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Abstract

By using variational and some new analytic techniques, we prove the existence of ground state
solutions for the quasilinear Schrödinger equation with variable potentials and super-linear nonlinearities.
Moreover, we establish a minimax characterisation of the ground state energy. Our result improves and
extends the existing results in the literature.
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1. Introduction

We consider the quasilinear Schrödinger equation

−4u + V(x)u − 1
24(u2)u = f (u), x ∈ RN , (1.1)

where N ≥ 3, V : RN → R and f : R→ R satisfy the following basic assumptions:

(V1) V ∈ C(RN , [0,∞)) and V∞ := lim|y|→∞ V(y) ≥ V(x) for all x ∈ RN ;
(F1) f ∈ C(R,R), lim|t|→0 f (t)/t = 0 and lim|t|→∞ | f (t)|/|t|2·2

∗−1 = 0, where 2 · 2∗ is the
critical exponent for (1.1);

(F2) lim|t|→∞ F(t)/|t|2 =∞, where F(t) =
∫ t

0 f (s) ds.

This type of equation was introduced in [1, 7] to study a model of self-trapped electrons
in quadratic or hexagonal lattices. After the work of Poppenberg [11], equations like
(1.1) have received much attention in mathematical analysis and its applications.

Let X =
{
u ∈ H1(RN) :

∫
RN u2|∇u|2 dx < +∞

}
=

{
u ∈ H1(RN) : u2 ∈ H1(RN)

}
. Define

the energy functional

I(u) =
1
2

∫
RN

[|∇u|2 + V(x)u2 + u2|∇u|2] dx −
∫
RN

F(u) dx for u ∈ X. (1.2)
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Although X is not a vector space (it is not closed under the sum), it is a complete
metric space with distance dX(u, v) = ‖u − v‖ + ‖∇u2 − ∇v2‖2. It is easy to check that
I is continuous on X. For any ϕ ∈ C∞0 (RN), u ∈ X and u + ϕ ∈ X, we can compute the
Gâteaux derivative

〈I′(u), ϕ〉 =

∫
RN

[(1 + u2)∇u · ∇ϕ + |∇u|2uϕ + V(x)uϕ − f (u)ϕ] dx. (1.3)

As in [10, 12], u ∈ X is a solution of (1.1) if and only if the Gâteaux derivative of I
along any direction in C∞0 (RN) vanishes. A solution is called a ground state solution if
its energy is minimal among all nontrivial solutions.

Since the term
∫
RN u2|∇u|2 dx is not convex and X is not even a vector space, the

usual minimax techniques cannot be applied directly to I. To overcome this difficulty,
the authors in [6, 9] introduced a new variable replacement v = h−1(u) and transformed
(1.1) into a related semilinear problem

−4v + V(x)h(v)h′(v) = f (h(v))h′(v), x ∈ RN ,

where h′(t) = 1/
√

1 + 2|h(t)|2 on [0,+∞) and h(−t) = −h(t) on (−∞, 0] and this idea
has been used extensively. A typical way to deal with this semilinear problem is to
use the mountain-pass theorem. For this purpose, one usually assumes that f is super-
linear at t = 0 and super-cubic at t =∞ and satisfies the Ambrosetti–Rabinowitz-type
condition

(AR) there exists µ ≥ 4 such that f (t)t ≥ µF(t) ≥ 0 for all t ∈ R.

The condition (AR) plays a crucial role in getting a bounded Palais–Smale sequence.
If f further satisfies

(MN) f (t)/|t|3 is nondecreasing for t ∈ R \ {0},

after the change of variables, the authors in [18, 19] found ground state solutions of
(1.1) by the Nehari technique. Without any change of variables, Liu et al. [10] found
ground state solutions of (1.1) with special form f (t) = |t|p−1t for 4 ≤ p < 2 · 2∗ by using
a minimisation on a Nehari-type constraint for I. These methods do not work for (1.1)
in case f (t) = |t|p−1t with 2 ≤ p < 4 due to the competing effect between 4(u2)u and
f (u). To overcome this difficulty, Ruiz and Siciliano [12] introduced a constrained
minimisation procedure for I, using a constraint related to the Pohoz̆aev identity, and
proved for the first time that (1.1) has a ground state solution when f (t) = |t|p−1t with
2 ≤ p < 4 and V satisfies (V1) and

(V2′) V ∈ C1(RN), infRN V > 0 and t 7→ t(N+2)/(N+p)V(t1/(N+p)x) is concave on (0,∞)
for any x ∈ RN .

Recently, Wu and Wu [17] obtained a similar result by using the change of variables,
Jeanjean’s monotonicity trick [8] and a Pohoz̆aev-type identity, where V satisfies (V1)
and

(V2′′) V ∈ C1(RN), infRN V > 0, V(x) = V(|x|) and t3−p∇V(tx) · x is nonincreasing on
t ∈ (0,∞) for any x ∈ RN .
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The strategies used in [12, 17] rely heavily on the condition infRN V > 0 and the
algebraic form f (t) = |t|p−2t (see [12, Proposition 3.3 and the proof of Theorem 2.1]
and [17, Lemma 2.6]).

Motivated by [12, 17], we shall establish the existence of ground state solutions for
(1.1) with more general super-linear nonlinearities and give a minimax characterisation
of the ground state energy. To state our results, we introduce the following new
assumptions modelled on the approach taken in [12–14]:

(F3) there exists p > 2 such that ( f (t)t + NF(t))/|t|p−1t is nondecreasing on both
(−∞, 0) and (0,∞);

(V2) V ∈ C1(RN) and there exists θ ∈ [0, 1) such that

t 7→
(N + 2)V(tx) + ∇V(tx) · (tx)

tp−2 +
θN(N − 2)2

8tp|x|2

is nonincreasing on (0,∞) for any x ∈ RN , where p > 2 is given by (F3).

Similarly to [10, 12], we define the Pohoz̆aev functional of (1.1) by

P(u) :=
N − 2

2
‖∇u‖22 +

N − 2
2

∫
RN

u2|∇u|2 dx

+
1
2

∫
RN

[NV(x) + ∇V(x) · x] u2 dx − N
∫
RN

F(u) dx. (1.4)

It is well known that any solution u of (1.1) satisfies P(u) = 0. Motivated by this
fact, we define the functional J(u) := 〈I′(u), u〉 + P(u) for all u ∈ X and define a
constraint manifold of Pohoz̆aev–Nehari type M := {u ∈ X \ {0} : J(u) = 0}. Then
every nontrivial solution of (1.1) is contained inM. The assumptions (F3) and (V2)
will play a crucial role in proving that m := infM I is achieved and the minimiser of m
is a critical point of I. We can now state our main result.

Theorem 1.1. Assume (V1), (V2) and (F1)–(F3) hold. Then problem (1.1) possesses a
ground state solution ū ∈ X such that I(ū) = infM I = infu∈X\{0}maxt>0 I(tut) > 0, where
ut(x) := u(x/t).

Remark 1.2. Note that (V2′) or (V2′′) implies (V2) with θ = 0, and f (u) = |u|p−2u with
2 < p < 4 satisfies (F1)–(F3). Moreover, infRN V > 0 is not required in (V2). From this
point of view, our result generalises and improves the results in [12, 17] and extends
some other results of a similar type.

Since the approaches used in [12, 17] are not applicable to (1.1) with more general
functions f , some new ideas and more careful analytical techniques are introduced to
prove Theorem 1.1. More precisely, by using some new techniques and inequalities
related to I(u), I(tut) and J(u), we prove that a minimising sequence {un} ⊂ X of
infM I weakly converges to some nontrivial û in X (after a translation and extraction
of a subsequence) and t̂ût̂ ∈ M is a minimiser of infM I for some t̂ > 0 provided
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m = infM I ≤ m∞ := infM∞ I∞. Then, following [12, pages 1231–1232], we obtain
I′(t̂û) = 0, where

I∞(u) =
1
2

∫
RN

[
|∇u|2 + V∞u2 + u2|∇u|2

]
dx −

∫
RN

F(u) dx for all u ∈ X (1.5)

andM∞ = {u ∈ X \ {0} : J∞(u) = 0} with J∞(u) = (d/dt)I∞(tut)|t=1.

Remark 1.3. Our approach is totally different from that used in [17] and can be used
to treat more general quasilinear problems because it does not depend on any change
of variables and compactness of the Sobolev embedding.

Throughout this paper, we denote the usual norms of Ls(RN) and H1(RN) by ‖ · ‖s
and ‖ · ‖, respectively.

2. Preliminaries

Lemma 2.1. Assume that (V1), (V2), (F1) and (F3) hold. For t ≥ 0, x ∈ RN \ {0} and
τ ∈ R,

h1(t, x) := V(x) − tN+2V(tx) −
1 − tN+p

N + p
[(N + 2)V(x) + ∇V(x) · x]

+
θ(N − 2)2

4(N + p)|x|2
[NtN+p − (N + p)tN + p] ≥ 0, (2.1)

h2(t, τ) := tN F(tτ) − F(τ) +
1 − tN+p

N + p
[ f (τ)τ + NF(τ)] ≥ 0. (2.2)

Proof. For x ∈ RN \ {0}, by (V2),

d
dt

h1(t, x) = tN+p−1
{[

(N + 2)V(x) + ∇V(x) · x +
θN(N − 2)2

4|x|2

]
−

[ (N + 2)V(tx) + ∇V(tx) · (tx)
tp−2 +

θN(N − 2)2

4tp|x|2

]}
and this expression is greater than or equal to zero for t ≥ 1 and less than or equal
to zero for 0 < t < 1. Together with the continuity of h1(·, x), this yields (2.1). For
τ ∈ R \ {0}, by (F4),

d
dt

h2(t, τ) = tN+p−1|τ|p
[ f (tτ)tτ + NF(tτ)

|tτ|p
−

f (τ)τ + NF(τ)
|τ|p

]
and this expression is greater than or equal to zero for t ≥ 1 and less than or equal to
zero for 0 < t < 1. Together with the continuity of h2(·, τ), this yields (2.2). �

For t ≥ 0, let

β1(t) := NtN+p − (N + p)tN + p, (2.3)
β2(t) := (N + 2)tN+p − (N + p)tN + p − 2. (2.4)

Since p > 2, for all t ∈ [0, 1) ∪ (1,∞),

β1(t) > β1(1) = 0, β2(t) > β2(1) = 0. (2.5)
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Lemma 2.2. Assume that (V1), (V2), (F1) and (F3) hold. Then, for all u ∈ H1(RN) and
t > 0,

I(u) ≥ I(tut) +
1 − tN+p

N + p
J(u) +

(1 − θ)β1(t)
2(N + p)

‖∇u‖22 +
β2(t)

2(N + p)

∫
RN

u2|∇u|2 dx. (2.6)

Proof. Note that

I(tut) =
tN

2
‖∇u‖22 +

tN+2

2

∫
RN

V(tx)u2 dx +
tN+2

2

∫
RN

u2|∇u|2 dx − tN
∫
RN

F(tu) dx.

(2.7)
Since J(u) = 〈I′(u), u〉 + P(u) for u ∈ X, (1.3) and (1.4) imply that

J(u) =
N
2
‖∇u‖22 +

1
2

∫
RN

[(N + 2)V(x) + ∇V(x) · x]u2 dx

+
N + 2

2

∫
RN

u2|∇u|2 dx −
∫
RN

[ f (u)u + NF(u)] dx. (2.8)

By Hardy’s inequality, for u ∈ H1(RN),

‖∇u‖22 ≥
(N − 2)2

4

∫
RN

u2

|x|2
dx. (2.9)

Thus, by (1.2), (2.1)–(2.5) and (2.7)–(2.9),

I(u) − I(tut) =
1 − tN

2
‖∇u‖22 +

1
2

∫
RN

[
V(x) − tN+2V(tx)

]
u2 dx

+
1 − tN+2

2

∫
RN

u2|∇u|2 dx +

∫
RN

[tN F(tu) − F(u)] dx

=
1 − tN+p

N + p
J(u) +

β2(t)
2(N + p)

∫
RN

u2|∇u|2 dx +
β1(t)

2(N + p)
‖∇u‖22

+
1
2

∫
RN

{
V(x) − tN+2V(tx)

−
1 − tN+p

N + p
[(N + 2)V(x) + ∇V(x) · x]

}
u2 dx

+

∫
RN

{
tN F(tu) − F(u) +

1 − tN+p

N + p
[ f (u)u + NF(u)]

}
dx

≥
1 − tN+p

N + p
J(u) +

(1 − θ)β1(t)
2(N + p)

‖∇u‖22 +
β2(t)

2(N + p)

∫
RN

u2|∇u|2 dx

for all u ∈ H1(RN) and t > 0. This shows that (2.6) holds. �

From Lemma 2.2, we have the following corollary.

Corollary 2.3. Assume that (V1), (V2), (F1) and (F3) hold. Then, for u ∈ M,

I(u) = max
t>0

I(tut).
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Lemma 2.4. Assume that (V1), (V2) and (F1)–(F3) hold. Then, for any u ∈ X \ {0},
there exists a unique tuutu > 0 such that tuutu ∈ M.

Proof. Inspired by [2–5, 13, 15], we let u ∈ X \ {0} be fixed and define the function
ζ(t) := I(tut) on (0,∞). Clearly, by (2.8) and (2.7),

ζ′(t) = 0⇔
N
2

tN−1‖∇u‖22 +
tN+1

2

∫
RN

[(N + 2)V(tx) + ∇V(tx) · (tx)]u2 dx

− tN−1
∫
RN

[
f (tu)tu + NF(tu)

]
dx = 0

⇔ J(tut) = 0⇔ tut ∈ M.

It is easy to verify, using (V1), (V2), (F1) and (2.7), that limt→0 ζ(t) = 0, ζ(t) > 0 for
t > 0 small and ζ(t) < 0 for t large. Therefore, maxt∈(0,∞) ζ(t) is achieved at some tu > 0,
so that ζ′(tu) = 0 and tuutu ∈ M.

Next we claim that tu is unique for any u ∈ X \ {0}. In fact, for some u ∈ X \ {0},
if there exist two positive constants t1 , t2 such that both t1ut1 , t2ut2 ∈ M, that is,
J(t1ut1 ) = J(t2ut2 ) = 0, then (2.5) and (2.6) imply that

I(t1ut1 ) > I(t2ut2 ) +
tN+p
1 − tN+p

2

(N + p)tN+p
1

J(t1ut1 ) = I(t2ut2 )

> I(t1ut1 ) +
tN+p
2 − tN+p

1

(N + p)tN+p
2

J(t2ut2 ) = I(t1ut1 ).

This contradiction shows that tu > 0 is unique for any u ∈ X \ {0}. �

Lemma 2.5. Assume that (V1) and (V2) hold. Then there exists γ1 > 0 such that, for
all u ∈ H1(RN),

N‖∇u‖22 +

∫
RN

[(N + 2)V(x) + ∇V(x) · x]u2 dx ≥ γ1‖u‖2. (2.10)

Proof. Arguing by contradiction, suppose that there exists a sequence {un} ⊂ H1(RN)
such that

‖un‖ = 1, N‖∇un‖
2
2 +

∫
RN

[(N + 2)V(x) + ∇V(x) · x] u2
n dx = o(1). (2.11)

Then there exists ū ∈ H1(RN) such that, going to a subsequence, un ⇀ ū in H1(RN),
un → ū in Ls

loc(RN) for 2 ≤ s < 2∗ and un → ū almost everywhere in RN . Let t→ +∞

in (2.1). Then

(N + 2)V(x) + ∇V(x) · x +
θN(N − 2)2

4|x|2
≥ 0. (2.12)

From (2.9), (2.11) and (2.12), the weak semicontinuity of the norm and Fatou’s lemma,

0 = lim
n→∞

[
N‖∇un‖

2
2 +

∫
RN

[(N + 2)V(x) + ∇V(x) · x]u2
n dx

]
≥ (1 − θ)N‖∇ū‖22 +

∫
RN

[
(N + 2)V(x) + ∇V(x) · x +

θN(N − 2)2

4|x|2

]
ū2 dx,
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which implies that ū = 0. Using (V1) and (V2), it is easy to check that∫
RN
{(N + 2)[V(x) − V∞] + ∇V(x) · x} u2

n dx = o(1). (2.13)

Together (2.11) and (2.13) imply that

o(1) = N‖∇un‖
2
2 +

∫
RN

[(N + 2)V(x) + ∇V(x) · x] u2
n dx

= N‖∇un‖
2
2 + (N + 2)V∞‖un‖

2
2 + o(1)

≥ min{N, (N + 2)V∞}‖un‖
2 + o(1)

= min{N, (N + 2)V∞} + o(1).

This contradiction shows that there exists γ1 > 0 such that (2.10) holds. �

Lemma 2.6. Under the assumptions of Theorem 1.1,

inf
u∈M

I(u) = m = inf
u∈H1(RN )\{0}

max
t>0

I(tut) > 0.

Proof. From Corollary 2.3 and Lemma 2.4,

M , ∅ and m = inf
u∈H1(RN )\{0}

max
t>0

I(tut).

Next we prove that m > 0. Since J(u) = 0 for u ∈M, it follows from (F1), (2.8), (2.10)
and the Sobolev embedding inequality that

γ1‖u‖2 + (N + 2)
∫
RN
|∇u|2u2 dx

≤ N‖∇u‖22 +

∫
RN

[(N + 2)V(x) + ∇V(x) · x]u2 dx + (N + 2)
∫
RN
|∇u|2u2 dx

= 2
∫
RN

[ f (u)u + NF(u)] dx (2.14)

≤
γ1

2
‖u‖2 + C1S −2∗/2

( ∫
RN
|∇u|2u2 dx

)2∗

(2.15)

for u ∈ M. This implies that there exists ρ0 > 0 such that∫
RN
|∇u|2u2 dx ≥ ρ0 for u ∈ M. (2.16)

From (2.6) with t→ 0,

I(u) −
1

N + p
J(u) ≥

(1 − θ)p
2(N + p)

‖∇u‖22 +
p − 2

2(N + p)

∫
RN

u2|∇u|2 dx. (2.17)

Combining (2.16) with (2.17) yields m = infM I > 0. �

Following [12, pages 1231–1232], we can obtain the following lemma.

Lemma 2.7. Under the assumptions of Theorem 1.1, if ū ∈ M and I(ū) = m, then ū is a
critical point of I.
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3. Proof of Theorem 1.1

Lemma 3.1. Under the assumptions of Theorem 1.1, m∞ ≥ m.

Proof. Note that the conclusions in Section 2 on I and J hold for I∞ and J∞, where

J∞(u) =
N
2
‖∇u‖22 +

N + 2
2

∫
RN

V∞u2 dx

+
N + 2

2

∫
RN

u2|∇u|2 dx −
∫
RN

[ f (u)u + NF(u)] dx. (3.1)

By Lemma 2.5, M∞ , ∅. Arguing by contradiction, we assume that m > m∞. Let
ε := m − m∞. Then there exists u∞ε such that

u∞ε ∈ M
∞ and m∞ +

ε

2
> I∞(u∞ε ). (3.2)

In view of Lemma 2.5, there exists tε > 0 such that tε(u∞ε )tε ∈ M. Since V∞ ≥ V(x) for
all x ∈ RN , it follows from (1.2), (1.5), (3.2) and Corollary 2.3 that

m∞ +
ε

2
> I∞(u∞ε ) ≥ I∞(tε(u∞ε )tε) ≥ I(tε(u∞ε )tε) ≥ m = m∞ + ε.

This contradiction shows that m∞ ≥ m. �

Lemma 3.2. Under the assumptions of Theorem 1.1, the infimum m is achieved.

Proof. Let {un} ⊂ M be such that I(un)→ m. By (2.17), {‖∇un‖2} and {‖∇(u2
n)‖2} are

bounded. Passing to a subsequence, we have un ⇀ ū in H1(RN), u2
n ⇀ ū2 in H1(RN),

un → ū in Ls
loc(RN) for 2 ≤ s < 2 · 2∗ and un → ū almost everywhere in RN . There are

two possible cases: (i) ū = 0 and (ii) ū , 0.

Case (i). ū = 0, that is, un ⇀ 0 in H1(RN) and u2
n ⇀ 0 in H1(RN). Then un → 0 in

Ls
loc(RN) for 2 ≤ s < 2 · 2∗ and un → 0 almost everywhere in RN . Using (V1), it is easy

to show that

lim
n→∞

∫
RN

[V∞ − V(x)]u2
n dx = lim

n→∞

∫
RN
∇V(x) · xu2

n dx = 0. (3.3)

From (1.2), (1.5), (2.8) and (3.3),

I∞(un)→ m, J∞(un)→ 0.

By (F1), (2.14) and (2.16),

γ1‖un‖
2 + (N + 2)ρ0 ≤ 2

∫
RN

[ f (un)un + NF(un)] dx ≤ ε(‖un‖
2 + ‖u2

n‖
2∗
2∗) + Cε‖un‖

q
q

(3.4)

for some q ∈ (2, 2 · 2∗). By (3.4) and Lions’ concentration compactness principle
[16, Lemma 1.21], there exist δ > 0 and {yn} ⊂ R

N such that
∫

B1(yn) |un|
2 dx > δ. Let

ûn(x) = un(x + yn); then

J∞(ûn) = o(1), I∞(ûn)→ m and
∫

B1(0)
|ûn|

2 dx > δ. (3.5)
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Therefore, there exists û ∈ H1(RN) \ {0} such that, passing to a subsequence,
ûn ⇀ û in H1(RN) and û2

n ⇀ û2, in H1(RN);
ûn → û in Ls

loc(RN), for all s ∈ [1, 2 · 2∗);
ûn → û almost everywhere on RN .

(3.6)

Let wn = ûn − û. Then, from (3.6) and the Brezis–Lieb lemma (see [14, Lemma 2.7],
[12, (12)] and [16]),

I∞(ûn) = I∞(û) + I∞(wn) + o(1), J∞(ûn) = J∞(û) + J∞(wn) + o(1). (3.7)

By (1.5), (3.1), (3.5) and (3.7),

J∞(wn) = −J∞(û) + o(1), (3.8)

I∞(wn) −
1

N + p
J∞(wn) = m −

[
I∞(û) −

1
N + p

J∞(û)
]

+ o(1). (3.9)

If there exists a subsequence {wni} of {wn} such that wni = 0, then

I∞(û) = m, J∞(û) = 0 (3.10)

and so the proof is completed. Next we assume that wn , 0. We claim that J∞(û) ≤ 0.
Otherwise, if J∞(û) > 0, then (3.8) implies that J∞(wn) < 0 for large n. Applying 2.4
to I∞, there exists tn > 0 such that tn(wn)tn ∈ M

∞ for large n. Applying Lemma 2.2 to
I∞, from (1.5), (3.1), (3.9) and Lemma 3.1,

m −
[
I∞(û) −

1
N + p

J∞(û)
]

+ o(1) = I∞(wn) −
1

N + p
J∞(wn)

≥ I∞
(
tn(wn)tn

)
−

tN+p
n

N + p
J∞(wn) ≥ m∞ ≥ m,

which is a contradiction because I∞(û) − J∞(û)/(N + p) > 0 by (2.17). This shows that
J∞(û) ≤ 0. From Lemma 2.2, there exists t∞ > 0 such that t∞ût∞ ∈ M

∞. Moreover, it
follows from (1.5), (3.1), (2.6), (3.5), (3.6), Fatou’s lemma and Lemma 3.1 that

m = lim
n→∞

[
I∞(ûn) −

1
N + p

J∞(ûn)
]
≥ I∞(û) −

1
N + p

J∞(û)

≥ I∞
(
t∞ût∞

)
−

tN+p
∞

N + p
J∞(û) ≥ m∞ ≥ m,

which implies that (3.10) holds. In view of Lemma 2.4, there exists t̂ > 0 such that
t̂ût̂ ∈ M. Applying Corollary 2.3 to I∞, we deduce from (V1), (1.2), (1.5) and (3.10)
that

m ≤ I(t̂ût̂) ≤ I∞(t̂ût̂) ≤ I∞(û) = m.

This shows that m is achieved at t̂ût̂ ∈ M.

Case (ii): ū , 0. In this case, analogous to the proof of (3.10), by using I and J instead
of I∞ and J∞, we can deduce that I(ū) = m and J(ū) = 0. �

Proof of Theorem 1.1. In view of Lemmas 2.7 and 3.2, there exists ū ∈ M such that
I′(ū) = 0 and I(ū) = m = infu∈X\{0}maxt>0 I(tut). This completes the proof. �
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