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Divisibility of binary relations

D.G. Fitz-Gerald and G.B. Preston

In his paper in Mat. Sh. (N.S.) 61 (103) (1963), ZareckiT
associated with any binary relation o an ordered pair,

(La’ Ma) , say, of lattices and showed that o 1is a left

[right] divisor of B if and only if L, 2L, [ 2 MB] . We

provide an alternative proof of this result by embedding the
category of relations in the category of sets. Our approach
provides a unified treatment of several hitherto independent
results, and gives new results for the category of partial

transformations.

1. Preliminaries

We shall be dealing with four categories, the category of relations
and three of its subcategories. We regard a category as consisting of
objects and maps. In the category of relations the class of objects is the
class of all sets and the class of maps is the class of all ordered triples
(X, o, ¥) , where X and Y are sets and where o S X x Y . The product
(X, o, Y)(U, B, V) 1is defined if and only if Y = U and, when defined, it
equals (X, a o B, V) . Here a ©° B denotes the composition of o and

B :
ao g ={(z, v)| (z, y) € @ and (y, v) € B , for some y} .

We shall frequently denote (X, o, ¥Y) by o in what follows and
consequently write the product (X, o, Y)(U, B, V) simply as aBf . We
shall denote the category of relations by R .
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The following notations will be convenient. Let (X, o, Y) be a map

of R . Then we set
Ala) = {z € X| (x, y) € o for some y} ,
V(a) = {y € 7| (x, y) € o for some x} .

The category of sets, consisting of those maps (X, a, ¥) of R for
which & : X + Y , we shall denote by S . The category of partial
transformations, consisting of those maps (X, a, ¥Y) of R for which
o : A(a) > Y , we shall denote by P . Finally, we shall denote by I the
category of one-to-one partial transformations, consisting of those maps
(X, a, Y) of P for which & is a one-to-one mapping of A(a) onto
V(a) . 1 is then a subcategory of P . Each of the categories R, S, P

and 1 has the same class of objects.

If o and B are maps of a category X then we shall write

a)\KB [cprB] , to mean that there exists a map Yy in X such that

a=7vB [o=8y] . We write aL-ﬁe [OLR£=(B] to mean that
OL)ZB and Bkéot [otp£8 and Bpéoc]

both hold.

We shall say that an element o of a category K is regular, if

there is a B in K such that afa = a ; there then exists y in K,
for example take Y = BaB , such that oya = o and Yoy =Yy ; Yy will be
called an inverse of o . K 1is said to be regular if each of its maps is

regular. For example, S 1is a regular category and R 1is not regular.

2. Divisibility in I, P and S

The set of all maps (X, @, X) , for a fixed set X , in each of the

I, 2 and § forms a semigroup; these semigroups are IX .

categories
the symmetric inverse semigroup on X , PX , the semigroup of partial

transformations of X , and TX , the semigroup of transformations of X ,
respectively.

In the following theorem we show that certain well-known

characterizations of left and right divisibility of elements in TX
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{Preston [2]), and IX (Reilly [3]) extend in a natural fashion to §,

and 1 respectively.

If o< X XY then we write

-1
o = {{y, x)| (x, y) €a};
for AcS X we write
Ao, = {y € Y| (a, y) € &, for some a in 4} ;
and for B C Y we write
Ba* = B(a™1), .
Moreover, if (X, o, ¥Y) is a map in P, so that ao ot—l is a partial
equivalence relation on X , that is an equivalence relation on A(a) ,
then we denote by X/{a o oc-l] the set of o o o T-equivalence classes;
-1 -1 . .
so that X/{a o a™) = Ala)/{@ o &) . If o is empty, so that A(a) is
then empty, we take X/(a o oc—l] to mean the empty set.

For any set X we shall denote by 1 the set

X
1y = {{z, )| = € x} .
THEOREM 1. Let X be one of the categories 1, B and § . Let
(X, @, ¥) and (U, B, V) be maps in X . Then
(1) o\B if and only if Y=V and V(a) g V(B) ; and
(it) op B if and only if X =U, Ala) ¢ A(B) , and setting

D = AB)\Aa) ,

(0xD)ufaoat)opog™t.

Proof. We prove the result for the category P 3 for the other two
categories we may proceed similarly or may, as follows from the next lemma,

deduce the result from that for P .

() 1If a)\PB then there exists Yy in P such that o = yB , that

is there exists (W, y, 2) , say, such that
(X, o, ¥) = (W, vy, 2)(U, B, V) . Then X=W, Z=U, Y=V, and
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o =Y o B . From these equations we deduce that
V(o) = Xo, = (Xy,)B, € UB, = V(B)

Conversely, suppose that Y = V and that V(a) € V(8) . Define
Y A(a) ~ U by choosing, for each x in A(a) , Xy to be any element
in U such that (xy)B = xo ; this is possible because V(a) g V(B)
Then (X, Y, U) is amap of P and (X, o, ¥) = (X, vy, U)U, B, V) ;
which completes the proof.

(i1) If op,B , then there exists § in P such that o = BS , that

is there exists (W, §, Z) , say, such that
(X, o, ¥) = (U, B, V)(W, 8, Z) . Then X=U , V=W, Y=2 and

o=Bo 8§ . From these we have

Aa) = V(a-l) = V(s—l ° B-l) = [Y(s-l]*](s—l)* S V(B_l)* = V(S—l) = A(B)

Further, if (x, x') € B o B—l and x € A(a) , then there exists y such
that (z, y) € o = B o § ; and so there exists v such that (x, v) € B
and (v, y) € § . Since B 1is a mapping, (x, ') € B o g™t implies that
(', v) € B . Hence (x', y) € Bo §=a; hence (x, 2') € 0o ot
Thus Bos—lg(aOa-l)u(DXD)

Conversely, suppose that X = U , A(a) ¢ A(B) , and that

fin

(0xD)u (0oat)2Bo gL . Since Aa)cAB), (DxD)u (@oal)

and B o B_l are each equivalences on A(B) . Thus each o o a-l-class

is a union of B o B_l—classes. Set E = (A(a))s* and define
§ : E+>Y , thus: for e € E , choose x in A(a) so that xR = e ;

then define e§ to be xa . If also z'8 = e , then

(z, ') € B o B-l [ [Cx o a_l) v (D x D) and, since 2 € A(a) , therefore

(x, ') € avo o' . Thus =za=z'a ; consequently 6 is well-defined.

Hence we have

(X, o, ¥) = (U, B, V(V, 8, ¥) 3
which completes the proof.

REMARK |. The condition
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(DXD)u(aoa-l)gsoB_l

could be replaced by the equivalent but more symmetric ineguality

(N\a(a) x (1\A(@)) u (a0 oY) 2 (K\A(B)) x (X\A(B)) u (B o B7Y)
REMARK 2. 1In the categories I and S result (ii) may be
simplified. If o is amap in I then 0 o a_l = 1A(a) , and similarly

for B . Hence the final condition in (7%Z) becomes superfluous and we

have:

ap. B if and only if X =U and A(a) ¢ A(B) .

This is the result of Reilly already referred to [3].

If o and B are maps in § and X = U then necessarily

A{a) = A(B) = X and hence D is empty. Thus we have
. . -1 -1
ocpSB if and only if X =U and aoa 2B o8B .
This is the result of Preston already referred to [Z].

COROLLARY. Let X be one of the categories 1, P and

(X, o, ¥} and (U, B, V) be maps in K . Then

flcn

Let

() aLKB if and only if Y =V and V(a) = V(B) ; and

U and aoot=80gt,

(i) otRKB if and only if X

REMARK. For the category 1 , a o ot_l =B o B_l if and only if
Ala) = A(B) . Hence OLRIB if and only if X =U and A(a) = A(B) .

We now prove the lemma, mentioned in the proof of Theorem 1, which
enables the results of Theorem 1, for 5 and for I , to be deduced from
the result for P .

LEMMA 1. Let L be a regular subcategory of the category K . Let
o, B be maps in L. Then a\B [otpLB] if and only if o\ B [apKB] .
Proof. Clearly a)\LB implies OO\_EB . Suppose, conversely, that
o, 8 are in L and tha: aAKB . Thus-there exists Y , say, in K such

that o =yB . Let B' be an inverse of B in L . Then YB = YRR'B ,
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and YB =a €L and B' €L , so that YBB' € L ; and hence a\ B .

The bracketed assertion follows dually.

Since 8 and I are regular subcategories of P we may apply the
lemma, as already claimed, to deduce immediately from the result for P ,

the results of Theorem 1 for § and for I .

Before turning to R we show that we can subsume another situation

under our treatment.

If we take any regular subcategory of 1 then, from the lemma, it
follows that the characterizations of divisibility that have been obtained
for 1 serve to characterize divisibility in the subcategory. In
particular these characterizations apply to any inverse subsemigroup of a

symmetric inverse semigroup IX . Thus we have the next theorem (Munn
(1.

THEOREM 2. Let S be an inverse semigroup of one-to-one partial
transformations of a set X . Let a, B € S. Then ol [apB, alB, aRB]
in 5§ if and only if V(a) g V(B) [A(a) c 8(B), V(a) = V(B),

A(a) = A(B)] .

If we apply Lemma 1 to any inverse semigroup &S , making use of the

faithful representation of S as an inverse subsemigroup of IS , then we
quickly find that, for a, 8 in S , oAB [opB, alB, oRB] in S if and
only if

- - - - - - - -1

oo =gl foot =887, oo = 8708, 0™t = 887

3. R regarded as a subcategory of

[ (%]

We denote by P(4) the set of all subsets of a set A .

We extend the mappings a+~ o, and o+~ a* , introduced in the second
section, and, for (X, @, Y) a map in R , we define
(X, a, ¥Y) » (X, a, ¥), = (P(X), o, P(¥Y)} and
(x, a, ¥) » (X, a, ¥}* = (P(Y), o*, P(X)}] . We again, where convenient,

denote (X, a, ¥Y) by o ; so that now o, and o* each has two

meanings, the relevant one being decided by the context.
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It will be convenient also to extend the meaning of a_l . We define

1, X) . hgain there

for amap (X, a, ¥) in R (X, a, Y)_l to be (¥, o
will be no ambiguity in denoting (X, a, Y) simply by a and hence
-1
)

(x, a, ¥ by Ot_l , when convenient. For o a map in R we then have,

with the extended meaning also, that o* = (a_l]* .

The next result is easily verified.

LEMMA 2.

(Z) a»a,, o amap in R, i8 a co-variant functor embedding R
in S .

(ii) aw=»a*, o amp in R, is a contravariant functor embedding
R in 8.

We now use this embedding to show that left and right divisibility in
R can be characterized by the conditions we already have for S . Since
P is a regular subcategory of R , because of Lemma 1, the same embedding
will enable us to deduce the characterizations of divisibility in P , of
Theorem 1, from those for § , thus reversing the procedure of the previous

section. The key results are in the next two lemmas.

LEMMA 3. Let o, B be maps in R . Then aAEB if and only if
c:L,J\SB,E .

Proof. Lemma 2, part (i), gives immediately the "only if" part of the
assertion.

Conversely, suppose that a,,)\ss* . Let a denote (X, o, ¥Y) . Then

B denotes (U, B, Y} , for some set U , and there exists
(P(X), £, P(U)) , say, amap in S , such that

(P(x), oy, P(Y)) = (P(X), £, P(V)) (P(V), B4, P(Y)) .
In particular, a, = § o B, .

Denote by M the largest subset of X x U such-that wofca.
Thus

w={(z, u)| (u, y) € 8 implies (z, y) € a} .

We show that acuo° g .
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Let ‘(x, y) E'a . fhen
y € {x}o, = {z}(E o By) ;

so, since B, maps the empty set onto the empty set, there exists u in
U such that y € {ulB, and u € {x}f . Then (z, u) € 4 ; for, if

(u, 2) € B, then z ¢ ({x}£)B, = {x}(§ o B,) = {z}a, , that is

(x, 2) € o . Hence (x, y) €¢ uopB .

It follows that o = U o B and that aARB 3 which completes the
proof of the lemma. -

LEMMA 4. Let a, B be maps in R . Then apRB 1f and only if
a*psB* .

Proof. Lemma 2, part (i), suffices to give the "only if" part of the
assertion.

Cohversely, suppoée that a*pSB*'. Then if « denotes the map

(X, o, ¥Y) , B must denote (X, B, V) , for some set V , and there must
exist (P(V), n, P(¥)} such that a, = B8,0n .

Then

1 -1

0, o O =B,.°n°n' o B, 28*°‘p(y)°ﬁ11=8&°ﬁ:l.
Hence, in particular, for A4, B € P(X) ,
(1) AB, € BB, implies Aa, S Ba, ;

. -1 -1
for, if AB, € BB, , then (AuB, B) € B, o B,” S a, © a, , SO that
Ao, S Ba, .

Denote by V the largest subset of V¥V x Y such that B o vcCa .
Thus

v = {(v, y)| (x, v) € B implies (x, y) € a} .
We show that ac B o v .
Let (x, y) € a . Then {«x}B, is not empty. For, denoting the

empty set by O, if {z}B, = O, then (O, {x}) € B, o 8;1 S o, ° G:I H
and so {x}a, = O, = O, conflicting with the assumption that y € {z}a, .
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set {x}B, = {vil i € I} . Suppose that (z, y) ¢ B o v . This can
happen only if (vi, y) ¢ v for all < in I and this means that, for
each 7 in I , there exists e; » say, in X , such that (c., vi) €8

2

and (ci, y) $ o . Set
c={ci|7;ez}.

Then

By 2 v, | € € I} = {«1B, ,

so that, by condition (1),

Ca,

Y]

{z}a, .
Thus, since y € {x}la, , there exists e; in C such that y € {ci}a* s

that is (ci, y) € o . This is a contradiction.

Hence we have & = B o v', whence it follows that oap_B .

=

We can use the functor a = a* +to obtain further useful

characterizations of left and right divisibility. Observe that aARB if
. -1 -1 -1 .

and only if a pRB and that o* = (a )* . From these observations we
easily infer from Lemmas 3 and I the following results.

LEMMA 5. Let o and B be maps in R . Then aAnB if and only
y * *
if a QQF .

LEMMA 6. Let a and B be maps in R . Then opB if and only
y % ]
if a Aéﬁ .

We now interpret our results and show that, for the category R , ve

have obtained an alternative approach to ZareckiT's characterization of

left and right divisibility in R .
Let (X, a, Y) be amap in R . We set M, = V(a,) and
L, = {x\B| B € V(a*)} . Then L, is a complete lattice of subsets of X

closed under arbitrary set-theoretic intersection and Ma is a complete
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lattice of subsets of Y closed under arbitrary set-theoretic union.

Moreover, the restriction fa , say, of a, to La , is a lattice

isomorphism of La onto Ma [4, §1.71.

Conversely, given any complete lattice L , say, of subsets of X ,
closed under set-theoretic intersection, and a complete lattice M , say,
of subsets of Y , closed under set-theoretic union, and an isomorphism
f , say, of L onto M , then there exists a unique binary relation

(X, a, Y) such that L,=L, M =M, and fo=7 [4, Theorem 1.8].

We shall call (L . Ma) the pair of lattices of a .

[0

For any relations o and B ,

La={X\A|A€M_l},

o

and

L_cL

o if and only if M . &M .

1=",-1

8 o 8

Hence Theorem 1 and Lemmas 3, 4, 5 and 6 combine to give the next
theorem.
THEOREM 3 (ZareckiY). Let o, B be maps in R . Then

(z) ocAéB if and only if M & Mg 5 or, equivalently, L =0 J

o B
whence aLLB if and only if M, = MB [or La'l = LB_l] s and
(i1) aggﬁ if and only if La c LB » or equivalently, Ma_l [= Mg'l 3
whence uggﬁ if and only if L, = Lg [or Ma"l = MB_l] .
As already remarked, because of Lemma 1, Theorem 3 may be used to
characterize {g, Eg, pK and gﬁ for K any one of S5, P and I . We

i

end with some comments upon these characterizations and their connexions
with those of Theorem 1. For brevity we restrict our remarks to L, and

to RK . B

=
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If o is a map in S ‘then Ma is the lattice of all subsets of

V(a) . Thus, if @, B are maps in S , from Theorem 3 we infer that aLSB

if and only if P(V(a)) = P(V(B)) . But, for any sets 4 and B ,

P(4) = P(B) if and only if A4 = B . Hence aLSB if and only if
V(a) = V(B) , reproducing the condition of the Corollary to Theorem 1.
Agein, from Theorem 3, aRSB if and only if M 1 ° M o It is
= o B

readily verified that M _
o

1 is a complete atomic lattice with the

. -1 . s s .
equivalence classes of «a o O as its atoms. A similar remark applies to

M
gl

the condition of the Corollary to Theorem 1.

. Hence oR.B if and only if o ° al=g8o0 B_l , reproducing again

For the category P the interpretation is similar. Suppose that o

is a complete

is a map in P . Then Ma is again P(V(a)) and M -1
o

atomic lattice with the elements of A(a)/(a o a_l) as its atoms. Thus,

if o, B are maps in P , then dLPB if and only if V(a) = V(B) and
aRpB if end only if Ala)/(a o a1} = A(B)/(B o B71) , that is if and only

if aoa-l=sog_l_

The interpretation for I is now clear.
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