) P(0)P(r − rb)
•· P(0)Q(r − rb) dV, (E1)

we can include the volume of the other particle c in the integration domain V without
affecting the result up to order O(s−2). Assuming that the viscosity perturbation is of the
form of (5.8), we find that the integrand in (E1) can be Taylor expanded around the position
of particle c and scales to leading order as s−4, since both normalised strain rates decay at
least with the second power in the inverse distance. The viscosity perturbation consists of a
term centred around the first particle b, which scales to leading order as s−1 around particle
c, and a term centred around particle c, which has no s-dependence when evaluated locally.
Thus the error made by including the volume of particle c in the integration domain scales
as s−4 or lower and can be neglected.

Additionally, the contribution to the self Q(1)
bb term from the dipolar viscosity field

around particle c, i.e. proportional to η
(1)d
c , can be neglected. This is because first, Cd

2
scales as s−2, and second, the corresponding integral without the prefactor also scales at
most as s−2. The volumes of both particles can be included in the integration domain
without affecting the result at order O(s−1), and from a scaling argument in s using
bispherical coordinates, we conclude that this integral scales at most as s−3.

We then employ a spherical coordinate system around rb to calculate the self Q(1) terms.
Since we need to account also for the monopolar viscosity perturbation around particle
c /= b, and the integration thus is not trivial, we use Mathematica (Wolfram Research Inc.
2020) for its computation. We obtain

Q(1)tt
bb = 1

6πa(η(0))2

[(
−5η

(1)m
b
12

− a
s

η
(1)m
c

(
1 − 9a

8s

))
I − 9a2

8
η

(1)m
c

s ⊗ s
s4

]
+ O(s−3),

Q(1)rr
bb = 1

6πa(η(0))2

[
− 9

16a2 η
(1)m
b − 3

4as
η

(1)m
c

]
I + O(s−3),

Q(1)tr
bb = 1

6πa(η(0))2

[
(η

(1)d
b ×)

8a
+ η

(1)m
c a

4
(rc − rb)×
|rc − rb|3

]
+ O(s−3), b /= c.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(E2)
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E.2. Cross Q terms
In this subsection, we describe the calculation of the cross-terms

Q(1)PQ
bc := −2

∫
V

η(1)(r) P(0)P(r − rb)
•· P(0)Q(r − rc) dV, (E3)

with b /= c. First, it can be shown that the dipolar viscosity variations do not affect the
result for the Q(1) cross-terms up to order O(s−2) using an argument similar to that in
the last subsection. Second, for the calculation of the cross-terms up to order O(s−2),
the volumes of both particles can be included in the integration domain without affecting
the result. To show this, we consider the Taylor expansion of the integrand around the
position of one of the two particles, say particle b. In the case Q = r, i.e. particle c /= b
is associated with rotation, the normalised strain rate decays with the third power in the
inverse distance. With the viscosity variation scaling at most constant in s, the resulting
error made by including particle b can thus be neglected. In the case Q = t, we have
shown in Appendix D that the leading-order s−2 term in the expansion of the contracted
normalised strain rates is odd symmetric under either inversion about the position of
particle b for P = t, or z → −z when s = (0, 0, s) for P = r. Since both the monopolar
viscosity variation around particle b, and the leading-order term in the expansion of
the monopolar viscosity perturbation around particle c expanded around particle b, are
symmetric under both of these coordinate transformations, the integral over the volume
of particle b vanishes at order O(s−2). Thus we can include the volumes of both spheres
without affecting the result of the cross-terms at our level of approximation. Technically,
including the volumes of both particles brings into play singularities of the integrand of
(E3) at the particle centres. However, those singularities come with a prefactor that decays
quicker than s−2, such that we avoid those singularities by Taylor expanding the integrand,
expressed in bispherical coordinates, in s and keeping only terms up to order O(s−2) prior
to performing the integration (as also done in Appendix D). This integration is performed
using Mathematica (Wolfram Research Inc. 2020) and yields

Q(1)tt
bc = 1

6πa(η(0))2

[
−9a2

8
(η

(1)m
1 + η

(1)m
2 )

s ⊗ s
s4

]
+ O(s−3), b /= c,

Q(1)tr
bc = Q(1)rt

bc = Q(1)rr
bc = O(s−3) ∀ b /= c.

⎫⎬
⎭ (E4)

E.3. Proof of (5.9)

For viscosity variations of the form of (5.8), cross-terms as well as terms of the form Q(1)st
bb

or Q(1)ts
bb generally scale at most as s−1 or lower, thus all corrections to μ

(1)tt
bc in (4.3) are

of the order O(s−3) and can be neglected. Moreover, terms of the form Q(1)rs
bb or Q(1)sr

bb are
found to be anti-symmetric at leading order s0 in all three indices, similarly to the case of a
linear viscosity gradient, thus their contraction to the symmetric indices of the normalised
strain rate vanishes at this order. This shows (5.9).

Appendix F. Three-body and higher-order effects

We prove that for the linear gradient and at the level of approximation chosen, i.e.
up to O(s−1), three-body and higher-order effects can be neglected and hydrodynamic
interaction thus can be assumed to be pairwise. The first-order correction to the mobility
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matrix is given by (3.6), where the normalised strain rates B(0)t
b and B(0)t

c need to be
expanded as

B(0)t
b ≡ B(0)t

b (r) = P(0)t(r − rb) +
∑
f /= b

P(0)s(r − rf ) : P(0)t(rf − rb) + O(s−3) (F1)

and

B(0)t
c ≡ B(0)t

c (r) = P(0)t(r − rc) +
∑
e /= c

P(0)s(r − re) : P(0)t(re − rc) + O(s−3). (F2)

The second reflection of a monopolar flow field initially scaling as s0 is a disturbance flow
that scales to leading order as O(s−5) (Kim & Karilla 2005, p. 196), thus such terms can
be neglected at our level of approximation.

Inserting (F1) and (F2) into (3.6), the lowest-order term in s for one particle’s
self-mobility (c = b), which is not captured by pairwise effects, is the product

(P(0)s(r − rf ) : P(0)t(rf − rb))
•· (P(0)s(r − re) : P(0)t(re − rb)), (F3)

with f /= e. This term, however, is a cross-term with a prefactor proportional to s−4 and
can be neglected, as well as all higher-order terms.

For the interaction between two particles (b /= c), the lowest-order term exceeding
pairwise effects is the product

P(0)t(r − rb)
•· (P(0)s(r − re) : P(0)t(re − rc)), (F4)

with b /= e /= c, which is a cross-term with a prefactor of O(s−2) and thus can also be
neglected. The next highest term is given by products

(P(0)s(r − rf ) : P(0)t(rf − rb))
•· (P(0)s(r − re) : P(0)t(re − rc)), (F5)

which in the case b /= f = e /= c is a self-term, with a prefactor of O(s−4), however, and
thus also can be neglected.

For hot particles, three-body effects indeed affect the self-mobility of, say, particle b at
order O(s−2), as the reflection of the temperature of some particle c at some other particle
f will alter the viscosity near particle b proportional to s−2, and thus cannot be neglected
at this level of approximation. Also, the hydrodynamic interaction between two particles
is, already at the leading order 1/s2, altered by the presence of a nearby third particle with
increased or decreased temperature compared to the fluid at infinity.
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