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INVOLUTORY MATRICES OVER FINITE LOCAL RINGS 

B. R. MCDONALD 

1. Introduction. A square matrix A over a commutative ring R is said 
to be involutory if A2 = I (identity matrix). It has been recognized for some 
time that involutory matrices have important applications in algebraic 
cryptography and the special cases where R is either a finite field or a quotient 
ring of the rational integers have been extensively researched. However, there 
has been no detailed attempt to extend the theory to all finite commutative 
rings. In this paper we illustrate in detail the theory of involutory matrices over 
finite commutative rings with 1 having odd characteristic. The method is a 
careful analysis of finite local rings of odd prime power characteristic. The 
techniques might be also used in the examination of involutory matrices over 
local rings of characteristic 2X; however, as illustrated by finite fields of charac­
teristic 2 and Z/2XZ (Z the rational integers), the arguments are basically 
different. The reader will note the methods are not limited to only questions 
on involutory matrices. 

Acknowledgement. The author would like to express his appreciation to Joel 
Brawley and John Fulton for communications on several occasions. 

2. Preliminaries and notation. Let 5 denote a finite commutative ring 
with identity. Since S is Artinian there exists a ring direct sum decomposition 
of S, S = 0 Sï=ii?ï, into finite local rings Rt where t is unique and the Rt 

are unique up to ring isomorphism (for example, see [1, Theorem 8.7, p. 90]. 
If (S)n and GLn(S) denote the ring of n by n matrices over 5 and the invertible 
n by n matrices over S, respectively, then the above decomposition induces 
naturally 

(S)« = © Z (#<)„andGLn(S) = ©EGL„(i^). 
i=l *=1 

Thus, for most questions we may reduce the study of matrices over finite 
commutative rings to matrices over finite local rings. Observe that if A in (S)n 

has the decomposition A = Ax 0 . . . 0 A u then A is involutory if and only 
if each A t is involutory. Thus, we restrict our attention to (R)n where R is a 
finite local ring. 

We now introduce conventions and notation which will be utilized through­
out the paper. We let R denote a finite local ring with maximal ideal M and 
finite residue field K = R/M. The maximal ideal is nilpotent and we let /3 
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370 B. R. MCDONALD 

denote the least positive integer satisfying M& = 0; i.e., $ is the degree of 
nilpotency of M. For simplicity we refer to /3 as the nilpotency of R. 

The characteristic of R, xC^)> is a power of a prime x(i^) = px (X ^ 1). 
Indeed R contains a copy of Z/Zpx. The case where x(i^) = 2X causes con­
siderable difficulty (for example, see [10] for finite fields of characteristic 2 
and [3] for Z/Z2X). For this reason we assume throughout that xC^) = Px 

where p is an odd prime. 
If T is a finite set we denote the cardinality of T by \T\ and the set of n by n 

matrices with elements in T by (T)n. 
It is important to observe that we have the following natural sequence of 

ring morphisms <ru 2 ^ i ^ 0, 

R = R/M^R/M^1-* . . .-ÏR/M'^R/M*-1-* . . .-^R/M2^R/M =K 
where ker(<r<) = M^/MK Let n : K -> 0 and take M° = R; thus ker(o-i) = 
JkP/ikP. We denote .K/Af* by i?(*} for 1 ^ i ^ /3. Also for each i we have a 
natural ring morphism iit : R(i) —> K with ker(/x*) = M/M\ 

For simplicity of notation we will suppress the subscript i on at and fxt 

using only c and /x. Further, the morphism o- : R{i) —> i^(i_1) (respectively, 
ix : R{i)—> K) induces natural morphisms (R{i))n —> (i^(z_1))w (respectively, 
(£«>)„->(X)«) and G U ( J ? ( * ) ) ^ G U ( ^ * - « ) (respectively, GL„(^>) -> 
GLw(i£)). These morphisms will also be denoted by a (respectively, /JL). 

Let <t>t denote the cardinality of M^/M* for 1 S i ^ 13. We call {<t>u . . . , t^} 
the invariants of i^. Observe 

I*I = n *«. 
THEOREM 2.1. L ^ i£ fre a finite local ring. Then 

T ê tofee |GL0(i^)| = 1. 

Proof. Observe /x : GLn(R) —» GL^(i£) is surjective. Thus 

IGL.00I = |ker(M)| |GL»(X)I-
But 

iGu(ir)i = ijcr'n (i - <i>rn) 
1 = 0 

where 0i = |2£| and |ker(/x)| = \M\n\ Since |i?| = \M\\K\ the result follows. 

We remark that the characteristic of R does not enter into the proof. Thus 
the above is valid for all finite local rings. Indeed, R does not even need to be 
commutative. 

To conclude this section we single-out two items which will be used 
repeatedly. First, for a : R(i) —> R(i-1} the kernel of a is the ideal Mi~1/Mi in 
RW; hence (Mi~1/Mi)n is a two-sided ideal in (R(i))n. Further, since the 
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product of any two elements in M1r~l/Mi is in Ml/Ml and is thus zero, we 
have that the product of any two matrices in (Mi~1/Mi)n is the zero matrix. 
Second, (R^1^ is the image of (R(i))n under a. Thus if A is in {R^-l))n then 
we may write a preimage A under a as 

A = A + N 

where N may be chosen arbitrarily in {Ml~x IMiS)n. Indeed, without loss we 
may think of A as also an element of (RSl))n (if we are careful with multiplica­
tion). This is often implicitly done in classical number theory—the element 
p is in Z/Zpk and in Z/Zpk+1 but in the former ring pk = 0 while in the latter 
ring pk 9^ 0. 

3. Involutory matrices—canonical sets under similarity. Again we 
repeat that R denotes a finite local ring with x(R) = Px (P odd prime). 

Hodges [9] determined a canonical set under similarity for the n by n 
involutory matrices over a finite field of odd characteristic. Hodges further 
determined the number of such matrices. Brawley [2] extended the canonical 
set to Z/ZpP (p odd prime) and enumerated the matrices for this case. The 
even characteristic is discussed in [10] (for finite fields) and in [3] (for Z/2fiZ). 
We now establish the Brawley-Hodges canonical form for finite local rings of 
odd prime power characteristic. 

THEOREM 3.1. Let R be a finite local ring and A be in GLn(R). Then A2 = I 
if and only if there exists a Q in Ghn(R) and a unique t, 0 ^ t S n, with 

QAQr' = J, 

where Jt = diag(/ f , —In-t) (Is denotes an s by s identity matrix). 

Proof. Let F be a free i^-module of i^-dimension n. The matrix A determines 
naturally an ^-linear morphism a : V —» V with a2 = iv. Let 

N(pi) = {x in F|a(x) = x} and P(a) = {x in F|a(x) = — x}. 

Clearly N(a) r\ P(a) = 0. If x is in V, expressing x as 

x = \{x — a(x)) + i(a(x) + x) 

(note: 2 is a unit in R) shows that V = N(a) + P(a). Thus V = N(a) © P ( a ) 
and since V is P-free we have that N(a) and P(pt) are projective P-modules. 
But projective modules over local rings are free. Thus if {vi, . . . , vt) and 
{wi, . . . , wn-t] are free P-bases for N(a) and P(a), respectively, then their 
union is a free basis for V. The matrix of a relative to this basis is Jt. It 
remains only to check uniqueness. Here recall that if W is a free P-module 
then {wi, . . . , ws] is a free P-basis of W if and only if their images form a 
i£-basis for W/MW. This reduces the problem to the field case where unique­
ness is well known. 
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T h e above proof replaces the matr ix theoretic approach of Hodges and 
Brawley and is easier. No te t h a t the proof is also valid for non-commuta t ive 
local rings. 

W e now enumera te the n by n involutory matrices in GLn(R). 
Let S(n, t, R) denote the number of dist inct n by n matrices in (R)n similar 

to Jt. This number is determined by lett ing GLn(R) ac t as a t ransformation 
group on (R)n by conjugation, i.e., let 

GLn(R) X (R)n->(R)n 

by 
(G, A)-*GAGr\ 

Then S(n, t, R) is the cardinal i ty of the orbit of Jt and is [GLn(R) : I(Jt)], 
the index of the stabilizer I(Jt) of Jt in GLn(R). Thus , we need only compute 
\I(Jt)\. Bu t this is easily seen to be \GLt(R)\\GLn-t(R)\. Hence 

S(n,t,R)= l^d^Ll 

where 

\GLt(R)\ |GLM_ ((i?)| 

\-o\2t(n—t) £w 

ff (l - *iw) 
i=0 

(Recall 0i = \R/M\ and go = 1.) Consequently, the number N of involutory 
matrices in GLn(R) is 

N=±S(n,t,R) = gn± (|i?r<"-,)-r-). 

W e now give the extension of another well-known result on involutory 
matrices over finite fields and Z/Zp13. I t was first proven by Levine and 
Nahikian [10] for fields of odd prime characterist ic and later by Brawley [4] 
for quot ient rings of rational integers. If an n by n matr ix A is involutory and 
QAQ~l = Jt (Jt defined in Theorem 3.1) then the integer s = n — t is called 
the signature of A. W e take 5 = 0 if and only if A = In. 

T H E O R E M 3.2. Let R be a finite local ring and A in GLn(R). Then A is involutory 
of signature t if and only if A has the form In — 2QP where Q and P T are n by s 
matrices over R and PQ = Is. 

Proof. Using (3.1) the proof is easily adap ted from [10] and [4]. 

In Theorem 3.2 two matr ix pairs (Q, P) and (Q', P') m a y yield the same 
involutory matr ix. W e now utilize Brawley's technique [4] to account for this 
duplicity. As utilized above, if P is a matr ix over R we say the rank of P is 
the rank of fxP as a matr ix over IJLR — K. 
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If P is an 5 by n matrix over R, the Q-set (P) of P is 

(P) = {Q\Qisnby s, rank(<2) = 5 and PQ = Is}. 

The P-class \P] of P is the corresponding set of involutory matrices 

[P] = {/w-2<2P|<2isin(P)}. 

We now state two results for finite local rings of odd prime power charac­
teristic which were initially observed by Brawley for finite fields and Z/Zp&. 
The proofs given by Brawley (see [4, Theorems 3 and 4, pp. 474r-475]) suffice 
also for this setting. 

THEOREM 3.3. If P is an s by n matrix of rank s (s > 0) over R, then the map 

Q -> / . - 2QP 

determines a bisection between (P) and [P]. 

THEOREM 3.4. Let P and Pr be s by n matrices of rank s over R. Then [P] = [Pf] 
if and only if there exists an invertible matrix B in GLS(P) with P = BP''. 
Further, the classes [P] and [Pf] are either identical or disjoint. 

LEMMA 3.5. Let R be a finite local ring. If P is an s by n (s ^ n) matrix over R 
with rank s and a(n, s) denotes the number of n by s matrices X satisfying 

PX = I„ 
then 

<r(n,s) = |P|S(W~S). 

Prior to the proof we make several remarks concerning matrices under 
equivalence transformations. Yohe ([11]; in particular, [11, Theorem III, 
p. 344]) has shown that in general a matrix P over a Noetherian local ring R 
can be brought to diagonal form under equivalence; i.e., TPU = diagonal 
matrix where T and U are invertible, if and only if the maximal ideal of R 
is principal. However, it is easy to convince oneself that if P is 5 by n and of 
rank s, then there exist invertible T (s by s) and U in by n) such that 

TPU = [ /„0] . 

Important to this is the observation that under the map /z : R —> K a preimage 
of a non-zero element of K is a unit of R. 

Proof. Consider PX = Is where P is 5 by n and of rank 5 and X is n by 5. 
By the above comment there exist T (s by s) and U (n by n) such that 

TPU = [J„0]. 

Thus, letting Y = U~lX the above equation is equivalent to 

[7S,0]F = T. 

Partitioning Y = [Fi, F2]T where Y\ is 5 by 5 and Y2isn — shy s we see that 
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Yi = T and F 2 is a rb i t rary . Consequently, there exist \R\s(n~s) choices for Y 
and hence for X. 

COROLLARY 3.6. If P is an s by n matrix of rank s over Rf then 

\p\ = \R\s(n-s\ 

4. S y m m e t r i c invo lu tory m a t r i c e s . In this section we examine sym­
metric involutory matrices over finite local rings. T h e work in this area was 
pioneered for finite fields and for Z/Zpx by Ful ton [7]. No te t h a t for any 
commuta t ive ring R and matr ix A in (R)n, any two of the following imply 
the third. 

(a) A is involutory. 
(b) A is symmetr ic . 
(c) A is orthogonal. 
We continue the assumption t h a t R has odd prime power characterist ic. 

L E M M A 4.1 . Let R be a finite local ring. Let ai, a2, x be units of R. Then there 
exist elements £ and rj (of which at least one is a unit) with 

«i£2 + a2y
2 = x-

Proof. T h e proof is by induction on the nilpotency (3 of R. If /3 = 1 then R is 
a finite field and this is handled by Dickson [6, p . 46]. T h u s assume the result 
is t rue for R^-v where 0 > i ^ 1. Consider R(i) and a : RW -> i ^ ' - D . 

W e may suppose there exist £*_i and T^-I in R(i) (one of which is a uni t ) 
such t h a t 

aif2i_i + a2r]2i-i = x + m 

where m is in Mi~1/Mi. Let 

f<(3) = £i_i + ôm 

rii(P) = 77i_i + /3m. 

Since a uni t plus a ni lpotent is a unit , one of £*(5) or rji(fi) is a uni t for every 
choice of 8 and /3 in R(i). Consider 

on^2(ô) + a2Vi
2(fi) = x + 2£<_iôm + 27?i_10m + w. 

W e wan t to choose ô or 0 so t h a t 

2£i-iôm + 27]i^i/3m + m = 0 

in i^ ( i ) . This is possible since either 2£i_:L5 or 2^_ij3 is a uni t . 

T H E O R E M 4.2. Le£ R be a finite local ring. A matrix A in (R)n is involutory 
symmetric of signature s if and only if 

A = I n - 2PTDtP 

where 
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(1) P is s by n. 
(2) De = d iag( / s _i , e) where e = 1 or e is an arbitrary non-square unit of R. 
(3) ppT = D r i t 

Proof. Suppose A = In - 2PTDeP where P and De satisfy (1), (2), and (3). 
Set Q = PTDe. Then by Theorem 3.2 A is involutory of signature 5. Clearly A 
is symmetric . 

Assume A is involutory symmetric of signature 5 in (R)n. Then by 
Theorem 3.2, A = I - 2QP. Since A is symmetric QP = PTQT and 
Q = PTQTQ. T h u s N = QTQ is an 5 by s invertible symmetric matr ix and 

A = I - 2PTNP. 

T h e technique described by Dickson [6, p . 158] can be modified for a 
finite local ring. T h u s there exists an 5 by 5 invertible matr ix B with 

BTNB = diag[ / r , € / _ r ] 

for some r in {0, 1, 2, . . . , s) where e is a non-square uni t or e = 1 (in this 
case r = s). Now, if r — s > 1, following Fulton, let 

/ , , 
a — ô 
8 a y J-s-r-2 

where by Lemma 4.1, a2 -\- b2 = e. Then 

CTBTNBC = diag[/ r f e2I2} e / s_ r_ 2 ] . 

Repeating the argument we eventually determine an invertible F with 

FTNF = d i a g [ / ^ i , e] 

where e = 1 or e is a non-square unit . 
In enumerat ing the symmetric involutory matrices we will proceed b y 

induction on the nilpotency of R. T h e count when R has nilpotency 1, i.e., R is 
a finite field of odd prime characteristic, is given by Fulton. We need the 
following lemma. 

L E M M A 4.3. The element e of R(i) is a non-square unit if and only if ae is a 
non-square unit of i^ ( i _ 1 ) . 

Proof. Certainly if ae is a non-square uni t then e is a non-square unit . 
Conversely, suppose e is a non-square uni t and ae = a2. Then e = a2 + m 

where m is in Mi~1/Mi. W e now show tha t an element x may be chosen so 
t h a t a2 + m = (a + x)2 thus contradicting choice of e. If a2 + m = (a + x)2 

the element x mus t satisfy x2 + 2ax = m. If we select x in Mi~l/Mi this 
reduces to 2ax = m or x = {2a)~lm since 2a is a unit . 

Prior to the next resuit we need some observations on the ker(c) for 
a : R^ -^R^-v. T h e ker(<r) = M^/M*. Since, as an i?-module, Mi~1/Mi 

has an jR-annihilator M then Mi~1IMi is natural ly a K = R/M vector space 
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of finite dimension. Thus, we may select and fix once and for all a X-basis 
«i, . . . , at in Mi~l/Mi and for each element m of Mi~1/Mi may be expressed 
uniquely as m = ^ fe^ where the fe* are considered in i£. For simplicity we 
suppress reference to the basis and write m = (&i, . . . , kt). Further, if r is in 
R{i) then r = f + m where m is in M/M\ Then 

rm = (fki, . . . ,fkt) 

since wa^ = 0. 
The above is motivated by the following observation. The kernel of the 

natural map Z/Zpn -> Z/Zp71'1 is Zp^/Zp71 = {ap^a in Z/Zp] which is a 
Z/Z/>-vector space of dimension 1. Further, to say ap71"1 = bpn~l (mod pn) 
implies a = b (mod p) means that the two Z/Zp-vectors are equal if and only 
if their Z/Z^-scalars are equal. 

The above comments extend naturally to the matrix ring. Thus if N is in 
(M^/M^n then 

N = (Nl9 ...,Nt) 

where Ni is considered in (K)n. We employ bar notation to indicate elements 
considered in or over K. 

For 1 g i ^ /3 let 

ft = dim^M^/M*). 

Note for i, $ i ^ = <£*. 
We now consider solutions of YYT = D€~

1 in (R)n where e is a non-square 
unit of R. 

LEMMA 4.4. Let e be a non-square unit of R^K Let ae = p. Let 
D<rl = diag[/s_i, e -1]. Then the s by n matrix P in (R{i))n is a solution to 
YYT = Dr1 if and only if P = P x + A and 

PJ^ = Dp-
X + N 

where 
A = (Il9 . . . , Ai*) 

N = (Nl9 . . . , NK) 

are matrices over Mi~1/Mi satisfying 

ÀjPS + P1Â/ = S, - N} (1 ^ j ^ *,) 

where Sj is given by 

Dr1 = D,-1 + s, s = <5i,..., Su). 
Proof. Let the s by n matrix P over R( i} satisfy YYT = Dr1- Then <JP = P i ; 

i.e., P = Px + A, A in (M^/M*),, and P1P1
T = D~^ in (2î< *-»),,. Thus 

P i P i r = Up"1 + NiorN in kerfa). Then 

Up-1 + S = Dr1 = (Pi + A)(P1 + A)T = D,-1 + N + APX
T + PXA*. 
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Therefore 
Sj = Nj + ÂjPS + PyÀ? 

for lûj S *,. 
Conversely, if P = P i + A with A described above, then 

ppT = pxpxT + A P I T + P I A T = D-i + N + (5 _ N) = D - K 

We note that the above holds also if e = 1. 
Let N(i,/3) denote the number of distinct solutions over (R(i))n of the 

matrix equation YYT = Df1. For a given P i and S — N over (R{i))n and 
(M1"1 lMl)n, respectively, let T(i,j) denote the number of distinct solutions 
X in (K)n 

XPX
T + PXXT = Sj - Nj. 

By the above lemma, 

N(i,e) = N(i- l,e) I I T(i,j). 
3=1 

Hodges [8] determines T(i,j) and iV(l, e) has been found by Carlitz [5]. 
However, as noted by Fulton, a pair of distinct 5 by ^ solutions to 

YYT = D e
_ 1 do not necessarily determine distinct involutory symmetric 

matrices in (R(i))n. Duplications arise from the automorphisms of De~
l. For 

if P satisfies YYT = De~
l, then so does B~lP where B is any automorph of 

Dr1 and 
(B-1P)TDe(B~lP) = PT(B-1)TD€B-1P = PTDeP. 

Conversely, if the symmetric involutory matrices In — 2PiTDePi and 
In - 2PTDeP are equal, then P1

TDiP1 = PTDeP and 

De = (PP1*)TDe(PP1*) = BTDtB 

where Pi* is a right inverse of P i and B = PPi*. 
Hence it is necessary to determine distinct automorphs of Df1. 

THEOREM 4.5. For Dr1 in (R{i))n let 

Dr1 = Dp~
l + S 

where ae = p and S is in {Mi~l/Mi)n. Then BTD€~
1B = D<rl if and only if 

B = JSi + P and B^D^B^ = Dp~
l + Q where P and Q are in (M^/M*)» 

and where, further, if 

P = (Pi, • . . , Pfa), 
S = (Si, . . . , Sft), 
N = <#x Nfi), 

then Pj is a solution Y to 

(*) YTD(r
1B1 + B^D-^Y = Sj - Lj - BSSjBi 

for 1 Sj ^$iin (K)n. 
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The proof is similar to the proof of the preceding theorem. 

Hodges [8] has determined the number S(i,j) of solutions of (*). Then for 
(*«>)» let 

T(i) = n S(i,j). 

Carlitz [5] has obtained the number of distinct solutions X to XTDflX in 
(K)n where fxe = d. If Q(l, e) denotes this number then the number Q(/3, e) 
of distinct solutions in (R)n of BTDe~

1B = De~
l is 

QiP,*) = Q(l,e)YlT(i) 

(where /3 = nilpotency of R). Hence, 

THEOREM 4.6. The number S(R, n, s) of distinct symmetric n by n matrices of 
signature s over R is 

where /3 is the nilpotency of R and e is a non-square unit of R. 

REFERENCES 

1. M. F. Atiyah and I. G. MacDonald, Introduction to commutative algebra (Addison-Wesley, 
Reading, Mass., 1969). 

2. J. Brawley, Jr., Similar involutory matrices (mod pm), Amer. Math. Monthly 73 (1966), 
499-501. 

3. Similar involutory matrices modulo R, Duke Math. J. 34 (1967), 649-666. 
4. Certain sets of involutory matrices and their groups, Duke Math. J. 36 (1969), 

473-478. 
5. L. Carlitz, Representations by quadratic forms in a finite field, Duke Math. J. 21 (1954), 

123-137. 
6. L. E. Dickson, Linear groups with an exposition of Galois field theory (Dover, New York, 

1958). 
7. J. D. Fulton, Symmetric involutory matrices over finite fields and modular rings of integers, 

Duke Math. J. 36 (1969), 401-408. 
8. J. H. Hodges, Some matrix equations over a finite field, Ann. Mat. Pura. Appl. J+4 (1957), 

245-250. 
9. The matrix equation X2 — I = 0 over a finite field, Amer. Math. Monthly 65 (1958), 

518-520. 
10. J. Levine, and H. M. Nahikian. On the construction of involutory matrices, Amer. Math. 

Monthly 69 (1962), 267-272. 
11. C. R. Yohe, Triangle and diagonal forms for matrices over commutative Noelherian rings, 

J. of Algebra 6 (1967), 335-368. 

The University of Oklahoma, 
Norman, Oklahoma 

https://doi.org/10.4153/CJM-1972-030-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-030-x

