SUM OF TWO FOURTH POWERS OF INTEGERS
MINORU TSUNEKAWA

Introduction. Problems concerning the sum of two fourth powers of in-
tegers seem to be so difficult that little has been known since long years [3].
For instance, it is an important problem to determine whether there are infinitely
many prime numbers which are represented in the form p =a*+ %' But noth-
ing is known except that the density of such prime numbers is easily proved
to be 0; accordingly it is difficult to obtain a necessary and sufficient condition
under which- p is represented in such a form.

In this paper we propose to derive several theorems on the above subject
by investigating the sum of two fourth powers of integers in the biquadratic
riumber field R(V7) or in its subfields. We shall use as main tools the de-
composition law of prime numbers in R(¥ i) and the concrete expression of
a fundamental unit in R(V ).

Hereinafter we say that an integer in a certain number field is of B type
if it is represented as a sum of two fourth powers of integers belonging to
the field and we denote by B. P. “the representation as a sum of two fourth
powers of integers”.

The contents of §1 relate to the existence problem of B type prime numbers
in the subfield of R(yi ) different from the rational number field, §2 to the
uniqueness problem of B. P. and §3 to B. P. of the product of several B type
prime numbers.

Here the writer would like to express his thanks to Prof. S. Kuroda and

Dr. T. Kubota for their instructive advices.

Notations and Preliminaries

(1) {=y =1, R=rational number field.

(2) Minimal basis of R(z), R(¥2), R(Y—=2) or R(Vi ) are respectively (1,
i), (1, ¥2), (1, y=2) or (1, Vi, 4 4/ i), and their class numbers are all 1.
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Hence every ideal in each field is principal.

(3) The fundamental unit in R(V ), as well as R(¥2),ise=1+v2. For
the sake of convenience, we put vz =(1+4)/V2, and so e=1+vV2 =1+
(1-9)vi. Hence, for n=0, =1, +2, ..., ®=7+s(1 -4, where  and s
are rational integers satisfying > —2s*= ( —1)".

(4) Necessary and sufficient condition under which a rational prime number
» is completely decomposed in R(V7) is p=1 (mod 8).

(5) The notation a|b or a+b respectively means that @ is a divisor of b

or not, where a and & are integers.

§1. Concerning the existence of B type prime numbers, we have the fol-
lowing results.

TuEOREM 1. There is no B type prime number (€€ R) in R(3).

Proof. Let a prime number n(& R) in R(:) be of B type and put
(L1 r=a'+ B8 =(a+BVi)(a—pVi)(a+BiVi)(a—piVi); a, BE R().

Since then = is prime in R(7), at least two factors in the right hand side of
(1.1) must be of the form = (¥ )*¢", where £=0,1, 2 or 3 and #=0, =1,
+2, . ... Suppose, forinstance, a + Vi = + (Vi )*e*and pute® =7+ s(1— V3,
then

(1.2) a+pfVi =2 Wi {r+s(1-iVi).
Therefore

(1) If =0, then a= +7, B= +s(1—1)
(2) If k=1, then a= £s5(1+14), B= =7
(3) If k=2, then a= x7i, 3= £s(1+1)
(4) If k=3, then a= ¥s(1—4), B= +7i.

In these four cases, we have n= =+ (' —4s') after all. But this is contrary to
the assumption = ¢ R. Next we suppose that the left hand side of (1.2) is
equal to « — Vi, a+ Biyi or a—BiVi. In these cases proof will be similarly
carried out by interchanging B with — g or with = a.

TueoreM 1. The only B type prime numbers (¢ R) in R(V2) are 5&™
(m= 1, £2,...) and there is no B type prime number (&£ R) in R(Y=2).
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Proof. In the case of R(Y2), let a prime number =(€ R) in R(V2) be
of B type and put

(1.3) r=a'+ B =(a+pVi)la—BVi)(a+pivi)(a—piVi),

where a, 3 R(V2) and (a, 8) =1. Since then = is prime in R(v2), at least
two factors in the right hand side of (1.3) must be of the form = (vi)¥e™,

where k=0, 1,2 or 3and m=0, +1, +2, .... First we treat the case:
(1.4) a+BVi =+ (Vi)Fem

It is easily seen that (1.4) is impossible for £ =0, 1, so we closely examine the
remaining cases of k=2, 3.

(1) If k=2, then taking square of the both sides of (1.4) we have 2aBvVs

= — (™ + a®+ §%), whence

1a’Fi=("+a’)’ = '+ 2 (8" + a)i.
Since @, B and e R(Y2) and 8 = 0, we obtain a® = ™ and so 8*=2¢". Hence
r=a'+ 3 =56"(mx0).

(2) If k=3, then (1.4) gives the relation a= + (Vi )’¢" - 8yi. Hence
o’ =(f"—e™)i2™B. This means a’= =2¢"B and §°— €™ =0. Consequently
B'=e" a'=46" and r=a'+ ' =5¢"(m % 0).

Assuming that the left haﬁd side of (1.4) is respectively equal to a — BV 7,
«+pBivi or a« —BiVi, the proof will be similarly carried out through inter-
changing g with — 8 or *+a.

Accordingly it has been decided that = =5¢'" is a necessary condition for
a prime number x in R(V2) to be of B type. This is clearly sufficient, for
5= (2" 4+ (&M
clude quite similarly that 7 =5¢'" (m % 0) are the only B type prime numbers
in R(V=2). But 5¢" ¢ R(V-2).

TuroreM 1. There is no B type prime number (£ R, R(N2)) in R(Yi).

The proof of this theorem shall well be omitted, because it is- essentially
the same as in the case of theorem 1 in spite of a comparatively complicated
computation.

§2. It seems very difficult to determine in a general form the number of
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B. P. of a given integer in a field. Until now the following results with regard

to a product of two prime numbers has only been obtained.

THEOREM 2. Let 7, s be rational prime numbers which are either 2 or of
the form 8 h+1 and further let the product rs be of B type, then the B. P. of
7S 1S unique.

Proof. Assume 7s = x{+ ] =%;+3; under the condition (%1, y) = (%2, 32)
=1 and consider the following decompositions in R(V ¢ ),

(2.1) %+ yi =(x1+ yn/z) (% —yW 1) (% +y1i\/"{) (%1 —yli\/ii ).
(2.2) i 4+y1= %+ 5 ) (%2 — yav i) (% +y21’\/‘{) (%2 —yzi\/?‘)-

On the other hand, decompose respectively 7, s into r==n7, s =¢7 in R(s), and

respectively 7, %, o, and 7 into 7 = mm, =717, o =gczand 7=55:in R(Vi ) :

ie.
(2.3) T=AT =M TeT17T2
(24) S =00 = ¢1020103.

Now each factor in the right hand sides of (2.3) and (2.4) is distributed into
each factor of the right hand sides of (2.1) and (2.2). (Consider the norm
from R(V7) to R). Notations being suitably selected, we may assume that

(2.5) mol (%1 + V7).

Here let us examine other factors;

(1) Suppose first that 0, is also contained in a factor of (2.2), for in-
stance, in x:+y:¢. Then, using (2.5), we obtain mioi| (%152 — %231) which
causes the following relation

(2. 6) 1’8! (xlyz - xzy1).

As | %152 — %3] <7s unless x| =y =%:!=15]=1, it follows from (2.6) that
%192 — %1 =0, which yields x:= £ %1, y.= xy, for (%1, y1) = (%2, ) =1. Ac-
cordingly B. P. is unique. If 7,0, is contained in one of any other three factors
of (2.2) than x.+ ¥V ¢, a similar proof is available.

(2) Suppose secondly that m10: is not contained in any factor of (2.2).

Then, notations being suitably chosen, we can assume

(2.7) mozl (% + v 1),
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Therefore, using (2.5) and (2.7), we have
(2.8) 7| (xxyz — %y1)

similarly to the above case (1). Here again we closely examine the factor of
(2.2) which contains a;.

(i) If o1l (x2— 3,V ), then from (2.5) we obtain s|(x1y:+ %) and the
relation 7s|{(x:132)* — (%1)?} through (2.8). Since |(x:5:)%— (%31)%] < (%:192)*
+(xgy1)2<-—21—(x§+y§+x$+y§)=rs, we have (x,9.)°= (%5 Therefore x,
=+ %, Y2= £y

(ii) If 1| (% + 3,4V i), then s|(x;%:+ y19.:) after all. Hence, 7s| (%, 22+ y:1,)
(%192 — %231) holds by (2.8).» Since [(x1% + y132)(%15: — %y1) | < %4{(x1xz+y1yz)2

+ (x,yz—xzyx)”} < 7s, we have (x1x:+ 132) (%19 — %9:) =0, which leads to the
same conclusion. , -

(iii) If &) (% — 324y ), then a similar proof is available.

(3) In other remaining cases where 0. is contained in any one of (x
—~9W1), (x2+324Vi) or (%—%4Yi), we can also obtain similar proofs.

THEOREM 2'. If a product no(& R) of two prime numbers n, ¢ in R(i) is
of B type, then its B. P. is unique.

Proof. Under conditions «, 8 R(7) and (a, B) =1, we put
(2.9) ro=a'+ B'= (a® + §’1) (a® — §%).

i (144 no) =1, then (a®+ %4, a* — B4) =1 and if (1+4 mo) %1, then o’ + 5%
and o — 5°7 have the common factor 1+ at least, and so o= =+ (1+1)?
= x24 If further any one of the factors in (2.9) is =1 or =14, then, quite
similarly to (1.2), we get mo= = (#' —4s'). This is, however, contrary to the
assumption n¢ & R. Hence z and ¢ must be contained separately in two factors
of (2.9). If z= + (a®+ %) and ¢ = = (a* — f%), then

(2.10) o= x(r+a)/2, B= Filz—a)/2.
If 1= xi(a®+ B’0), o= Fi(a® — §°4), then
at=+i(r-0)/2, B= = (x+a)/2

The latter can be obtained from (2.10) by interchanging « with 8. Thus, «
and B are uniquely determined through (2.10).
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Note. There are many examples which show that the above theorems 2,
2/ do not necessarily hold for a product of more than two prime numbers.

Ex. 1. 176311380537 = 542* + 103" = 514 + 359"
Ex. 2. 2+113-4889-2953 = 239 + 7* = 227" + 157*
Ex. 3. (1+44)(7-84#)(3+204) =(10+34)'+(9-54)"
=(5+2)"+3(1+d)"
§3. It is also a hard problem to determine generally whether a product
of several given B type prime numbers has B. P. or not. First let us state a
preliminary lemma without proof.

LemMAa. Let a product N =pip: - * - Dn of different B type rational prime
numbers pm=am+bn(m=1,2,..., n) be of B type and put

3.1 N=d"+b, (g b)=1,

then the following relation holds;

(3.2) H (Gt by i) = + (Vi )¥elat byi),

m=1

where k=0,1,2 or 3, 1=0, =1, £2,... and  =r+s(1—i)Vi. Without any
loss of generality, the following conditions can be added:

(3.3) a>0, b>0, 2|, amn>0, 7>0.

Under these conditions the right hand side of (3.2) is written as follows:
(3.4) I'_Il(am+bm\/7 )=+(Vi){ra+sb+ (2b+sa)Wi + sbi - saiV i }.
For N=2p.p. + - - pn, we have similarly

(3.5) (1+4) I (am+ b 4 )
=+(i){ra+sb+ (rb+sa)Vi + sbi— saiv i }.
where ab is to be odd.

TueoreMm 3. Notations being as in the preceding lemma, none of the pro-
ducts pibs, pipaps, 21, 2 p1p: and 2 pipeps can be of B type.

Proof. In the case of N=pip,, (3.4) gives
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(3.6) (@i +bV1)(@g+bVi)
=+Wi)*{ra+sb+ (rb+sa)yi + sbi—saiyi}.

Now let us closely examine four cases of 2=0, 1, 2 and 3.
(1) If B=0, then, since (1, V¢, %, &%) is a basis of R(V7), the following
relations hold (p= *1):

o(ra+ sb) = a1a:
o(7b+ sa) = a1 b + a2 by
pr = blbg

—psa=0.

3.7)

From the last formula of (3.7) we have s =0, which is contrary to the assum-
ption b; % 0, b2 0.
(2) If k=1, then we have psb =0 and psa = a;a,, which is a contradiction.
(3) If =2, then the following relations hold:

p(ra + Sb) = b1b2
o(rb+sa) =0
(38) "()Sb:dlaz

0sa = aibs+ axb,.

Here s=0 is impossible, for a;a: 0. If |s|=2, then it follows from the 3rd
and 4th formulas of (3.8) that
(3.9) bé%alaz, a=max(|aib,|, |a:b:1!).
But these can not be true, for a*+ 5= (a1a@:)" + (@16:)* + (@2b1)* + (b:5,)*.  Ac-
cordingly |s|=1, but this is also impossible from the 2nd relation of (3.8).

(4) If k=3, the proof is similar to the case (3).

In the case of N =p:p:p3, (3.4) yields

3
(3.10) Hl(am—i-bm\/z' Y= +(Vi ) {ra+sb+ (rb+sa)Vi + sbi—saiyi ).

m=

Put, for convenience,

A= ailas

(3.11) B=bia:a;+ b:aza: + bsas a»
C =a1b2b3+ a2 030, + asb, b,
D = blbzb;;.
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Then one and only one of A, B, C and D is odd, because aibi, a@:b:, asb; are
all even. Now let us examine four cases of 2=0, 1, 2 and 3.
(1) If =0, then it follows from (3.10) and (3.11) ,that

olra+sb) = A

(3.12) o(zb+sa) =B
osb=C

—psa=D.

If s is odd in (3.12), then A and D are odd, since b is even. This is, however,
contrary to the fact mentioned above. Hence s must be even. If s=0, then
D = b b,b; =0, which can not hold. If |s|=4, then the 3rd and 4th formulas
of (3.12) give

a§llb1bzbal, bé%max(laxbzbal, ldzbsbxl,. |@:b1b21),

which can not hold by a quite similar reason as (3.9) did not. Finally suppose
|s| =2, then the 1st formula of (3.12) implies 2|aia:as, 8!D, 8|sa and 4|a,
which contradicts the assumption 2+aq.

(2) If k=1, we have psb=D and psa = A, which is impossible.

(3) If £=2, then (3.10) gives

o(ra+sb) =C

(3.13) o(7b+sa) =D
—psb=A

osa = B.

Here s must be even from a similar reason to the case of k=0. But neither
s=0 nor |s| =4 can hold. Hence |s|=2 (r=3). Now by eliminating a, b, a;
and b; from (3.13), we obtain the relation

(7" = s*)ai as — rs(@ibs + azb,) (@1@z + by bs) + s{b}b} + (@b + @:b,)*} = 0.

Put s=2p; (p; = +1) and 7 =3, and further put (a/b;) = ¢; and (as/b.) =¢t. Then
by an easy computation the above relation turns out

(3.14) (GBH+6mb+ME+2088+ 4018 +3)t+45+6pt2+4=0.

Now we can easily prove that (3.14) can not hold for any real values of #; and
t.. For, first of all, 5#+6p:t,+4>0, and, D being the discriminant with
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respect to # of the left hand side of (3.14), we have
D= @ti+40mt:+3) - 5+ 6pt+4) (481 + 60t +4),

where S5#+6pt:+4>38+4pt+3 and 46+6pt+4>38+40k+3
Hence D <0.

(4) If 2=3, then a similar relation to (3.13) leads to a similar conclusion.

By means of (3.5) we can accomplish an almost same proof in the case
of N=2p, or 2,9, and a comparatively complicated but analogous one in the
case of N =2 pip:ps.

Here we want to add a supplementary corollary and theorem derived

almost immediately from theorem 3 and theorem 1'.
Corollary. pi, P} and pip, cannot be of B type.

Proof. Clear, because the lemma is valid for <3 even if p,. are not

necessarily different.

Note. This corollary can, however, not be extended in general, for ex-
~ ample, if p1=al+bi, then pipi= (a12)' + (bips)".

Tueorem 3. A product v =mmnz* - * s of B type prime numbers mm(m
=1,2,...,m) in RN2) has B. P. in R(N2), if and only if n=4h+ 1.

This theorem is well comprehended without proof, because it is easily seen
that » must be of the form 5"¢'* from theorem 1’ and factors 2+ and 2—i

of 5 are prime in R(Vi).

Note. We can imagine that theorem 3 may not be extended in general,
but for the product of four B type rational primes the theorem seems also to
be true.
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