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NOTES ON QUESTIONS OF W. VOGEL CONCERNING THE
CONVERSE TO BEZOUT'S THEOREM
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Lazarsfeld proved a bound for the excess dimension of an intersection of irreducible and reduced schemes.
Flenner and Vogel gave another approach for reduced, non-degenerate schemes which are connected in
codimension one, using the intersection algorithm of Stiickrad and Vogel and defining a new multiplicity k.
Renschuch and Vogel considered a condition to ensure that there is no degeneration for more than two
schemes. We define an integer which enables us to unify these methods. This allows us to generalize the result
of Flenner and Vogel to non-reduced schemes by comparing the multiplicities j and k. Using this point of
view we give applications to converses of Bezout's theorem; in particular we investigate the Cohen-Macaulay
case.
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H. Flenner and W. Vogel gave a first approach to the converse to Bezout's theorem
in [1]. Since then there has been other work on this subject (see [2, 9, 13, 14]). The
converse to Bezout's theorem consists of an answer to the following question: under
which conditions does the situation of a proper intersection follow from a Bezout's-
equality? In this connection, in [13, 14] a relation between the excess dimension and
dimensions of vector spaces of linear forms is considered. We want to investigate this
connection rather more deeply.

We always consider the intersection of two or more than two schemes. This transition
from the case of two schemes is not quite trivial, as the discussion of example 12.3.5 of
[3, p. 225] in [9, p. 316, Remark 1] shows. In [3, p. 225], one assumption is missed and
this is corrected by an unnecessarily strong condition. This condition is commented on
and also weakened in [4]. We give here a new condition.

In particular, in Proposition 2.4 and Theorem 2.9., we give generalizations of
Theorem 4.2 of [1]. These generalizations are based on Proposition 2.2 and Lemma 2.8.
In the latter we compare the intersection multiplicities j (see [3, 11, 12]) and k (see [1],
where the notation J was used). This allows us to pass from the intersection of reduced
schemes to that of general pure dimensional schemes. The main result of H. Flenner and
W. Vogel in [1] and the result of L. O'Carroll in [8] treat the reduced case. Theorem
2.9 especially has some interesting applications. For example, we use this result in
Section 3 to give a new proof of Proposition 3.12 of [2] and to study the Cohen-
Macaulay case. Also, we give in Corollary 3.3 a partial answer to the question following
Theorem 7 in [14]. We generalize the Theorem of [13] in the geometrically more
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428 THILO PRUSCHKE

interested case by considering all irreducible (i.e. idealtheoretically isolated) components
and not only the highest dimensional components (see Theorem 2.7). (The former are
the geometrically visible components.)

1. Notation and preliminary results

Let us fix the following notation for the whole paper. Let K be an algebraically closed
field and Xu...,Xr (r^2) pure dimensional subschemes of P"K with defining homo-
geneous ideals 0Ll,...,a.r in Ro: = K[xo, . . . ,xn] . We introduce r copies i?f: =
K[xI-0,...,x,>], l g i g r , of Ro and denote by a| the corresponding ideal of a, in R,.

We set

c: = the diagonal ideal in R, which is generated by {xu—x0-; 2g ig r , Og j^n), and

The join variety is given by J=(a'l + ha.'r)-R in PJ|. Furthermore, we introduce new
independent variables uUJ over K, for O^fcgm, l ^ i ^ r and O^j^n. Let K denote the
algebraic closure of

K(ukiJ; O^k^m, l£i£r, 0£j£n),

and we set

R: = K{xij; 1 ^ igr, 0g ; ^ n].

In this ring we consider so-called generic linear forms /0,... lm, with

'* := Z Ukij-(xij-xi}), for k=0,...,m.

OSjSn

It is clear that c-R = (l0,...,lm). We set

8: = Krull-dim J R=£j=, dim Xĵ +(r -1) ,

</: = Krull-dim (ax + • • • + ar) = dim (X1n---nXr) + l, and

The latter is called the excess dimension of Xu...,Xr, and we often write it simply as e.
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CONVERSE TO BEZOUTS THEOREM 429

In the following, we describe the intersection algorithm of [11, 12]. So we define the
sequence (J-R){, for i=l,...,5—d— 1 = m — e, by

where U(...) is the intersection of all highest dimensional primary ideas belonging to

Furthermore, we set

Us:= nq for s=l,...,e— 1,

where the intersection is taken over all primary ideals q belonging to

such that c-R is not contained in the associated prime of q. Now we describe the
construction of the collection <^(X1,...,Xr) (in short, #) and define the intersection
multiplicities j{XY,...,Xr;C) and /c(Xj,...,Xr;C).

The collection <# contains irreducible, reduced schemes C of P£, which satisfy

r

dim(Xln-nXr)^dimC^: X dimX,-(r-l)-n.
i = l

To define the elements of <£ of dimension

dim(Xt n--- nXr) — i, for i=0,...,e,

we decompose

in the following way.

where the first intersection is taken over all primary ideals q belonging to
U(Uj + lm-e+i-R), where associated primes p contain the diagonal ideal c-R. These
prime ideals modulo c-R define irreducible and reduced subschemes of Xl n - - nXr in
PI—the elements of the collection <€.
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Such a C is defined by the prime ideal p: = I(C) in K[xo,...,xn]. The intersection
numbers of X„...,X, along C, with C having dimension d i m ^ n---nXr) — i, are
given by

It is clear that j(Xu...,Xr;C)^k{Xu...,Xr;C) for all Ce#. We also use
%tt(Xu...,Xr) (or #irr) to denote the set of all irreducible components of .X̂  n • • • n A,
and ^h( X!,..., Xr) (or <£h) to denote the set of the highest dimensional components of "if.
(These are the components C with dimC = dim(A\ n •••nXJ). Then we get the
following inclusions:

Now we state the main results from [11, 12] and [1].

Lemma 1.1. Let Xu...,Xr be pure dimensional subschemes in P"K. Then

lt...,Xr;Q-degC.

Definition 1. The homogeneous ideals a1,.. . ,ars/C[x0,... ,xn] satisfy the (*)-
condition if no linear form is contained in

+ ---+ar), for i=\,...,r.

This definition enables us to state the main result from [1].

Lemma 1.2. Let Xl,...,Xr be pure dimensional and reduced subschemes in P"K which
are connected in codimension one. If the defining homogeneous ideals in /C[xo, . . . ,xn]
satisfy the (*)-condition, then

f k(Xl,...,X,;Q-degC+e.

(A scheme X is connected in codimension one if for any closed subscheme Y of X with
codim(^.Y)>l the set X\Y is connected. For applications of connectedness in
codimension one, see [7, 10].)

We need also a bilinear property of the above intersection algorithm involving the
join construction in P£. This is given by the following so-called theorem of additivity
and reduction (see for instance [5, 13]).
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CONVERSE TO BEZOUT'S THEOREM 431

Lemma 13. Let Xl,...,Xr be pure dimensional subschemes in P"K with defining ideals
H[, . . . , a , cK [x 0 , . . . , xn]. We consider the primary decomposition of a, = q'/' r\--- n q^', and
put pf to be the prime ideals belonging to q'-f. Furthermore, let X^ (respectively Vti) be
the subscheme ofP"K defined by qf [respectively pf) and let 1^: = length ofqf. Then

(i) V(Xu...,Xr) = \JV(X1jl,...,XrjJ = \JV(V1Jl,...,VrjJ, where the union is taken
over all 1 ^ jt ^ s,, 1 ^ i ̂  r,

(ii) J(Xj, . . . ,Xr;C) = ̂ l 1 J 1 - . . . l r J r - 7 (K 1 j 1 , . . . , Frjp;C), where the sum is taken over all
l^jt^s,, 1 ^i^r, where we set j(Vih,...,Vrjr;Q = 0for C^{Vlh,...,VrJr).

We now give definitions for commonly used abbreviations.
Let X be a pure dimensional scheme in Pn

K with defining homogeneous ideal
a sR : = /C[xo,...,xJ. Then

Xrcd is the scheme which is given by Rad(a).

X is the scheme which is given by the ideal ([a]x) which is generated by the linear forms
of a.

Let a be an arbitrary homogeneous ideal of R. Then the volume function K(-,a):Z->Z is
defined as follows

V(t, a):=dimK [a],,

where [a], denotes the vector space over K of all forms of a, which have the degree t.
(For the basic properties of the volume function see [6].)

Let X!,...,Xr be pure dimensional schemes in P"K. Then we put the excess dimension
e by setting

e: = e{Xu...,Xr)

r

^ d i m ^ n - - - n X , ) - £ dimX.-l-n(r-l).

Let Z be a closed subscheme of P"K. Then we set

<£gZ:=£lg(0z.c)-degC,
c

where the sum is taken over all irreducible components C of Z, and we put
lg (0z,c) = length of 0Z>C.

2. Converses to Bezout's theorem

In this section we give some converses to Bezout's theorem. The main points are the
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decomposition into irreducible and reduced components using Lemma 1.3 and an
estimation of the difference of the two multiplicities j — k. This allows us to consider the
intersection of general schemes rather than just reduced schemes. First we give the
definition of the number rg and apply it to the converse to Bezout's theorem.

Definition 2. Let Xj Xr be pure dimensional subschemes in P"K with defining
homogeneous ideals a1 , . . . ,a r sK(x0 , . . . ,xJ . Then we put

rg: = rg(Ari,...,Xr): =

:=£ V(l,<z,)-v(l,£*\
gred: = rg ((*l)red> • • •» (*r)red)-

We obtain also by simple computation that

Proposition 2.1. Let alt..,Kr be unmixed homogeneous ideals of R: = K[x0,...,xn].
Then these ideals satisfy the (*)-condition if and only i / rg(a1, . . ,a r) = 0.

Proof. We compute V(l,YH=ixi) using the dimension theorem for vector spaces.

) ( i > .£ ^) -v f1'«'n .t *

, ) (1)
j=k+i J

for an arbitrary i (l^i^r).
If the (*)-condition is satisfied, then the latter two terms vanish, and we get

(2)
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CONVERSE TO BEZOUTS THEOREM 433

On the other hand, if formula (2) holds, then certainly the second term in (1) vanishes,
i.e. the (*)-condition holds. •

Proposition 2.2. Let Xu...,Xr be pure dimensional subschemes of P"K with defining
homogeneous ideal a.l,...,ccr in K[xo,...,xn]. Then

(i) rg(zu...,a,) = V(l,JRncR),

(ii) rg(a1,...,ar)£e(X1>...,*,).

The following conditions

(iii)

(v) ni=ideg^«=Zc.«*(-yx.-.-yr;C)-degC, where <€ = %„=<£„,

satisfy: (iii) o (iv) => (v).

Proof, (i): Let </>: \_J• R + cR]1-*\_R0]i^[_R/c^l be the restrictions map of the
natural linear map [RL-^CK/c]! </> is a linear map with ker<£ = c and im0 = Q^= 1 a j j .
By a well-known theorem of linear algebra we get

V(l,JR + cR) = d i m x (ker <f>) + d i m K ( I m 4>)

and therefore

V(l,JRncR) = V(l,JR)+V(l,cR)-V{l,JR+cR)

•=i \

(ii) and the above relations between (iii)— v̂): First we need some calculations.

V(l,JR + cR)=V(l,JR) + V{l,cR)-V(l.JRncR)

= V(l,JR) + m+l-V(l,JRncR)

Further, we get
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K(l,(y,/0,...,/„_.)•/?) = K(1,(J,/O,...,/„_,_!) R)

+ V(l,(lm-e)R)-y(l(J,l0,--,lm-e-l)R

= V{l,(J,lo,...,lm..-l)-R) + l, because

(The latter relation follows from the intersection algorithm, because
lm-MJ,lo,---,L-e-i)-R) By induction we obtain:

Proof of (ii): By (i) we have to show that

e^V(l,J Rnc• R).

We get this directly from

V(l,JR + cR)ZV(W,lo,--,L-e)-R) (3)

and the calculations at the beginning of the proof. The equality in (3) is equivalent to

cRs(J,lo,...,lm-e)R,

but this is the same as (iv). So we have shown the equivalence of (iii) and (iv). (v)
follows directly from (iv), because we get <$ = <#h and j(X1,...,Xr;Q = k(Xl,...,Xr;C)
for all Cec€h =

 (€ from the intersection algorithm. •

For the first part of conclusion (v) (<€=<&l) we need (iii) only for all the reduced
schemes which appear in the decomposition into irreducible components given by
Lemma 1.3, but using the original e=e(Xu...,Xr) instead of the e of the reduced
schemes (see also [13]):

Corollary 2.3. Let Xu...,Xr be pure dimensional subschemes of P"K. Let Vu, for
1 ^j^sh l^i^r, be the subschemes which are defined according to Lemma 1.3. If

Proof. We have
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Therefore we get by ( # ) e{ylh,...,Vrjr) = xg(Vlh,...,Vrjr). By Lemma 1.3 and Proposi-
tion 2.2 (iii) => (v), it follows that

Also, by ((#)), we get e(Xl,...,Xr) = e(Vijl,...,VrJr) for all l g j . ^ s , l g i ^ r , and we
obtain our assertion.

Example (Example 2 from [1]). This example shows that (iii) => (v) is not reversible.
Let X and Y be defined by the following ideals:

: = (xl,xo-xuxl,xo-x3—xl-x2) and /(7): = (x1,x3).

By Corollary 2.3 we get <£ = {C}, with the intersection point C of XnY which is
defined by xo = x1 = x3 = 0, and we have

deg X • deg Y = k(X, Y; C) • deg C = 2,

but rg(X,Y) = 0 and e(X, Y) = l.

Proposition 2.4. Let XU...,XT be reduced subschemes of P"K which are connected in
codimension one, and let

rg: = rg(Xl,...,Xr),e: = e(Xl,...,Xr).

Then

f ldeg*^ £ k(Xu...,Xr;QdegC + (e-rg).
i = l Ce<g,rr

Proof. The proof of Lemma 1.2 in [1] needs the reducedness and the connectedness
in codimension 1 of the join-variety # in P>"K and the (*)-condition. The (*)-condition is
especially used to ensure that the defining ideal J of the join-variety , / and the diagonal
ideal c contain no common linear forms (Lemma 2.1 and Proposition 2.2 (i)). The first
two of the properties of the join-variety # mentioned above follow from the same
properties for X,,..., XT (see [1]).

We consider the natural ring epimorphism

<t>\R-+R': = RI([_J • Rnc- R^).

Let J' and d be the images of J • R and c • R respectively in R'. In the projective space
Pg"rg which corresponds to R', the above assumptions are satisfied. The lengths of the
prime ideals which appear are preserved by the surjectivity of 4>. So we obtain
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(fA) (...,Xr)-rg. Q

Corollary 2.5. Let Xu...,Xr be pure dimensional subschemes of P"K. Furthermore, let
Xf = \JjL! X,j be the decomposition of Xt into irreducible components, let Vi} = {Xi})rcA and
let lij be the length of &XiJ VlJ, for j=l,...,s, and i = l , . . . , r , in accordance with Lemma
1.3. Then

1=1 I C£«,

where the sum is taken over all i=(ji,..-,jr), with l^ji^st and l ^ i ^ r . #„ p,, e, and rg,
are defined as follows:

e- = e(Vtj,,.., Vrjr) and {rg,: = Tg(Vlh,..., Vrjr).

{We set k(Vih,...,VrJr;C) equal to zero, if

Proof. The assumptions of Proposition 2.4 are satisfied for V1Jt,...,Vrjr. Therefore
we get

1 = 1 Ce<i?(

j = Z , P,' Fli=i de§ Viji an<^ Lemma 1.3 proves the corollary.

Theorem 2.6 Let us take the same assumptions and notation as in Corollary 2.5.
Furthermore let C6i[: = c€h (Vlh,..., Vrjr). Then the following conditions are equivalent:

(i) Ui=
(ii) n:=i

(iii) e, = rg, for all i = (ji,...,jr) with lgy'i^s,- and l^i^r.

Proof, (i) => (ii) is trivial,

(ii) => (iii) follows from Corollary 2.5.

(iii) => (i): By proposition 2.2 (iii) => (v) we obtain

f l deg Vih = S k(Vlh,..., Vrjr; C) • deg C.
!
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(i) follows in the same way as in the proof of Corollary 2.5. Theorem 2.7 shows that the
Theorem in [13] cannot be completely extended to the case # = # ; „ , and the subsequent
example shows the relevance of this case.

Theorem 2.7. Let Xl,...,Xr be pure dimensional schemes of P"K. With the same
assumptions and notation as in Corollary 2.5 we get for the following conditions

0) YYi=
(ii) n ^

(iii) e, = rgjor all i=(ju..., jr) with 1 g; , -^s t and l^i^r,

(iv) F U i degX,.=Xcesir r j(Xlt...,Xr;C)• degC,
(i)«.(ii)=>(iii), (iv).
Furthermore, the following conclusions are in general false: (iii) => (i) or (iv), (iv) => (i) or
(iii).

Proof, (i) => (ii) is trivial.
(ii)=>(i), (iv) resp.:
We look at following chain of inequalities:

j(Xl,...,X,;C)degC (Lemma 1.1)
r

k(Xl,...,Xr,C)dcgC.

Therefore we get equality at every point of the chain, and so we obtain (i) and (iv).
(ii) => (iii): Because of (i) and (iv) we get t? = #i r r and for every C e %>

k{Xl,...,Xr;Q = j{Xl,...,Xr;C).

By Lemmas 3 and 4 of [13] we get the following results:

(1) V(V1Jlf..., VrJr) = <€•„,{Vlh,..., VrJr) for all i,

(2) k{Vlh,..., Vrjr;C) = ;(V1Jt,..., VrJr;Q for all i.

By Proposition 2.4 and consequences 1 and 2, we deduce the following chain of
inequalities:

f l deg ViU ̂  X k(Vlh Vrjr; C) • deg C+(e , - rg , )
K U l VrJr>
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I j(Vlji....,vrJr;Q-tegC+(e,-Tg,)

Z j(Vlh
J, VrJr)

for all i = Uu••• Jr) with l^Ji^si a nd l ^ ' ^ r - Therefore we obtain (iii).
Counterexamples for (iv) => (ii) or (iii) and (iii) => (ii) are contained in [13]. Therefore

we need for the proof of the theorem a counterexample to (iii) => (iv):
We set I(X) = (x%-x1) and I(Y) = (xoxf) in K[xo,x1,x2']. Following the method of

decomposition we get

/(Xx) = (xg), I(X2) = (Xl) and /(y1) = (x0), l{Y2)=(x\).

So it follows that

fl for i=j ) . . . . »
eij=\n .u • } = riJ for i, j = 1,2.1 [0 otherwisej

Therefore (iii) holds, and by an easy computation using Lemma 1.3 we know that (iv) is
false. •

Example. Let X and Y be subschemes of P£ with defining ideals

I(X)=(xo,xl,x2)n(x3lx4,x5) and I(Y) = (xux2,x3).

X and 7 are reduced, e(X, Y) = 2, rg (X, Y) = 0 and

/(X) + /(Y) = (x0, xux2, x3) n (xux2, x3, xA, x5).

By Lemma 1.3 we get

<£ = {C1:xo = x1=x2 = x3 = 0, C2: x! = x2 = x3 = x4 = x5=0}

and

= 2 1 = l + l=degC1+degC2.

We note that this example shows once more that the formula of Lazarsfeld (see [3, Ex.
12.3.5]) cannot be extended to reduced schemes.

For the following key lemma which we use to generlaize Proposition 2.4 to schemes
which are connected in codimension one (see Theorem 2.9) we need some notation. Let
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a be a homogenous ideal in K[xo,...,xn]. H(t,a) denotes its Hilbert function. This
function is for large t a polynomial in t and this polynomial can be written in the
following form:

where d = Krull-dim a—1 and the so-called Hilbert coefficients ho(a)>0, h^a),...,^^)
are integers. (For some properties of the Hilbert function and its coefficients see [6,
(1.41)] or [12, Ch. I C].)

Lemma 2.8. Let Xl,...,Xr be pure dimensional subschemes of P"K. Then for all
components C of the collection y>{Xx,..., Xr)

j((Xl)tcd,...,(Xr)rcd;C)-k((Xl)TCd,...,(XrU;Q

Proof. By Lemma 1.3 (i) <tf((Xl)TCd,...,(Xr)Icd) = ̂ (Xu...,Xr). So the intersection
numbers K(X1)ied,...,{Xr)ted;C) and k((X1)Icd,...,(Xr)rci;C) are defined. Multiplying
both sides of the above inequality by ho(p + c), where p is the defining ideal of C in
K[xo,...,xJ1] and c is the diagonal ideal of R, we get the equivalent inequality:

M?) - M<?red) ̂  M<? + C) - floored + C),

where q (resp. qrcd) is the primary ideal corresponding to p + c which is constructed in
the intersection algorithm for Xu...,Xr (resp. for (Xl)ni,...,(Xr)ted).

Let dim C = dim(X1 n--- nXr) — i. Then we know by the definitions of Section 1 that

= (q,lm_e + i + 1 , . . . , l m ) , a n d

<Zred + c= (q r c d , lm - e+i +1, • • •, U, respectively.

We define for m — e + i < j ^ m

QU)'- = (<l,L-e+i+i>--->h-i) a n d

9red: =(^red>'m-e + i+1> • • • ' ' j - l ) -

Claim, q01 £ q^]d for all m — e + i < j g m.

For the proof of the claim it is sufficient to show that

For two ideals a and b of a Noetherian ring R of the same dimension d we note that an

https://doi.org/10.1017/S0013091500018526 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018526


440 THILO PRUSCHKE

inclusion a^b is transferred to inclusions of such d-dimensional primary components of
a and b belonging to the prime ideals of b. This one can see by localization.

Let a! , . . . ,a r be the defining ideals in K[x 0 , . . . , x n ] of X1,...,Xr respectively. Then it
is clear that

+ •••+Rad(ar)' = :Jred.

With the notation of Section 1 we get from the above remark that

U((J • £)„ £ C/((Jred • R\) for all fi = - 1 , . . . , m - e and

Uv£U^ed for all v,
where the U"d is constructed in the intersection algorithm by using Jred instead of J.
Now the claim follows from the last inclusion for v = i by localization.

Now we complete the proof of Lemma 2.8. We get (cf. [12, (1.36)])

ho(q
U), lj) = ho(q

w) - ho(q">: I,) and

*ofa&, h) = M<Z&) - fco(«&: 'A respectively.

Therefore

where we set those h0 of q0): /j or of q^d: lj equal to zero, if their dimensions are lower
than dim(p + c).

By the claim we get h^qU):lj)^h0(^Si:lj), and so

This gives us a chain of inequalities and proves the lemma.

Theorem 2.9. Let X^,...^, be pure dimensional subschemes of P"K which are con-
nected in codimension one. Then

X k(X1,...,Xr;C)dcgC+(e-rgrcd)
'=1 C€«,rr

Proof. For brevity we set
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and

j c : = j(Xu...,Xr;O, # d : = ;((*i)red,• • •,(Xr)rcd;Q.

By Proposition 2.4

1 = 1

Rearranging this inequality we get by Lemma 1.1.

By Lemma 1.3 we get j c = ./cd; therefore we obtain the assertion, by Lemma 2.8.

Corollary 2.10. Let Xu...,Xrbe as in Theorem 2.9. Then the following conditions are
equivalent:

(ii) YYi=1

Proof, (ii) => (i) obvious,
(i) =>(ii): By Theorem 2.9 we get e = rgred, and by Proposition 2.2 (v)

,.)red= I fc((X1)red,...,(Xr)red;C)-degC.
i = l Ce<eh

In particular this shows (&=<&itt =
 e£h. •

3. The Cohen-Macaulay case

In this section we apply Theorem 2.9 to the case of Cohen-Macaulay schemes and we
discuss particularly the so-called general Bezout's Theorem. This theorem is a generali-
zation of the case of the intersection of hypersurfaces. This is important, because
hypersurfaces are in general neither reduced nor irreducible. First we transfer Theorem
2.9 to this case.

Proposition 3.1. Let Xl,...,Xr be subschemes of P"K which are connected in codimen-
sion one. Let the local Rings &x.x be Cohen-Macaulay for all Ce^irr and all i=l,...,r.
Then
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fl deg X,,Z dSg (X, n • • • n Xr) + (e - rgrcd).

Proof. By the Cohen-Macaulay property and [1, Proposition 3.8]

for all Ce«"irr. (Here l(Xl,...,Xr;Q: = length of ^ i n . . . n ^ i C . ) Our assertion follows
from Theorem 2.9.

We deduce a new proof of [2, Proposition 3.12].

Corollary 3.2. Let Xt,...,Xr and the notation be as in Proposition 3.1. / /rgr e d = 0,
then the following conditions are equivalent:

(i) deg(X1 n-nXr)^Y\U i

(ii) deg(X1n-nXr)^Y]r=l

(iii) e(Xu...,Xr) = 0.

Proof, (i) => (ii) is trivial.
(ii) =>(ii) follows from Proposition 3.1 and rgred = 0.
(iii) =>(i): Since e=0 we get the following consequences:

(1) <g=<gh and

(2) j(Xu...,Xr;C) = k(X1,...,Xr;C)forallCe<#.

From the Cohen-Macaulay property it follows as in Proposition 3.1 that

k{Xu...,Xr;Q = l(Xu...,Xr;C). •

Corollary 3.3. Let X1}...,Xr be arithmetically Cohen-Macaulay schemes of P"K of
dimension ^ 1 . Then

f l d e g J f ^ d c g ^ j n---nXr)+(e-Tgrcd).

Proof. By Theorem 5 of [10] we get that the Xt are connected in codimension one.
Proposition 3.1. completes the proof.

Since [10] is sometimes not readily available we want to give here a short sketch of a
proof of this fact under our assumptions.

Claim. / / V is an arithmetically Cohen-Macaulay scheme of P^ of dimension ̂  1. Then
V is connected in codimension one.

Proof. Let V be defined by the homogeneous ideal a of R: = K[x0,...,xn}. By our
assumption we get that all the local rings Rp/aRp for every prime ideals p with
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a E p c i ? satisfy the condition S2 by Serre. By [7, Corollary 2.4] and Remark 1.3.2 we
get our assertion if we know that V is connected. For this we consider the affine cone X
over V. X is a connected noetherian topological space. Let X be the vertex of X. We set
Y: = {x}. By [7, Theorem 2.2], we get X\{x] is connected, since depth 0x,x^2 because
of the Cohen-Macaulay property. Therefore V is connected.

For arithmetically Cohen-Macaulay schemes we can improve Corollary 3.2 to the
following general Bezout's theorem.

Theorem 3.4. Let Xlt...,Xr be arithmetically Cohen-Macaulay schemes of P"K. Then
the following conditions are equivalent.

(i)

(ii)

(Hi)

Proof. By Corollary 2.10, (i) and (ii) are equivalent,
(ii) => (Hi) is Proposition 2 from [13].
(iii) => (ii): By Proposition 2.2, we get that property, (v) in Proposition 2.2 holds, and as
in Proportion 3.1 this proves the theorem, using the Cohen-Macaulay property.

Remark. By defining E(X1,...,Xr): = e(Xu...,Xr)-rg(Xu...,Xr) we get following
"geometric" statement:
Let X!,...,Xr be arithmetically Cohen-Macaulay schemes of P"K. Then the following
conditions are equivalent.

(i)
(ii)
(iii)

Now we list some interesting consequences.

Corollary 3.5. Let Xlt...,Xr be arithmetically Cohen-Macaulay schemes of P"K. If
e#rg , then

For intersections of hypersurfaces we get:

Corollary 3.6. Let Xu...,Xr be hypersurfaces of P"K, which are defined by forms
F j , . . . , F r of degree du...,dr. Then the following conditions are equivalent.

(i) ho(F1,...,F,) = Y]'i=1di,
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(ii) e = number of linear forms in the set {Flt...,Fr}— number of linearly independent
linear forms in {F lt..., Fr}.

For r = 2 we obtain directly from Theorem 3.4 a result of W. Vogel (Proposition 3 in
[13]).

Corollary 3.7. Let X and Y be arithmetically Cohen-Macaulay schemes of P£> which
are defined by the homogeneous ideals <x, b of K[x0, . . . ,xn] . Then the following conditions
are equivalent.

(i) deg(XnY)^degXdegY,
(ii) deg(XnY)^degXdegY,
(iii) e(X,Y) = V(l,anb).

Proof. Apply the dimension theorem for vector spaces.

Now we show the result of B. Renschuch and W. Vogel from [9].

Corollary 3.8. Let Xl,...,Xr be as in Proposition 3.4, where Xt is defined by the
homogeneous ideals a , £ K [ x 0 , . . . , x n ] /o r i=l,...,r. If the a, satisfy the (*)-condition, then
the following conditions are equivalent.

(i)

(ii)

(iii) e{Xu...,Xr)=0.

Proof. This follows from Proposition 2.1 and Theorem 3.4.
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