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ABSTRACT

Using twisted nearby cycles, we define a new notion of slopes for complex holonomic
D-modules. We prove a boundedness result for these slopes, study their functoriality
and use them to characterize regularity. For a family of (possibly irregular) algebraic
connections & parametrized by a smooth curve, we deduce under natural conditions
an explicit bound for the usual slopes of the differential equation satisfied by the
family of irregular periods of the &;. This generalizes the regularity of the Gauss—Manin
connection proved by Griffiths, Katz and Deligne.

1. Introduction

Let V be a smooth algebraic variety over a finite field of characteristic p > 0, and let U be an open
subset in V such that D := V\U is a normal crossing divisor. Let ¢ be a prime number different
from p. Using restriction to curves, Deligne defined [Delll] a notion of ¢-adic local system on U
with bounded ramification along D. Such a definition is problematic for treating functoriality
questions: the direct image of a local system is not a local system any more, and duality does
not commute with restriction in general. In this paper, we investigate the characteristic 0 aspect
of this problem, that is, the following question.

Question 1. Let X be a complex manifold. Can one define a notion of holonomic Dx-module
with bounded irregularity which has good functoriality properties?

In dimension 1, to bound the irregularity number of a D-module with given generic rank
amounts to bounding its slopes. Let M be a holonomic Dx-module and let Z be a hypersurface
of X. Mebkhout [Meb90] showed that the irreqularity complex Irrzy M of M along Z is a
perverse sheaf endowed with an R~; increasing locally finite filtration by sub-perverse sheaves
(Irrz M)(r). If the support of the rth graded piece of ((Irrz M)(7)),>1 is not empty, we say that
1/(r — 1) is an analytic slope of M along Z.*

The existence of a uniform bound in Z is not clear a priori. We thus formulate the following
conjecture.

CONJECTURE 1. Locally on X, the set of analytic slopes of a holonomic D x-module is bounded.

This statement means that for a holonomic Dx-module M, one can find for every point
in X a neighbourhood U and a constant C' > 0 such that the analytic slopes of M along any

Received 26 August 2015, accepted in final form 22 December 2015, published online 9 September 2016.
2010 Mathematics Subject Classification 14F10 (primary).
Keywords: D-module, nearby cycles, rapid decay homology, irregular periods.

This journal is (© Foundation Compositio Mathematica 2016.
! Note that this terminology differs from that of Mebkhout by the transformation » —> 1/(r — 1), so that in
dimension 1, analytic slopes correspond to the classical slopes defined via Newton polygons.

https://doi.org/10.1112/50010437X16007533 Published online by Cambridge University Press


http://www.compositio.nl/
http://www.ams.org/msc/
http://www.compositio.nl/
https://doi.org/10.1112/S0010437X16007533

A BOUNDEDNESS THEOREM FOR NEARBY SLOPES OF HOLONOMIC D-MODULES

germ of hypersurface in U are less than or equal to C. The main obstacle to the proof of
Conjecture 1 lies in the behaviour of analytic slopes with respect to proper push-forward. On
the other hand, Laurent defined algebraic slopes using his theory of micro-characteristic varieties
[Lau87]. From work by Laurent and Mebkhout [LM99], we know that the set of analytic slopes
of a holonomic D-module M along Z is equal to the set of algebraic slopes of M along Z.
Since micro-characteristic varieties are invariant by duality, we deduce that analytic slopes are
invariant by duality.

For a germ M of Dg-module at 0 € C, the set of analytic slopes of M at 0 is also the set of
slopes of the Newton polygon [SV00] of the formal differential module M := C((z)) ®cyzy M,
where C{z} stands for the space of germs at 0 of holomorphic functions. We will simply call
these slopes the slopes of M at 0.

The aim of this paper is to define a third notion of slopes and to investigate some of its
properties. The main idea lies in the observation that for a germ M of Dg-module at 0 €
C, the slopes of M at 0 are encoded in the vanishing of certain nearby cycles. We show in
Proposition 3.3.1 that r € Q> is a slope for M at 0 if and only if one can find a germ N of
meromorphic connection at 0 with slope r such that ¥o(M @ N) # 0. We thus introduce the
following definition.

DEFINITION. Let X be a complex manifold and let M be an object of the derived category
Df’lol(X ) of complexes of Dx-modules with bounded and holonomic cohomology. Let f € Ox be
non-constant. We denote by vy the nearby cycle functor? associated to f. We define the nearby
slopes of M associated to f to be the set Sl’}b(/\/l) which is the complement in Q¢ of the set
of rationals r > 0 such that for every germ N of meromorphic connection at 0 € C with slope r,
we have

(M@ fTN) ~0. (1.0.1)

Let us observe that the left-hand side of (1.0.1) depends on N via C((7)) ®¢{y} N, and that
nearby slopes are sensitive to the non-reduced structure of div f, whereas analytic and algebraic
slopes only see the support of div f.

Twisted nearby cycles appear for the first time in the algebraic context in [Del07]. Deligne
proves in [Del07] that for a given function f, the set Sl?b(./\/l) is finite. The main result of this
paper is an affirmative answer to Conjecture 1 for nearby slopes, stated in the following theorem.

THEOREM 1. Locally on X, the set of nearby slopes of a holonomic D-module is bounded.

This statement means that for a holonomic Dx-module M, one can find for every point in
X a neighbourhood U and a constant C' > 0 such that the nearby slopes of M associated to
any f € Oy are less than or equal to C. For flat meromorphic connections with good formal
structure, we show the following refinement.

THEOREM 2. Let M be a flat meromorphic connection with good formal structure. Let D be
the pole locus of M and let Dy,...,D, be the irreducible components of D. We denote by
ri(M) € Q>¢ the highest generic slope of M along D;. Then, the nearby slopes of M are less
than or equal to ri(M) + -+ rp(M).

2 For general references on the nearby cycle functor, let us mention [Kas83, Mal83, MS89, MMO04].
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The main tool used in the proof of Theorem 1 is a structure theorem for formal flat
meromorphic connections first conjectured in [CS89], studied by Sabbah [Sab00] and proved
by Kedlaya [Ked10, Kedll] in the context of excellent schemes and analytic spaces, and
independently by Mochizuki [Moc09, Moc11b] in the algebraic context.

Let us give some details on the strategy of the proof of Theorem 1. A dévissage carried out
in §4.1 allows one to suppose that M is a flat meromorphic connection. Using the Kedlaya—
Mochizuki theorem, one reduces further to the case where M has good formal structure. We
are thus left to prove Theorem 2. We resolve the singularities of Z := div f. The problem that
occurs at this step is that a randomly chosen embedded resolution p : X —> X will increase
the generic slopes of M in a way that cannot be controlled. We show in Proposition 4.2.2 that
a fine version of embedded resolution [BM89] allows us to control the generic slopes of p™ M in
terms of the sum (M) + -+ + r,,(M) and the multiplicities of p*Z. A crucial tool for this is
a theorem [Sab00, I 2.4.3] proved by Sabbah in dimension 2 and by Mochizuki [Moclla, 2.19]
in any dimension relating the good formal models appearing at a given point with the generic
models on the divisor locus. Using a vanishing criterion (Proposition 3.4.1), one finally proves
(1.0.1) for r > ri(M) + -+ + rp(M).

Let M € Db (X) and let us denote by DM the dual complex of M. Nearby slopes satisfy
the following functorialities.

THEOREM 3. (i) For every f € Ox, we have
SIPP(DM) = SIP(M).

(ii) Let p : X —> Y be a proper morphism and let f € Oy such that p(X) is not contained
in f71(0). Then
SIP*(p+ M) C SIH(M).

Let us observe that (ii) is a direct application of the compatibility of nearby cycles with
proper direct image [MS89].

It is an interesting problem to try to compare nearby slopes and analytic slopes. This question
will not be discussed in this paper, but we characterize regular holonomic D-modules using nearby
slopes.

THEOREM 4. A complex M € DﬁOI(X) is regular if and only if for every quasi-finite morphism
p:Y — X with Y a complex manifold, the set of nearby slopes of p* M is contained in {0}.

For an other characterization of regularity (harder to deal with in practice) using derived
endomorphisms, we refer to [Tey16].

Let us give an application of the preceding results. Let U be a smooth complex algebraic
variety and let £ be an algebraic connection on U. We denote by H (Q“R(U,S) the kth de Rham
cohomology group of £, and by V the local system of horizontal sections of £2" on U?". If £ is
regular, Deligne proved [Del70] that the canonical comparison morphism

HY% (U, &) — HY U™, V) (1.0.2)

is an isomorphism. If £ is the trivial connection, this is due to Grothendieck [Gro66]. In the
irregular case, (1.0.2) is no longer an isomorphism. It can happen that H CIfR(U, £) is non-zero and
H(U,V) is zero, which means that there are not enough topological cycles in U?*. The rapid
decay homology H };d(U, E*) needed to remedy this problem appears in dimension 1 in [BE04]
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and in higher dimension in [Hie07, Hie09]. It includes cycles drawn on a compactification of U?"
taking into account the asymptotic at infinity of the solutions of the dual connection £*. By Hien
duality theorem, we have a perfect pairing

/ CHE(U,E) x HY(U, %) — C. (1.0.3)

For w € Hlj (U, €) and v € Hi(U,£%), we call [ w a k-period for £.°

Let f: X — S be a proper and generically smooth morphism, where X denotes an algebraic
variety and .S denotes a neighbourhood of 0 in Aé. Let U be the complement of a normal crossing
divisor D of X such that for every ¢ # 0 close enough to 0, D; is a normal crossing divisor of X;.
Let £ be an algebraic connection on U. Let us denote by D1, ..., D, the irreducible components
of D meeting f~1(0) and let 7;(€) be the highest generic slope of £ along D;.

As an application of Theorem 2, we prove the following result.

THEOREM 5. If £ has good formal structure along D and if the fibres X;, t # 0, of f are
non-characteristic at infinity* for €, then the k-period vectors of the family (&t)e£0 are the
analytic solutions of the system of differential equations associated to H* f.E. The slopes at 0
of this system are less than or equal to r1(E) + - -+ + ry(E).

In the case where £ is the trivial connection, we recover that the periods of a proper
generically smooth family of algebraic varieties are solutions of a regular singular differential
equation with polynomial coefficients [Gri68, Kat70, Del70].

The role played in this paper by nearby cycles has Verdier specialization [Ver83] and moderate
nearby cycles as f-adic counterparts. For a discussion of the problems arising in the f-adic case,
we refer to [Teylba].

2. Notation

We collect here a few definitions used all throughout this paper. The letter X will denote a
complex manifold.

2.1. For a morphism f:Y — X with Y a complex manifold, we denote by fT : Dﬁol(DX) —
Db (Dy) and fi : Db (Dy) —> D} ,(Dx) the inverse image and direct image functors for
D-modules. We write fT for f+[dimY — dim X].

2.2. Let M € D} (X) and f € Ox. From H*) (M @ fTN) ~ 1 (H*M & fTN) for every k,
we deduce

S (M) = St (HEM). (2.2.1)
k

Let us define SI"°(M) := Ureoy Slr}b(/\/{). The elements of SI"P(M) are the nearby slopes of M.
For S C Q>0, we denote by Dﬁol(X )s the full subcategory of Dﬁol(X ) of complexes whose nearby
slopes are in S.

3 This is an abuse of terminology, since there are no natural rational structures on those spaces in general. However,
in some cases including exponential modules, there is such a structure.

4 This is, for example, the case if D is smooth and if the fibres of f are transverse to D.

2053

https://doi.org/10.1112/50010437X16007533 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X16007533

J.-B. TEYSSIER

2.3.  Let us denote by DR : D? (Dx) — D’(X,C) the de Rham functor® and by Sol :
Db (Dx) — DP(X,C) the solution functor for holonomic Dx-modules.

2.4. For every analytic subspace Z in X, we denote by iz : Z — X the canonical inclusion.
The local cohomology triangle for Z and M € D! _(X) reads

RL M ——> M ——> RM(xZ) —1~ (2.4.1)

It is a distinguished triangle in Dﬁol(DX)- The complex RI'|z M is the local algebraic cohomology
of M along Z and RM(xZ) is the localization of M along Z.

2.5. Let M be a germ of flat meromorphic connection at the origin of C". Let D be the
pole locus of M. For z € D, we define M, := Ogn x ®0cn , M, where Ocn = stands for the
completion of O¢n , with respect to its maximal ideal. We say that M has good formal structure
if the following statements hold.

(i) D is a normal crossing divisor.

(ii) For every x € D, one can find coordinates (x1,...,x,) centred at z with D defined by
z1---x; =0, and an integer p > 1 such that if p is the morphism (z1,...,z,) — (2f,...,
xf, Titl,---,%n), we have a decomposition

P My ~ &P Y @R, (2.5.1)
QOGOCn(*D)/Ocn

where €2 = (Ogn »(*D),d + dy) and R, is a flat meromorphic connection with regular
singularity along D.

(iii) For all ¢ € Ogn(¥D)/O¢n contributing to (2.5.1), we have divy < 0, that is, the
multiplicities of div ¢ are negative integers.

Let us remark that classically, one requires condition (iii) to be also true for the differences
of two ¢ intervening in (2.5.1). We will not impose this extra condition in this paper.

2.6. Let M be a flat meromorphic connection on X such that the pole locus D of M has
only a finite number of irreducible components Dy, ..., D,. Let i € [1,n]. As a consequence of
a theorem of Malgrange [Mal96, 3.2.1], M has a good formal structure at each point of a dense
open subset U; of D;. Moreover, the order of p and the set of ¢ € O¢n (xD)/Og¢n contributing to
(2.5.1) for a given = € U; do not depend on z. The pole orders of those ¢ (computed with a local
smooth function defining U;) are the generic slopes of M along D;. We denote by rp, (M) the
highest generic slope of M along D; and we define the divisor of highest generic slopes of M by

rp,(M)Dy + - +1p, (M)Dy € Z(X)q

3. Preliminaries on nearby cycles in the case of good formal structure

3.1. Let n be an integer and take i € N[Vl The support of i is the set of k € [1,n] such that
ir # 0. If E C [1,n], we define ig by igy = i) for k € E and ig, =0if k ¢ E.

51In this paper, we follow Hien’s convention [Hie09] according to which for a holonomic module M, the complex
DR M is concentrated in degrees O, ...,dim X.
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3.2. Let R be a regular C((t))-differential module, and take ¢ € C[t~!]. For every n > 1, we
define p: t — P = x and
El(p, ¢, R) == p+ (¥ @ R).

If R is the trivial rank 1 module, we will use the notation El(p, ¢). In general, El(p, ¢, R) has
slope ord ¢/p. The C((x))-modules of type El(p, ¢, R) for variable (p, ¢, R) are called elementary
modules. From [Sab08, 3.3], we know that every C((x))-differential module can be written as a
direct sum of elementary modules.

3.3 Dimension 1
In this subsection, we work in a neighbourhood of the origin 0 € C. Let x be a coordinate on C.
Take p > 1 and define p : x — t = zP.

ProrosiTIiON 3.3.1. Let M be a germ of holonomic D-module at the origin. Let r > 0 be a
rational number. The following conditions are equivalent.

(i) The rational r is not a slope for M at 0.

(ii) For every germ N of meromorphic connection of slope r/p, we have

V(M@ pTN) ~0.

Proof. Since 1) is not sensitive to localization and formalization, one can work formally at 0 and
suppose that M and N are differential C((x))-modules.

Let us prove (2) = (1) by contraposition. Define o/ : u — u? = z, @(u) € Clu~"] with
g = ordp(u) and R a C((u))-regular module such that El(p/, ¢(u), R) is a non-zero elementary
factor (§3.2) of M with slope r = q/p. Define

N = p; El(p', —p(u)) = El(pp’, —p(w)).
The module N has slope ¢/pp’ = r/p. A direct factor of ,(M ® pTN) is

Vo(p/(E9 @ R) @ pTN) =~ 9, (0 (E9 @ R) @ pT El(pp', —p(u)))
=~ Pp(p, (E9 @ R (pp') T El(pp', —p(u))))
~ o (£ @ R® (pp') T El(pp, —p(u)))

where the last identification comes from the compatibility of ¢ with proper direct image. By
[Sab08, 2.4], we have

(o) El(pp', —p(u) = @D €.
¢rr' =1
So 1,y R is a direct factor of ¢,(M ® pTN) of rank np(rgR) > 0, and (2) = (1) is proved.
Let us prove (1) = (2). Let N be a C((t))-differential module of slope r/p. Then p* N

has slope r. Thus, the slopes of M ® p™ N are greater than 0. Hence, it is enough to show the
following lemma.

LEMMA 3.3.2. Let M be a C((x))-differential module whose slopes are greater than 0. Then
Y, M ~ 0.

By Levelt—Turrittin decomposition, we are left to study the case where M is a direct sum
of modules of type £ ® R, where ¢ € C[z~!] and where R is a regular C((z))-module. The
hypothesis on the slopes of M implies ¢ # 0, and the expected vanishing is standard. O
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3.4 A vanishing criterion

Let M be a germ of flat meromorphic connection at the origin 0 € C™. We suppose that M has
good formal structure at 0. Let D be the pole locus of M. Let p, be a ramification of degree p
along the components of D as in (2.5.1).

PROPOSITION 3.4.1. Let f € Ogng. Let us define Z := div f and suppose that |Z| C D. Let
r € Q>o such that for every irreducible component E of |Z|, we have

re(M) < rve(f).
Then for every germ N of meromorphic connection at 0 with slopes greater than r, we have
M@ fTN) =0 (3.4.2)
in a neighbourhood of 0.

Proof. Let us choose local coordinates (x1,...,z,) and a € IN” such that f is the function
r —> x%. Take N with slopes greater than r. Since ¢y depends on M ® fTN only via the
formalization of M ® fTN along Z, one can always suppose that N is a C((¢))-differential
module and p = gk where p’ : t —> t* decomposes N.

The morphism p, is a finite cover away from D, so the canonical adjunction morphism

pp+p;./\/l — M (3.4.3)

is surjective away from D. So the cokernel of (3.4.3) has support in D. From [Meb04, 3.6-4], we
know that both sides of (3.4.3) are localized along D. So (3.4.3) is surjective. We thus have to

prove

Urop (0 M@ (fpp) T N) = 0. (3.4.4)

Since |Z| C D, we have fp, = p'fpy. So the left-hand side of (3.4.4) is a direct sum of k copies
of

Do (g M@ (fpp)TN). (3.4.5)

We thus have to prove that (3.4.5) is 0 in a neighbourhood of 0. We have

(fpp) TN ~ (fpg) " p "N

with p"" N decomposed with slopes greater than rk. The zero locus of fp, is |Z], and if E is an
irreducible component of |Z], the highest generic slope of p; M along F is

re(py M) =p-rp(M) <rk-q-vp(f) =rk-ve(fpg).

Hence we can suppose that p, = id and that N is decomposed.
Take
N=£EPOM o R

with P(t) € Clt] satisfying P(0) # 0, with m > r and with R regular. Since again v is insensitive
to formalization, one can suppose that

M =@ @R

with ¢ as in (iii) in §2.5 and R regular. The Sabbah—Mochizuki theorem ([Sab00, I 2.4.3],
[Moclla, 2.19]) says that ¢ contributes to the Levelt-Turrittin decomposition of M at the
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generic point of an irreducible component D’ of D. So the multiplicity of —div ¢ along such a D’
is a generic slope of M along D’. Thus, one can write ¢(z) = g(x)/z® where g(0) # 0 and where
the b; are such that if ¢ € Supp a, we have b; < ra; < ma;. We thus have to prove the following
lemma.

LEMMA 3.4.6. Take g,h € Ogn such that g(0) # 0 and h(0) # 0. Let R be a regular flat
meromorphic connection with poles contained in xi---x, = 0. Take a,b € N[ such that
A := Suppa is non-empty and b; < a; for every i € A. Then

Yo (E9@D/T"HR@) /2" @ Ry~
in a neighbourhood of 0. O

3.5 Proof of Lemma 3.4.6

We define M := £9(®)/2a"+h(@)/=" @ R Since A is not empty, a change of variables allows one to
suppose that h = 1. If Supp b C A, a change of variable shows that Lemma 3.4.6 is a consequence
of Lemma 3.6.1. Let @ € Suppb be an integer such that i ¢ A. Using z;, a change of variables
allows one to suppose that g = 1. Let p1,...,p, € IN* such that a;p; is independent of j for every
j€Aand p; =1if j ¢ A. Let p, be the morphism  — 2P. As in (3.4.3), we see that

Ppt+Py M ——= M

is surjective. We are thus left to prove that Lemma 3.4.6 holds for multi-indices a such that a;
does not depend on j for every j € A. Let us denote by 1 4 the characteristic function of A. From
[Sab05, 3.3.13], it is enough to prove that

Q;Z)x]lA (El/rb-‘rl/xa ® R) ~ 0.

Using the fact that R is a successive extension of regular modules of rank 1, one can suppose
that R = 2¢, where ¢ € CIV7. Let

s " x C

1A i

C

be the inclusion given by the graph of  — x4, Let t be a coordinate on the second factor of
C™ x C. We have to prove that

¢t(b+($cgl/xb+1/xa)) ~ 0.

Define 6 := §(t —x'4) € L+(x051/$b+1/xa) and let (Vj)rez be the Kashiwara—Malgrange filtration
on Dgny ¢ relative to ¢, that is,

Vi, i= {P € Donxae, P(H)™) C ()™ F Vm € Z}.

For d € N[ such that 2% = 0 is the pole locus of xcgl/mb“/wa, the family of sections z¢
generates ¢/ /2" For such d, the family s := 295 generates ¢ (z°€1/*"T1/2"). We are left
to prove s € V_1s. One can always suppose that 1 € A. We have

by ay 1
1018 = (d1 + ¢1)s — ﬁs — Es — 2 A0;s.
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We define M e NIV by M;, = max(ay, by) for every k € [1,n]. We thus have
aMz0y5 = (di + cl)azMs — byaMbg — quaM0s — 2Mplag,s. (3.5.1)
We have M =a+bge =14+ (a—14)+bge =14 +b+m withm € N7l s
Mg = 2™ts € V_qs.
Moreover, we have

M85 = 1O 2Ms — MyaMs = 21012™0ts — Myz™Pts € Vs

and
aMplags = a0, Mg = o H09,42 5 = 2™ 0ts + er+bt(t8t)s € V_is.
So (3.5.1) gives
M s € Vs, (3.5.2)

Recall that ¢ was chosen at the beginning of the proof such that i ¢ A and i € Suppb. In
particular, (M — a); = b; # 0 and 0;0 = 0. Applying x;0; to (3.5.2), we obtain

.TM_O“
(di + ¢ + bi)a:M*as —bi——s € V_ys,
x
so from (3.5.2) we deduce 2M~%ts € V_15. We have M —a—b = —by, so by multiplying 2™~

by x4, we get s € V_1s.

3.6. The aim of this subsection is to prove the following lemma.

LEMMA 3.6.1. Let a,a € N('™ such that Supp o is not empty and Supp o C Suppa. Let R be
a regular flat meromorphic connection with poles contained in x1 - --x, = 0. We have

Ypa (EV* @ R) ~ 0.

Proof. Let p1,...,p, be integers such that a;p; does not depend on i for every i € Supp o (we
denote such an integer by m) and p; = 1 if ¢ # Supp a. Let p, be the morphism x — aP. As
in (3.4.3), the morphism pp 1 pif M —> M is surjective. We are left to prove Lemma 3.6.1 for o
such that a; does not depend on i for every i € Supp . From [Sab05, 3.3.13], one can suppose
that a; = 1 for every i € Supp a. So a < a. One can suppose that R = z? where b € N[22, Let

Cn—=C"x C

N

C

be the inclusion given by the graph of x —> x®. Let ¢ be a coordinate on the second factor of
C™ x C. We have to show that
Yi(eg (zP€Y7)) ~ 0.

Define § := §(t — z%) € L+(wb81/”3a). For ¢ € NIL"l guch that Suppe C Suppa U Supp b, the
family of sections ¢ generates #?£1/*". For such ¢, the family s := 25 generates ¢ (zb& 1/ ) Tt
is thus enough to show s € V_1s. Let us choose ¢ € Supp a. We have

x;0;8 = (¢; + by)s — %s — 290;s.
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We have o < a. Define ¢ = o + a/. From
2%2;0;8 = ;0;2%8 — 2% = x;0;ts —ts € V_1s

we deduce that a;s + xa/x%‘@ts € V_1s. We also have 22%9;s = 0,x°%s = Oit%s = 2ts + t(tdy)s €
V_1s. Since a; # 0, we deduce s € V_1s and Lemma 3.6.1 is proved. O

4. Proof of Theorem 1

4.1 Dévissage to the case of flat meromorphic connections

Suppose that Theorem 1 is true for flat meromorphic connections for every choice of ambient
manifold. Let us show that Theorem 1 is true for M € D{_ (X). We argue by induction on dim X.
The case where X is a point is trivial. Let us suppose that dim X > 0. We define Y := Supp M
and argue by induction on dimY.

Let us suppose that Y is a strict closed subset of X. We denote by i : Y — X the canonical
inclusion. Let m : ¥ — Y be a resolution of the singularities of ¥ [AHV75] and p := i7. The
regular locus RegY of Y is a dense open subset in Y and 7 is an isomorphism above Reg Y. By
Kashiwara’s theorem, we deduce that the cone C of the adjunction morphism

ppM— M

has support in SingY, with SingY a strict closed subset in Y. Let € X and let B be a
neighbourhood of z with compact closure B. Then, p~!(B) is compact. Since dimY < dim X,
Theorem 1 is true for pfM € D! (V). Let (U;) be a finite family of open sets in Y covering
p~Y(B) and such that for every i, the set Slnb((pTM)Wi) is bounded by a rational r;. Define
R = max; r;.

By the induction hypothesis applied to C, one can suppose at the cost of taking a smaller
B containing x that the set Slnb(C| p) is bounded by a rational R'. Take f € Op. We have a
distinguished triangle

Gr(papt M@ fHN) —= (M @ fHN) —= p(C® fTN) — 2= (4.1.1)

By the projection formula and compatibility of ¢ with proper direct image, (4.1.1) is isomorphic
to

+1
P+tgp(PTM @ (pf)*N) —= (M @ fTN) ——=p(C® fTN) ——.
So we have the desired vanishing on B for r > max(R, R').

We are left with the case where dim Supp M = dim X. Let Z be a hypersurface containing
Sing M. We have a triangle

RU /M ——> M ——= M(xZ) — .

By applying the induction hypothesis to RI'|; M, we are left to prove Theorem 1 for M(*2).
The module M(*Z) is a flat meromorphic connection, which concludes the reduction step.
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4.2 The case of flat meromorphic connections
Let D be the pole locus of M. At the cost of taking an open cover of X, let 7 : X —> X be an

embedded resolution of the singularities of D. Since 7 is an isomorphism above X\ D, the cone
of

Tt M ——s M (4.2.1)

has support in D. From [Meb04, 3.6-4], the left-hand side of (4.2.1) is localized along D. So
(4.2.1) is an isomorphism. We thus have a canonical isomorphism

Tatbpa(Tt M@ (f)N) = (M fFN).

Since 7 is proper, we see as in 4.1 that we are left to prove Theorem 1 for 7+ M. We can thus
suppose that D has normal crossing.

Let p : X — X be a resolution of the turning points for M as given by the Kedlaya—
Mochizuki theorem. Again p is proper and induces an isomorphism above X\ D. So we are left
to prove Theorem 1 for p™ M. So we can suppose that M has a good formal structure.

At the cost of taking an open cover, we can suppose that D has only a finite number of
irreducible components. Let S be the divisor of highest generic slopes (§2.6) of M. Let S1,...,Sn,
be the irreducible components of S. Let us prove that SI"®(M) is bounded by the sum deg S of
the multiplicities of the S; in S. This is a local statement. Let f € Ox and define Z := div f.
Let us denote by |Z| (respectively, |S|) the support of Z (respectively, S) and let us assume for
a moment the validity of the following proposition.

PROPOSITION 4.2.2. Locally on X, one can find a proper birational morphism 7 : X —> X such
that:

(i) = is an isomorphism above X\|Z|;
(i) 7==(1Z|) U 7=Y(|S|) is a normal crossing divisor;
(iii) for every valuation vy measuring the vanishing order along an irreducible component E of
T 1(12]),
vp(S) < (deg S)vp(f).

Let us suppose that Proposition 4.2.2 is true. At the cost of taking an open cover, let us
take a morphism 7 : X — X as in Proposition 4.2.2. Since condition (i) is true, the cone of the
canonical comparison morphism

Tt M —> M (4.2.3)

has support in |Z|. Since fTN is localized along |Z|, we deduce that (4.2.3) induces an
isomorphism

(rimtM) @ fTN —> M® fTN.
Applying vy and using the fact that 7 is proper, we see that it is enough to prove that
V(T M@ (fr)TN) ~0 (4.2.4)

for every germ N of meromorphic connection at the origin with slope r > deg S. Since (fr)™N
is localized along 7~1(] Z]), the left-hand side of (4.2.4) is

Ypn (T M) (71 2]) @ (fr)TN). (4.2.5)
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The vanishing of (4.2.5) is a local statement on X. Since (i) and (iii) are true, Proposition 3.4.1
asserts that it is enough to show that for every irreducible component E of 771(|Z|), we have

re((m* M)~ (12]))) < (deg S)vp(fr).

Notice that vg(f7) = vg(f). Let P be a point in the smooth locus of E. Let ¢ be as in (2.5.1) for
M at the point Q := 7w(P). For i = 1,...,n, let t; = 0 be an equation of S; in a neighbourhood
of Q. Modulo a unit in Ox ¢, we have ¢ = 1/t]" - - - t7» where r; € Q. If u = 0 is a local equation

for ' in a neighbourhood of P, we have, modulo a unit in Oy p,

1

url'UE(tl) . urnvE(tn) ’

T =

So the slope of £97(x7~1(|Z|)) along E is rivg(t1) + - -+ + ravg(t,). By the Sabbah-Mochizuki
theorem, r; is a slope of M generically along S;, so r; < rg,(M). We deduce that

rp(rt M@ (12))) < rs(M)ue(ts) = vp(S) < (deg S)va(f).

i
This concludes the proof of Theorems 1 and 2.

4.3 Proof of Porposition 4.2.2
At the cost of taking an open cover of X, let us take a finite blow-up sequence

Pn—1

Pn—2
Tt Xp —= Xp1

Po
X1

Xo=X (4.3.1)

given by [BM89, 3.15 and 3.17] for Z relative to the normal crossing divisor |S|. Let |Z]; be the
strict transform of |Z| in X; and let C; be the centre of p;. We define inductively Hy = |S| and
Hiq = p;l(Hi) U p;I(Ci) fori=1,...,n, where pjl denotes the set theoretic inverse image. In
particular, H;,1 is a closed subset of X; 1. We will endow it with its canonical reduced structure.
Then (4.3.1) satisfies the following conditions.

(i) C; is a smooth closed subset of |Z|;.
(i

) Ci; is nowhere dense in |Z|;.
(iii) C; and H; have normal crossing for every i.
)

(iv) |Z|n U Hy is a normal crossing divisor.

Since C; and the components of H; are reduced and smooth, condition (iii) means that locally
on X, one can find coordinates (z1,...,zx) such that H; is given by the equation z;---2; =0
and the ideal of C; is generated by some z; for j = 1,...,k. Using condition (i), we see by
induction that 7, *(|Z|) U 7,;1(|S]) = |Z|, U H,. Proposition 4.2.2 is thus a consequence of the

following result.

PROPOSITION 4.3.2. Let

Pn—1 Pn—2 Po
WnCXnnH-anl “ X1 XOIX

be a blow-up sequence satisfying (i), (ii) and (iii). For every irreducible component E of 70, 1(| Z|),
we have

vp(S) < (deg S)vp(f). (4.3.3)
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Proof. Let Si,..., Sy be the irreducible components of |S| and let Z1, ..., Z,, be the irreducible
components of Z. Note that some Z; can be in [S|. We define a; = vz, (f) > 0 and let Z;
(respectively, Sj;) be the strict transform of Z; (respectively, ;) in Xj.

We argue by induction on n. If n = 0, E is one of the Z; and then (4.3.3) is obvious. We
suppose that (4.3.3) is true for a composite of n blow-ups and we prove that it is true for a
composite of n 4+ 1 blow-ups.

Let C,, be the set of irreducible components of

n—1

U a1 pi) 1 (Co).

i=0
Each element E € C,, will be endowed with its reduced structure. Condition (i) implies that the
irreducible components of 7} Z are the Z;,, and the elements of C,. Condition (ii) implies that
none of the Z;, belongs to C,. Thus, we have

W:LZ =div fm, =a1Z1n+ -+ Zppyn + E Z)E(f)E
EeCn
On the other hand, we have

TS =15, (M)Stn + -+ + 75, (M) Smn + > vu(S)E.
EeCy
Let us consider the last blow-up p, : X;,11 —> X,. Let us denote by P the exceptional divisor
of p, and let E, 1 be the strict transform of £ € C,, in X,, 1. We have

pZZm = Zin+1 + ;P with o; € IN.
Since

Hn:L"JSjnU U E
j=0

EeC,
we deduce from condition (iii) and smoothness of C), that

p;‘;E = En+1 +egP with eg € {0, 1}
and

pZSm = Sm+1 + ¢ P with ¢ € {0, 1}.
Hence, we have

mhZ = ZaiZin-‘rl + Z vE(f)Ent1 + (Z a; 0 + Z 6E”E(f)>P

EeC, EeC,
and

W:S = eri(M)Serl + Z ’L)E(S)En+1 + <Z rs; (M)GZ + Z EEUE(S)>P.

EeC, EeCy,

Formula (4.3.3) is true for the Z;,11. By the induction hypothesis, formula (4.3.3) is true for
E, 11, where E € C,,. We are left to prove that (4.3.3) is true for P. Conditions (i) and (ii) imply
that one of the «; is non-zero, so

(deg 5) (S aie + 3 cpvef)) > (deg ) + (dew) Y exve(s)

> re,(Mei+ Y ep(deg S)vp(f)
> rg,(M)ei+ > epvp(S). 0
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5. Duality

We prove Theorem 3(i). Let us denote by D the duality functor for D-modules. There is a
canonical comparison morphism

DM ® ftN)——=DM @ fTDN. (5.0.4)

On a punctured neighbourhood of 0 € C, the module N is isomorphic to a finite sum of copies of
the trivial connection. Thus, there is a neighbourhood U of Z such that the restriction of (5.0.4)
to U\Z is an isomorphism. Hence, the cone of (5.0.4) has support in Z. We deduce that

(DM @ fHN))(xZ) —==DM @ f+((DN)(x0)).

We have (DN)(*0) ~ N*, where # is the duality functor for meromorphic connection. Note that
* is a slope preserving involution. Since nearby cycles are insensitive to localization and commute
with duality for D-modules, we have

Yi(DM @ fTN*) = D(hp(M @ fTN))
and Theorem 3(i) is proved.

6. Regularity and nearby cycles

The aim of this section is to prove Theorem 4.

6.1. We will use the following lemma.

LEMMA 6.1.1. Let F' be a germ of closed analytic subspace at the origin 0 € C". Let Y1,...,Y}
be irreducible closed analytic subspaces of C™ containing 0 and such that F NY; is a strict closed
subset of Y; for every i. Then there exists a germ of hypersurface Z at the origin containing F
and such that Z N'Y; has codimension 1 in Y; for every i.

Proof. Denote by Zp (respectively, Zy,) the ideal sheaf of F' (respectively, Y;). By irreducibility,
Ty, o is a prime ideal in Ogn o. The hypothesis says that Zp ¢ Zy, for every i. From [Mat80, 1.B],

we deduce that
Ir ¢ | I,
i

Any function f € Zp not in | J; Zy, defines a hypersurface as required. O

6.2. We say that a holonomic module M is smooth if the support Supp M of M is smooth
equidimensional and if the characteristic variety of M is equal to the conormal of Supp M in X.
We denote by Sing M the complement of the smooth locus of M. It is a strict closed subset of
Supp M.

Let x € X and let us define F' as the union of Sing M with the irreducible components of
Supp M passing through z which are not of maximal dimension. Define Y7,...,Y; to be the
irreducible components of Supp M of maximal dimension passing through z. From 6.1.1, one
can find a hypersurface Z passing through x such that:

(i) Z N Supp M has codimension 1 in Supp M;
(ii) the cohomology modules of H* M are smooth away from Z;
(iii) dim Supp RI'[zM < dim Supp M.
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6.3. The direct implication of Theorem 4 is a consequence of the preservation of regularity by
inverse image and the following proposition.

PROPOSITION 6.3.1. We have D} (X )reg C Dpoi(X)03-

Proof. Take M € DP (X )yeq. We argue by induction on dim X. The case where X is a point is
trivial. By arguing on dim Supp M as in §4.1, we are left to prove Proposition 6.3.1 in the case
where M is a regular flat meromorphic connection. Let D be the pole locus of M. Take f € Ox
and let N with slope greater than 0. To prove

Yr(M® fTN)~0

one can suppose, using embedded desingularization, that D + div f is a normal crossing divisor.
We then conclude with Proposition 3.4.1. a

6.4. To prove the reverse implication of Theorem 4, we argue by induction on dim X > 1.
The case of curves follows from Proposition 3.3.1. We suppose that dim X > 2 and we take
M e Dﬁol(X ){0y- We argue by induction on dim Supp M. The case where Supp M is punctual
is trivial.

Suppose that 0 < dim Supp M < dim X. Since Supp M is a strict closed subset of X, one
can always locally write X = X’ x D where D is the unit disc of C and where the projection
X' x D — X' is finite on Supp M. Let i : X' x D — X’ x P! be the canonical immersion.
There is a commutative diagram

SuppM —— X’ x P!

\ ip (6.4.1)

X/
The oblique arrow of (6.4.1) is finite, and p is proper. So the horizontal arrow is proper. Thus,
Supp M is a closed subset in X’ x P!, Hence, M can be extended by 0 to X’ x P!. We also
denote this extension by M. It is an object of D? (X’ x P1) {0y and we have to show that it is
regular.
Let Z be a divisor in X’ given by the equation f = 0 and let p : Y —> X’ be a finite
morphism. Since p is smooth, the analytic space Y’ making the diagram

Y 2o X x P!

Y X'

cartesian is smooth. Moreover, p' is finite. By base change [HTT00, 1.7.3], the projection formula
and compatibility of ¥ with proper direct image, we have for every germ N of meromorphic
connection with slope greater than 0,

Vr(p P M@ fTN) = p(pl p "M@ fTN)
~ s (py (P TM @ (fp')TN))
~ pl hpy (P TM @ (fp')TN)
~ 0.
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By the induction hypothesis p; M is regular. Let Y7,...,Y, be the irreducible components of
Supp M with maximal dimension. Since Sing M NYj is a strict closed subset of Y; and since a
finite morphism preserves dimension, p(Sing M)Np(Y;) is a strict closed subset of the irreducible
closed set p(Y;). In a neighbourhood of a given point of p(Sing M), one can find from §6.2 a
hypersurface Z containing p(Sing M) such that Z N p(Y;) has codimension 1 in p(Y;) for every i.
So p~1(Z) contains Sing M and

dimp(Z2)NY; = dim Z N p(V;) = dimp(¥;) — 1 = dim ¥; — 1.
Since Irr7, is compatible with proper direct image [Meb04, 3.6-6], we have
It py M ~ Rp, Irr;,l(z) M ~0.
Since p is finite over Supp M, we have
Rp, Irr;_l(z) M ~p, Irr;_l(z) M.

So for every x € p~!(Z), the germ of Irr;,l( 2) M at x is a direct factor of the complex
(ps Irry p4 M) p(z) = 0. Thus Irr) _y ) M ~ 0. From [Meb04, 4.3-17], We deduce that M@Gxp~H(2))
is regular.

To show that M is regular, we are left to prove that RI'},-1(z)M is regular. From §6.3, the
nearby slopes of all quasi-finite inverse images of M(xp~1(Z)) are contained in {0}. Thus, this
is also the case for RI',-1(z)M. By construction of Z,

dim Supp RI'j,-1(z) M < dim Supp M.

We conclude by applying the induction hypothesis to RI',-1(z) M.

Let us suppose that Supp M has dimension dim X, and let Z be a hypersurface as in §6.2.
Then M(*Z) is a flat meromorphic connection with poles along Z. Let us show that M(xZ) is
regular. By [Meb04, 4.3-17], it is enough to prove regularity generically along Z. Hence, one can
suppose that Z is smooth. By Malgrange’s theorem [Mal96], one can suppose that Z is smooth
and that M(xZ) has good formal structure along Z. Let (z1,...,x,,t) be coordinates centred
at 0 € Z such that Z is given by t = 0 and let p : (x,u) —> (z,uP) be as in §2.5 for M(xZ2).
Let £9@wW/u" @ R be a factor of pt(Mo(xZ)) where g(0,0) # 0 and where R is a flat regular
meromorphic connection with poles along Z. For a choice of kth root in a neighbourhood of
9(0,0), we have

Yo/ ya(pt M@ (u/ /g € ~ 0,
Since nearby cycles commute with formalization, we deduce that
Gu(pt (Mo(+2)) © E79) = dhu(p" Mo @ €79 ) = 0
Thus 1, R ~ 0, so R ~ 0. Hence, the only possibly non-zero factor of p™ (Mo(*Z )) is the regular
factor. So M(xZ) is regular. We obtain that M is regular by applying the induction hypothesis
to RF[Z]M.
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7. Slopes and irregular periods

7.1. The main reference for what follows is [Sab00, II]. Let X be a smooth complex manifold of
dimension d and let D be a normal crossing divisor in X. Define U := X\D and let j: U — X
be the canonical inclusion. Let M be a flat meromorphic connection on X with poles along D.
We denote by p : X —> X the real blow-up of X along D and by i : U —> X the canonical
inclusion.

Let A}D be the sheaf of differentiable functions on X whose restriction to U is holomorphic

and whose asymptotic development along p~!(D) is zero, and let A%Od be the sheaf of

differentiable functions on X whose restriction to U is holomorphic with moderate growth along
p~1(D). We define the de Rham complex with rapid decay by

DR M := AP @10, p' DRXM
and the moderate de Rham complex by
DRZI M := A2 ®,-10, p~' DRxM.

7.2.  With the notation in §7.1, if M has good formal structure along D, we define [Hie09,
Proposition 2] .
H(X, M) == H**(X, DR3P M).

The left-hand side is the space of cycles with rapid decay for M. For a topological description
justifying the terminology, we refer to [Hie09, 5.1].

7.3 Proof of Theorem 5

We first prove the assertion concerning the slopes of H*f,.£. We denote by j : U — X the

canonical immersion, d := dim X and Slo(H* . €) the slopes of H* f, € at 0. We will also use the

letter f for the restriction of f to U. From [HTT00, 4.7.2], we have a canonical identification
()™ = (1 (2 €)™ —o fan(j £). (7.3.1)

We deduce that
Slo(H* f4€) = Slo(H* [ (j4+E)™).

Let x be a local coordinate on S centred at the origin. From Proposition 3.3.1, we have
Slo(HF £20(j £)™™) = S (1E 20, £)),
Since SIZP(HF fan(5,.£)2m) € SIEP(f37(j4€)™"), we deduce from Theorems 2 and 3 that
Slo(H* 1) C S ((1€)™) C (0,71 + -+ + 74l

We are thus left to relate Sol(H¥ 41 (j+€)™) to the periods of &, for ¢ # 0 close enough to 0. Such
a relation appears for a special type of rank 1 connections in [HR08]. We prove more generally
the following proposition.

ProrosiTiON 7.3.2. For every k, we have a canonical isomorphism

RF f27 Sol(j €)™ —~= R*(f*"p). DRYP (j €)™ (7.3.3)

Fort # 0 close enough to 0, the fibre of the right-hand side of (7.3.3) at t is canonically isomorphic
to Hyg o 1, (Us, &) = Hig (X7, (e EF)™).

2066

https://doi.org/10.1112/50010437X16007533 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X16007533

A BOUNDEDNESS THEOREM FOR NEARBY SLOPES OF HOLONOMIC D-MODULES

Proof. Set M := (j4+&*)*". Hien duality for the De Rham cohomology of £ on U is induced by
a canonical isomorphism of sheaves

DR M* ~ RHom(DRE M, i,C).

We thus have

Rp.DRED M* = Rp, RHom(DR2! M, 0,C)
~ RHom(Rp, DRZ24 M, C)

Xan
~ RHOm(DRXan M, C)

~ Sol M.

The second isomorphism comes from Poincaré—Verdier duality and the fact that 7yC[2 dim X] is
the dualizing sheaf of Xan, The third isomorphism comes from the projection formula and the
canonical identification [Sab00, IT 1.1.8]

Rp AR ~ Oxan (+D).
The last isomorphism comes from the duality theorem for D-modules [Meb79, KK81]. By

applying Rf2", we obtain for every k and every t # 0 close enough to 0 the following commutative
diagram:

(Rk :;m SOIM)t ~ (Rk(fanp)* DR)<2D M*)t

(1) (6)
H*(X2" (Sol M);) H* (X", (DRFY M¥);)

)

HE(X Sol M;) (7
(3)

HF(X2 D Sol M,)* HF (X, DR)%Dt M)
4) !
H2727R (X" DR M,)* Hyg o (X M)

(5) |

H2d_2_k(Ut,DRgt)* H;g_g_k(Uhggk)

(8)
By the proper base change theorem, morphisms (1) and (6) are isomorphisms. Morphism (2)
is an isomorphism by the non-charactericity hypothesis. Morphism (3) is an isomorphism by
Poincaré—Verdier duality. Morphism (4) is an isomorphism by the duality theorem for D-modules.
Morphism (5) is an isomorphism by Serre’s GAGA theorem [Ser56] and exactness of j.. where
gt : Uy —> X is the inclusion morphism. Morphism (8) is an isomorphism by the Hien duality
theorem. We deduce that (7) is an isomorphism. O
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Let e := (eq,...,e,) be a local trivialization of H¥(f,&)(x0) in a neighbourhood of 0. One
can suppose that f is smooth above S* := S\{0}. Set U* := U\{f~%(0)}. From [DMSS00, 1.4],
we have an isomorphism of left Dg-modules

HE(f+E)j5 = RF £, DRy 50 €

where the right-hand side is endowed with the Gauss—-Manin connection as defined in [KO68]. We
deduce that (e;);o is an algebraic family of bases for the family of spaces (H, lel;td_l(Xt, Et))i0-

At the cost of shrinking S, Kashiwara’s perversity theorem [Kas75] shows that the only
possibly non-zero terms of the hypercohomology spectral sequence

ER = HP SolH™(f+&)jg» = HPTI Sol(f+E)(g-
sit on the line p = 0. Hence, at the cost of shrinking S again, we have
SOl H" (f4+)fe. =~ H" SOl H*(f1€)[§. ~ H " Sol(f1E)f.. (7.3.4)
Since Sol is compatible with proper direct image, we deduce from (7.3.1) and (7.3.4) that
SOl H* (f4&)fe. =~ R™FF1 £, Sol (4, €)™ (7.3.5)

Let s : HF(fLE)™ — Ogan be a local section of Sol HF(fLE)* over an open subset of S*2.
From (7.3.5) and Proposition 7.3.2, there exists a unique continuous family ()0 of elements
of the spaces (H3S o , (Ut, &))tz0 inducing s, that is,

5(6):1&—)/%615

for every e € H¥(f,.€ )|s+- Hence, the vector function

t— </ €1t,---,/ ent>
Yt Yt

satisfies the system of differential equations corresponding to H*(f,€), and Theorem 5 is proved.
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