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Stability of Real C∗-Algebras

Jeffrey L. Boersema and Efren Ruiz

Abstract. We will give a characterization of stable real C∗-algebras analogous to the one given for

complex C∗-algebras by Hjelmborg and Rørdam. Using this result, we will prove that any real C∗-

algebra satisfying the corona factorization property is stable if and only if its complexification is stable.

Real C∗-algebras satisfying the corona factorization property include AF-algebras and purely infinite

C∗-algebras. We will also provide an example of a simple unstable C∗-algebra, the complexification of

which is stable.

1 Introduction

Let K be the real C∗-algebra consisting of compact operators on a real, infinite di-

mensional, separable Hilbert space. We say that a real C∗-algebra A is stable if it is

isomorphic to A ⊗ K (throughout this paper, tensor products will be over the real

numbers unless otherwise indicated). As in the complex case, there is an isomor-

phism K ⊗ K ∼= K, implying that a real C∗-algebra A is stable if and only if it is

isomorphic to B ⊗ K for some real C∗-algebra B. In this paper, we investigate the

relationship between the stability of a real C∗-algebra and the stability of its com-

plexification AC = C ⊗ A = A + iA. The calculation

C ⊗ (A ⊗K) = (C ⊗ A) ⊗C (C ⊗K) = AC ⊗C KC

shows that if A is stable as a real C∗-algebra, then AC is stable as a complex C∗-algebra.

The converse is not true in general, as we will see in Section 4.

However, we will present results which provide a converse for a large class of real

C∗-algebras. More specifically, our main theorem states that any real C∗-algebra sat-

isfying the corona factorization property is stable if the complexification is. We will

prove that this class includes both real AF-algebras and real purely infinite C∗-alge-

bras. These results appear in Section 3.

To facilitate the proofs of the results mentioned above, we will develop in Section 2

a set of equivalent characterizations of stability for real C∗-algebras as well as some

permanence properties for the stable C∗-algebras that follow, which are analogous to

those results in [8].

2 Characterization of Stability for Real C∗-Algebras

For a real C∗-algebra A, let F(A) be the set of all positive elements in A that have a

positive multiplicative identity in A; that is,

F(A) = {a ∈ A+ | ba = a for some b ∈ A+}.
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For a and b in A, we write a ∼ b if a and b are Murray-von Neumann equivalent;

that is, there exists x in A such that x∗x = a and xx∗ = b. Also, we write a⊥b if

ab = ba = 0.

Theorem 2.1 Let A be a real σ-unital C∗-algebra. Then the following are equivalent:

(S0) A is stable.

(S1) For all a ∈ F(A), there exists b ∈ A+ such that a ∼ b and a⊥b.

(S2) For all a ∈ F(A) and for every ǫ > 0, there exist b, c ∈ A+ such that ‖a − b‖ < ǫ,
b ∼ c and ‖bc‖ < ǫ.

(S3) For all a ∈ F(A) and for every ǫ > 0, there exists a unitary u ∈ Ã such that

‖auau∗‖ < ǫ.
(S4) There is a sequence {en}

∞
n=1 of mutually orthogonal and equivalent projections in

M(A) such that the infinite sum
∑∞

n=1 en converges to 1M(A) in the strict topology on

M(A).

(S5) For all a ∈ A+ and all ǫ > 0, there exists b ∈ A+ such that ‖ab‖ < ǫ and a ∼ b.

And if A has a countable approximate identity consisting of projections then each condi-

tion above is equivalent to the following:

(S6) For all projections p ∈ A there is a projection q ∈ A such that p ∼ q and p ⊥ q .

These characterizations are identical to those given in [8], except for (S3), which

is a weaker version of their Proposition 2.2(d). Note that the proof of (c) ⇒ (d) in

[8, p. 157] uses the complex structure in an essential way. We will prove Theorem 2.1

in stages in the rest of this section, referring to [8] when the proofs are the same.

First we will present some corollaries, including the following collection of per-

manence properties.

Corollary 2.2 Suppose that A is a real C∗-algebra.

(P1) If A is σ-unital and is an inductive limit of stable σ-unital real C∗-algebras, then

A is stable.

(P2) If A is stable, then so is every ideal in A and every quotient of A.

(P3) If B is a stable real sub-C∗-algebra of A containing an approximate identity for A,

then A is stable.

(P4) If A is a σ-unital and stable and if G is a countable discrete group acting on A, then

A ⋊α G is stable.

(P5) If A is a σ-unital and stable and a ∈ A is positive with norm at most 1, then

(1 − a)A(1 − a) is stable.

Proof The proofs of (P1) and (P2) are the same as in the complex case; see [8, Corol-

lary 4.1] and [14, Corollary 2.3(ii)]. We will provide a proof of (P3) below, and the

proof of (P4) follows from (P3) as in [8, Corollary 4.5].

For (P3), we show that A satisfies condition (S3) if B does. Let a be in F(A),

and let ǫ be a positive number. Since B has an approximate identity that is an ap-

proximate identity of A and since F(B) is dense in B+, there exists e in F(B) with

‖e‖ = 1 such that 2 ‖a‖ ‖a − ae‖ < ǫ
2
. Then there exists a unitary w in B̃ such that
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(‖a‖
2

+ 1) ‖ewew∗‖ < ǫ
2
. Then we have

‖awaw∗‖ ≤ ‖awaw∗ − aewaw∗‖ + ‖aewaw∗ − aeweaw∗‖ + ‖aeweaw∗‖

≤ ‖a − ae‖ ‖a‖ + ‖a‖ ‖a − ae‖ + ‖a‖ ‖ewe‖ ‖a‖

= 2 ‖a − ae‖ ‖a‖ + ‖a‖
2
‖ewew∗‖ <

ǫ

2
+
ǫ

2
= ǫ.

For (P5), let B = (1 − a)A(1 − a) and let b ∈ F(B) ⊆ F(A). Approximating a + b

with elements in F(A) and using condition (S3), we obtain a sequence of unitaries

un ∈ Ã such that limn→∞ ‖un(a + b)u∗
n(a + b)‖ = 0. The rest of the proof proceeds

as in [8, Corollary 4.3].

Recall that any complex C∗-algebra A can be considered a real C∗-algebra by for-

getting the structure of complex scalar multiplication. Since the characterization of

(S5) is the same as that given in [8] and makes no reference to the field of scalars

used, we immediately have the following corollary.

Corollary 2.3 Let A be a σ-unital complex C∗-algebra. Then A ⊗C KC is isomorphic

to A as complex C∗-algebras if and only if A⊗K is isomorphic to A as real C∗-algebras.

Proof of equivalence of (S1), (S2), and (S3) The statement (S1) ⇒ (S2) is immedi-

ate. The proofs of [8, Lemmas 2.3 and 2.5] work the same way in the real case to

prove (S2) ⇒ (S3). Also, the proof of (S3) ⇒ (S1) is the same as the proof of the (b)

⇒ (c) implication of [8, Proposition 2.2], including Lemma 2.4.

We define an element a in a real C∗-algebra A to be strictly positive if it is strictly

positive in the complexification AC, that is, if φ(a) > 0 for every nonzero positive

linear functional φ on AC. As in [8] we define

fǫ(x) =





0 0 ≤ t ≤ ǫ

ǫ−1t − 1 ǫ ≤ t ≤ 2ǫ

1 2ǫ ≤ t,

and for every strictly positive element a we define

Fa(A) = {b ∈ A+ | ∃ǫ > 0 : fǫ(a)b = b}.

If a ∈ A is strictly positive, then the sequence { f1/n(a)} is an approximate identity

for A. Indeed, as in [11, Proposition 3.10.5] it is an approximate identity for AC. Also,

note that if {en} is an approximate identity for A, then a =
∑∞

n=1 en/2n is a strictly

positive element of A (again see [11, Proposition 3.10.5]).

Lemma 2.4 Let A be a σ-unital real C∗-algebra that satisfies (S1). Then the following

hold for every strictly positive element a:

(i) For all b ∈ Fa(A), there exists c ∈ Fa(A) with b ∼ c and b⊥c.

(ii) For all ǫ > 0, there exists a projection p ∈ M(A) satisfying 1 − p⊥ fǫ(a), p ∼ 1,

and 1 − p & 1.
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Proof If a is a positive element in a real C∗-algebra, then aAa is hereditary. (Al-

though the hereditary C∗-algebra generated by a may be strictly smaller. In the lan-

guage of [16], aAa is the regular hereditary C∗-algebra generated by a.) With this in

mind, the proof is the same as the proof of [8, Lemma 2.6].

Proof of equivalence of (S0), (S1), and (S4) Using Lemma 2.4, we can use the same

argument as in the proof of [8, Theorem 2.1].

Proof of equivalence of (S0) and (S5) Condition (S5) directly implies (S2). For the

other direction, let a be a positive element of a stable C∗-algebra A, and let ǫ > 0. We

may assume that ‖a‖ ≤ 1 and a 6= 0. Also, we may assume that ǫ < 1. Since F(A) is

dense in A+, there exists a0 in F(A) such that ‖a − a0‖ <
ǫ
8
.

By (S3), there exists a unitary u in Ã such that ‖a0ua0u∗‖ < ǫ
2
. Set x = ua

1
2 and

set b = xx∗ = uau∗. Then a ∼ b and

‖ab‖ ≤ ‖a0ua0u∗‖ + ‖ab − aua0u∗‖ + ‖aua0u∗ − a0ua0u∗‖

≤ ǫ
2

+ ‖a‖ ‖a − a0‖ + ‖a − a0‖ ‖a0‖ <
ǫ
2

+ ǫ
8

+ ǫ
8

(
1 + ǫ

8

)
< ǫ.

Proof of equivalence of (S0) and (S6) This is proved in the same was as in Section 3

of [8].

3 The Corona Factorization Property

As in [10], we define the corona factorization property for a real C∗-algebra as fol-

lows. A projection is norm-full in A if the only ideal in A containing p is A itself.

Definition 3.1 A real C∗-algebra A has the corona factorization property if every

norm-full projection p in the multiplier algebra M(A⊗K) is Murray–von Neumann

equivalent to 1M(A⊗K).

Note that A has the corona factorization property if and only if A ⊗ K has the

corona factorization property. The goal of this section is to prove the following theo-

rems. Recall from [16] that a real C∗-algebra A is purely infinite if the subalgebra aAa

contains an infinite projection for every a ∈ A+.

Theorem 3.2 Let A be a real C∗-algebra with the corona factorization property. Then

A is stable if and only if AC is stable.

Theorem 3.3 The following classes of real C∗-algebras satisfiy the corona factorization

property:

(i) AF-algebras

(ii) separable, simple, purely infinite C∗-algebras A such that AC is also purely infinite.

Corollary 3.4 A real C∗-algebra A in either of the classes mentioned above is stable if

and only if AC is stable.
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Peter Stacey has pointed out that in the case of AF-algebras, the same result can be

obtained via a K-theoretic argument using scale.

We note that Zhang’s Dichotomy for real purely infinite C∗-algebras follows using

Corollary 3.4 from the same result in the complex case ([19, Theorem 1.2]) with

the additional assumption that AC is purely infinite. Unfortunately, the question

of whether or not the complexification of a purely infinite real C∗-algebra is purely

infinite is open (see [16] for partial results).

However, we note that simply by repeating the argument of [1, Section 27.5] we

can prove Zhang’s Dichotomy in full generality.

Theorem 3.5 (Zhang’s Dichotomy) Every real σ-unital, simple, and purely infinite

C∗-algebra A is either unital or stable.

Following Cuntz in [7], we consider the following conditions that can be placed

on a set P of projections of a real C∗-algebra A.

(Π1) If p and q are in P and p is orthogonal to q, then p + q are in P.

(Π2) If p is an element of P and q is a projection of A such that p ∼ q, then q is an

element of P.

(Π3) For all p and q in P, there exists e in P such that p ∼ e, e < q, and q − e is an

element of P.

(Π4) If p and q are projections in A with p ≤ q and p ∈ P, then q ∈ P.

If p is a projection, then [p] will denote the Murray–von Neumann equivalence

class represented by p. Using similar techniques as in [7, Theorem 1.4] one can show

that the following holds.

Theorem 3.6 Let A be a real C∗-algebra with a non-empty subset P of projections in

A satisfying (Π1), (Π2), and (Π3) above. Then G = {[p] : p ∈ P} is a group with

the natural addition [p] + [q] = [p ′ + q ′], where p ′ and q ′ are elements of P chosen

such that p ∼ p ′, q ∼ q ′, and p ′ is orthogonal to q ′. Moreover, if A is a unital real

C∗-algebra and in addition P satisfies (Π4), then the obvious map from G to K0(A) is a

group isomorphism.

As in the complex case, we say that a projection p in a real C∗-algebra A is properly

infinite if there are orthogonal projections p1 and p2 with p1 ∼ p2 ∼ p.

Lemma 3.7 If the set P of properly infinite norm-full projections in a real C∗-algebra

A is nonempty, then it satisfies (Π1), (Π2), (Π3), and (Π4).

Proof (Π1) Suppose p and q are elements of P and p is orthogonal to q. Then there

exist projections p1, p2 ≤ p and q1, q2 ≤ q such that p1 is orthogonal to p2, q1 is

orthogonal to q2, p1 ∼ p2 ∼ p, and q1 ∼ q2 ∼ q.

Set r1 = p1 + q1, r2 = p2 + q2, and r = p + q. A computation shows that r1 is

orthogonal to r2, r1 ∼ r2 ∼ r, and r1, r2 ≤ r.

(Π2) Let p be an element of P and p ′ be a projection such that p ∼ q. Since p is

an element of P, there exist orthogonal projections p1 and p2 such that p1, p2 ≤ p

and p1 ∼ p2 ∼ p. Since p ∼ q, there exists v in A such that vv∗ = p and v∗v = q.
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Let q1 = v∗p1v and q2 = v∗p2v. A computation shows that q1 is orthogonal to q2,

that q1 ∼ q2 ∼ q, and that q1, q2 ≤ q.

(Π4) Let p be an element of P and let q be a projection such that p ≤ q. Since p is

norm-full in A, there is a positive integer n such that we have

q ∼ q ′ ≤ diag(p, . . . , p)

in Mn(A). Since p is an element of P, there exist n mutually orthogonal projections

p1, . . . , pn in pAp all of which are Murray–von Neumann equivalent to p. Thus

diag(p, . . . , p) ∼ p1 +· · ·+ pn ≤ p. Therefore, q . p, i.e., q is Murray–von Neumann

equivalent to a subprojection of p. Since p is an element of P, there exist orthogonal

projections p1 and p2 in pAp such that p1 ∼ p2 ∼ p. Therefore, q . p1 ≤ p and

q . p2 ≤ p. Hence, there exist orthogonal projections q1 and q2 in pAp ⊂ qAq such

that q1 ∼ q2 ∼ q. Since p = pq and p is norm-full in A, q is norm-full in A. Hence,

q is an element of P.

(Π3) Let p and q be elements of P. As in the proof of (Π4), we have that p . q.

Therefore, p ∼ e ≤ q for some projection e, which is in P by (Π2). Therefore, there

exist orthogonal projections e1 and e2 such that e1 ∼ e2 ∼ e and e1, e2 < e. Note that

e1 + e2 ≤ e ≤ q. So, e2 ≤ q − e1 < q. Since e ∼ e2, by (Π2) we have that e2 is an

element of P. By (Π4), we have that q − e1 is an element of P.

Proposition 3.8 Let A be a real C∗-algebra and let p and q be norm-full, properly

infinite, projections of A. Then [p]0 = [q]0 if and only if p is Murray–von Neumann

equivalent to q.

Proof By (Π3), we may assume that p and q are orthogonal. Let r = p + q. The

projection r is norm-full, so by [2, Proposition 9], we have [p]0 = [q]0 in K0(A) if

and only if [p]0 = [q]0 in K0(rAr). By Theorem 3.6 and Lemma 3.7, this holds if an

only if p and q are Murray–von Neumann equivalent.

Lemma 3.9 Let A be a real C∗-algebra. Then M(A⊗K) contains a unital copy of OR

n

for all n.

Proof There is a faithful representation of the real Cuntz algebra OR

n on a separable

real Hilbert space (see [15, p. 4]). Therefore, B(H) = M(K) contains a unital copy

of OR

n . Then the unital embedding M(K) →֒ M(A ⊗K) completes the proof.

Proposition 3.10 ([5, Theorem 4.23]) Let A be a stable real C∗-algebra. Then a

projection p in M(A) is Murray–von Neumann equivalent to 1M(A) if and only if pAp

is a norm-full, stable sub-C∗-algebra of A.

Proof It is clear that if p is Murray–von Neumann equivalent to 1M(A), then pAp

is norm-full in A and stable. Conversely, suppose pAp is norm-full and stable in A.

Then (pAp)C
∼= pAC p is norm-full in AC and stable. Then by [5, Theorem 4.23], the

projection p is Murray–von Neumann equivalent to 1M(AC) and hence is norm-full

in M(AC) ∼= M(A)C. It follows that p is norm-full in M(A).

Now Lemma 3.9 implies that p is properly infinite, since it is the unit of

M(pAp) ∼= pM(A)p. As K0(M(A)) = 0 by [2, Theorem 4], Proposition 3.8 im-

plies that p is Murray–von Neumann equivalent to 1M(A).
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Proof of Theorem 3.2. The “only if” direction is clear. We prove the “if” direction.

Suppose AC is stable as a complex C∗-algebra. Then by Corollary 2.3, AC is stable as

a real C∗-algebra. Note that AC can be embedded into M2(A) such that there exists

an approximate identity of AC that is an approximate identity of M2(A). Therefore,

by Corollary 2.2(P3), M2(A) is stable.

We claim that M2(A) stable implies A stable. Let {ei j}
∞
i, j=1 be the standard system

of matrix units of K, and let p = 1M(A) ⊗ e11 ∈ M(A) ⊗K. Then A ∼= p(A ⊗K)p

is a norm-full hereditary real sub-C∗-algebra of A ⊗ K. By Lemma 3.9, there are

isometries s1 and s2 in M(A ⊗K) such that s1s∗1 + s2s∗2 = 1M(A). Letting q = s1 ps∗1 +

s2 ps∗2 , we have q(A ⊗ K)q ∼= M2(A). Since p(A ⊗ K)p is a norm-full real sub-C∗-

algebra of A ⊗K, so is q(A ⊗K)q. Therefore, by Proposition 3.10, q is Murray–von

Neumann equivalent to 1M(A⊗K). Hence, q is a norm-full projection of M(A ⊗K).

Hence, p is a norm-full projection of M(A ⊗ K). Since A ⊗ K satisfies the corona

factorization property, p is Murray–von Neumann equivalent to 1M(A⊗K). Hence

A = p(A ⊗K)p ∼= A ⊗K.

We now turn to the proof that real AF-algebras satisfy the corona factorization

property. We begin by considering the case of a complex AF-algebra. The following

result is closely related to, but does not exactly fall under the scope of, [10, Proposi-

tion 2.1].

Lemma 3.11 Let A be a stable complex AF-algebra. Then for every norm-full projec-

tion p ∈ M(A), p is Murray–von Neumann equivalent to 1M(A).

Proof Let p be a norm-full projection in M(A). We will first show that pAp is stable.

Since it is AF, it is enough to show that pAp has no bounded trace by [14, Proposi-

tion 3.4].

Suppose on the contrary that pAp has a bounded trace. Since p is a norm-full

projection in M(A), pAp is full in A. By [4, Corollary 2.6], pAp ⊗K is isomorphic

to A. Hence, we can extend τ to a lower-semicontinuous trace on A, which in turn

extends to a trace τ̃ on M(A)+. Note that τ̃ (1M(A)) = ∞, since otherwise τ̃ restricts

to a bounded trace on A, contradicting the fact that A is stable.

Since p is a norm-full projection in M(A), there exist x1, . . . , xn ∈ M(A) such that

1M(A) =

n∑

k=1

xk px∗k .

Hence,

τ̃ (1M(A)) ≤ τ̃ (p)

n∑

k=1

‖xkx∗k ‖ ,

which implies that τ̃ (p) = ∞.

Since A is a complex AF-algebra, there exists an approximate identity {en}n∈N of

A consisting of projections.

Since τ is a bounded trace on pAp,

|τ (pen p)| ≤ ‖τ‖ ‖pen p‖ ≤ ‖τ‖ ‖p‖ .
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Hence,

τ̃ (p) = lim sup
n→∞

τ (en pen) = lim sup
n→∞

τ (pen p) ≤ ‖τ‖ ‖p‖ <∞,

which is a contradiction to the fact that τ̃ (p) = ∞.

We have just shown that pAp is a stable complex AF-algebra. Therefore,

M(pAp) ∼= pM(A)p is properly infinite. Hence, p is a norm-full, properly infinite

projection in M(A). Thus, p is Murray–von Neumann equivalent to 1M(A).

Lemma 3.12 Let A be a real AF-algebra and p, q be projections in A. Then [p] < [q]

holds in K0(A) if and only if [p] < [q] in K0(AC).

Consequently, since A and AC both have cancellation, p is Murray–von Neumann

equivalent to a proper sub-projection of q in A if and only if p is Murray–von Neu-

mann equivalent to a proper sub-projection of of q in AC.

Proof We have K−1(A) = 0 for any finite dimensional real C∗-algebra, so the same

is true for any real AF-algebra. Thus the exact sequence ([15, Theorem 1.4.7])

Kn−1(A) → Kn(A) → Kn(AC) → Kn−2(A) → Kn−1(A)

implies that the inclusion A →֒ AC induces a monomorphism on the ordered groups

(K(A),K+(A)) → (K(AC),K+(AC)).

Proof of Theorem 3.3(i) Let A be a real AF-algebra, which we may assume is stable.

Let p be a norm-full projection in M(A) ⊂ M(AC). Since p is a norm-full projection

in M(A), we have that p is a norm-full projection in M(AC) = M(A)C. Hence, by

Lemma 3.11, p is Murray–von Neumann equivalent in M(AC) to 1M(AC) = 1M(A).

Let {en}n∈N and {pn}n∈N be sequences of finite rank orthogonal projections in A

such that
∞∑

n=1

en = 1M(A) and

∞∑

n=1

pn = p

where the sums converge in the strict topology of M(A), hence also in the strict topol-

ogy of M(AC).

Set qn =
∑n

k=1 pk. We will inductively construct a strictly increasing sequence

{nk}k∈N such that ek is Murray–von Neumann equivalent to a proper projection of

qnk
− qnk−1

. Since e1 ≤ 1M(A) and 1M(A) ∼ p in M(AC), there exists n1 and a unitary

u in the unitization of AC such that ue1u∗ < qn1
. By Lemma 3.12, e1 is Murray–von

Neumann equivalent to a proper sub-projection of qn1
in A.

Consider the projections 1M(A) − e1 and p − qn1
. A computation shows that these

projections are norm-full projections. Hence, by Lemma 3.11, 1M(A) − e1 ∼ 1M(A) ∼
p − qn1

in M(AC). Since e2 is a sub-projection of 1M(A) − e1, there exists n2 > n1

and a unitary v such that ve2v∗ < qn2
− qn1

. Thus, by Lemma 3.12, e2 is Murray–von

Neumann equivalent to a proper sub-projection of qn2
− qn1

in A.

We now continue this process by considering the norm-full projections 1M(A) −
e1 − e2 and p − qn2

. To get n3 > n2 such that e3 is Murray–von Neumann equivalent
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to a proper sub-projection of qn3
− qn2

. Continuing this process we get the desired

sequence {nk}k∈N.

Let vk ∈ A such that v∗k vk = ek and vkv∗k ≤ qnk
−qnk−1

. Set v =
∑∞

k=1 vk, where the

sum converges in the strict topology of M(A). Since {ek}k∈N and {qnk
− qnk−1

}k∈N

are collections of mutually orthogonal projections, we have that

v∗v =

∞∑

k=1

ek = 1M(KR⊗A) and vv∗ ≤
∞∑

k=1

(qnk
− qnk−1

) =

∞∑

k=1

pk = p

Therefore, p is a norm-full properly infinite projection in M(A). Hence, p is Murray–

von Neumman equivalent to 1M(A).

Finally, we work toward the proof that a real purely infinite C∗-algebra whose

complexification is also purely infinite satisfies the corona factorization property. As

observed by Stacey in [16], the proof in the complex case of the equivalence of the

properties of real rank zero, FS, and HP (in [6]) carries over to give us the same

theorem in the real case. Also, the proof of the following is the same as in the complex

case in [6].

Proposition 3.13 Let A be a real C∗-algebra. For p in M(A), RR(A) = 0 if and only

if RR(pAp) = 0 and RR((1M(A) − p)A(1M(A) − p)) = 0.

Proposition 3.14 Let A be a σ-unital real C∗-algebra with real rank zero. Then

there exists a sequence of pairwise orthogonal projections {pk}
∞

k=1 in A such that

{
∑n

k=1 pk}
∞
n=1 is an approximate identity of A consisting of projections.

Consequently,
∑∞

k=1 pk = 1M(A) where the sum converges in the strict topology.

Proof Let {en}
∞
n=1 be an approximate identity of A. Since RR(A) = 0, every heredi-

tary sub-C∗-algebra has an approximate identity consisting of projections (property

(HP)). So there exists a projection p1 in A such that ‖(1M(A) − p1)e1‖ < 1. Repeat-

ing the argument in the corner algebra (1M(A) − p1)A(1M(A) − p1), there exists a

projection p2 orthogonal to p1 such that

∥∥(1M(A) − p2)(1M(A) − p1)e2
2(1M(A) − p1)

∥∥ <
(

1
2

)2
.

So, ‖(1M(A) − (p1 + p2))e2‖ <
1
2
. Repeating this same process, we inductively define

pairwise orthogonal projections {pn}
∞
n=1 such that

∥∥∥∥
(

1M(A) −
n∑

k=1

pk

)
en

∥∥∥∥ < 1
n
.

A computation shows that {
∑n

k=1 pk}
∞
n=1 is an approximate identity of A.

Lemma 3.15 Let A be a σ-unital, non-unital, real C∗-algebra with real rank zero. If

p is a projection in M(A), then there exists a sequence of pairwise orthogonal projections

{en}
∞
n=1 in A such that p =

∑∞

n=1 en, where the sum converges in the strict topology.
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Proof By Proposition 3.13, pAp is a real C∗-algebra with real rank zero. By Proposi-

tion 3.14, there exists a sequence of pairwise orthogonal projections {en}
∞
n=1 in pAp

such that
∑∞

k=1 ek = 1M(pAp) in the strict topology of M(pAp).

Set qn =
∑n

k=1 ek and note that pqn = qn p = qn for all n. For any element a ∈ A

and any ǫ > 0 there is an N ∈ N such that for all n ≥ N,

‖pa∗ap(qn − p)‖ < ǫ2.

Then we get that

‖aqn − ap‖
2
= ‖(qn − p)a∗a(qn − p)‖ = ‖(qn − p)pa∗ap(qn − p)‖

≤ ‖pa∗ap(qn − p)‖ < ǫ2.

Therefore, aqn → ap for all a ∈ A, where the convergence is in the norm of A. By

a similar argument or by applying adjoints, we get qna → pa for all a ∈ A. Hence∑∞

k=1 ek = p in the strict topology of M(A).

Proof of Theorem 3.3(ii) Assume that A is simple and stable and that AC is purely

infinite. We first consider the case in which AC is also simple.

Let p be a norm-full projection in M(A ⊗ K). Let π denote the canonical pro-

jection from M(A ⊗ K) onto Q(A ⊗ K). We will first show that π(p) is an infinite

projection in Q(A ⊗K).

Since A ⊗K is a real C∗-algebra with real rank zero, by Lemma 3.15 there exists a

sequence of pairwise orthogonal projections {ek}
∞

k=1 in A⊗K such that p =
∑∞

k=1 ek,

where the convergence of the sum is in the strict topology. Since A⊗K is a real, sim-

ple, purely infinite C∗-algebra, there exists a sequence of pairwise orthogonal projec-

tions { fk}
∞

k=1 of A ⊗K such that

(i) fk is Murray–von Neumann equivalent to ek+1 and

(ii) fk is a proper subprojection of ek

for all k in N.

Choose vk in A ⊗ K such that vkv∗k = ek+1 and v∗k vk = fk. Set v =
∑∞

k=1 vk. A

computation shows that the sum converges in the strict topology and that

vv∗ =

∞∑

k=1

vkv∗k =

∞∑

k=1

ek+1 = p − e1 and

v∗v =

∞∑

k=1

v∗k vk =

∞∑

k=1

fk = p −

∞∑

k=1

(ek − fk).

Since ek − fk are nonzero projections for all k, the sum
∑∞

k=1(ek − fk) is not an

element of A ⊗K. Therefore, π(vv∗) = π(p) and

π(p − v∗v) = π
( ∞∑

k=1

(ek − fk)
)
6= 0.
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We have just shown that π(p) is an infinite projection.

By [16, Theorem 4.4], Q(A ⊗ K) is a simple, real C∗-algebra (here we make use

of the assumption that AC is simple). We show that it is also purely infinite. Indeed

Q(AC ⊗C KC) ∼= Q(A ⊗K)C is purely infinite by [18, Theorem 1.3] (here we require

the assumption that AC is both simple and purely infinite). So, by [16, Theorem 3.3]

(together with [3]), Q(A⊗K) is purely infinite. By [16, Proposition 4.1], there exists

x in M(A ⊗K) such that π(xpx∗) = 1Q(A⊗K).

It is easy to see that for every y in A ⊗ K, there exists an infinite rank projection

r ∈ 1 ⊗ M(K) ⊂ M(A ⊗ K) such that ‖yr‖ < ǫ. Letting s ∈ 1 ⊗ M(K) be an

isometry such that ss∗ = r, we have ‖s∗ys‖ < ǫ.
Applying this observation to the element 1M(A⊗K) − xpx∗ of A⊗K, we obtain an

isometry s in M(A ⊗K) such that

‖1M(A⊗K) − s∗xpx∗s‖ = ‖s∗(1M(A⊗K) − xpx∗)s‖ < 1.

There exists a positive element y of M(A ⊗K) such that

y−
1
2 s∗xpx∗sy−

1
2 = 1M(A⊗K).

Hence, 1M(A⊗K) is Murray–von Neumann equivalent to a subprojection of p. Since

1M(A⊗K) is properly infinite, p is properly infinite. Hence, p is a norm-full, properly

infinite projection of M(A ⊗ K). Therefore, p is Murray–von Neumann equivalent

to 1M(A⊗K).

In the case that AC is not simple, let ψ be the conjugate linear automorphism

on AC defined by ψ(a + ib) = a − ib. Take A1 to be a minimal non-trivial ideal

and take A2 = ψ(A1). Then it is easily proven that AC
∼= A1 ⊕ A2. Furthermore,

the homomorphism from A to Ai , given by the inclusion in AC, composed with the

projection on Ai , is an isomorphism of real C∗-algebras. It follows that each Ai is

a simple and purely infinite complex C∗-algebra. By [10, Proposition 2.1], each Ai

has the coronal factorization property. It follows that A has the corona factorization

property.

4 Examples

In this section we prove the following theorem.

Theorem 4.1 (i) There exists a nonstable real C∗-algebra B such that C⊗B is stable.

(ii) There exists a nonstable real C∗-algebra B such that C⊗B is not stable, but M2(B)

is stable.

Furthermore, in either case, B can be taken so that B and C ⊗ B are simple and have

stable rank equal to one.

The following lemma is the real analog of [13, Proposition 3.6] and has the same

proof, using Theorem 2.1.

Lemma 4.2 Suppose A is a real C∗-algebra with projections e, p1, p2, . . . and let

(4.1) B =

∞⋃
j=1

q j(A ⊗K)q j ,
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where q j = p1 ⊕ p2 ⊕ · · · ⊕ p j ∈ M j(A) ⊂ A ⊗K.

(i) If e ⊗ 1n ∼ p j ⊗ 1n for all j, then Mn(B) is stable.

(ii) If, in addition to (i), e is not equivalent to a subprojection of q j ⊗ 1n−1 for any j

then Mn−1(B) is not stable.

Lemma 4.3 There exists a real C∗-algebra A with projections e, p1, p2, . . . such that

(i) e ∼ p j in C ⊗ A for all j;

(ii) e is not equivalent in A to a subprojection of p1 ⊕ p2 ⊕ · · · ⊕ p j for any j.

Proof Let T be the unit circle in the complex plane. Let C = M2(R) ⊗C(T,R), and

let e, p ∈ C be projections corresponding respectively to the one-dimensional trivial

bundle θ1 and to the Möbius bundle µ over T. Then e ≁ p in C , since these bundles

are not isomorphic, but as the complexification of these two bundles are isomorphic,

we have e ∼ p in C ⊗C .

In K-theory we have [p] 6= [e] but c([p]) = c([e]). Indeed, under the appropriate

homomorphisms we can identify [p] = (1, 1) and [e] = (1, 0) in K0(C) ∼= Z ⊕ Z2,

and c([p]) = c([e]) = 1 in K0(C⊗C) ∼= Z. Furthermore the Stieffel–Whitney classes

are sw(µ) = 1 + x and sw(θ1) = 1, where H∗(T; Z2) = Z2[x]/(x2).

Let A = M2(R) ⊗
(⊗∞

i=1 C(T,R)
)

and let ι j : C → A be the unital homomor-

phism induced by inclusion of C(T,R) into the j-th factor of
⊗∞

i=1 C(T,R). Let

p j = ι j(p), and let e also denote the image of e in A under ι1. In C ⊗ A we have

e ∼ p j for all j, establishing (i).

For (ii) assume that e ∼ f in A, where f is a subprojection of p1 ⊕ p2 ⊕ · · · ⊕ pn.

Then there is a projection f ′ such that f ⊕ f ′
= p1 ⊕ · · · ⊕ pn. Let ν, ν ′, and µi

denote the vector bundles over T∞ corresponding to the projections f , f ′, and pi

respectively. Since e ∼ f , we have sw(ν) = 1.

Then in H∗(T
∞; Z2) = Z2[x1, x2, . . . ]/(x2

1, x
2
2, . . . ) we have

sw(ν ′) = sw(ν) sw(ν ′) = sw(µ1) sw(µ2) · · · sw(µn)

= (1 + x1)(1 + x2) · · · (1 + xn) .

This implies swn(ν ′) =
∏n

i=1 xi . But this is impossible, since the vector bundle ν ′

has dimension less than n.

Lemma 4.4 There exists a real C∗-algebra A with projections e, p1, p2, . . . such that

(i) e ⊗ 12 ∼ p j ⊗ 12 in M2(A) for all j;

(ii) e is not equivalent in C ⊗ A to a subprojection of p1 ⊕ p2 ⊕ · · · ⊕ p j for any j.

Proof Let C = M4(C(S2,R)), and let e, p ∈ C ⊗ C be projections corresponding

respectively to the (complex) 2-dimensional trivial bundle θ2 and the direct sum 2βU

of two copies of the complex 1-dimensional Bott bundle over S2. Then e ≁ p in

C ⊗C , but we will show that e ⊗ 12 ∼ p ⊗ 12 in M2(C). Indeed, a real vector bundle

of dimension n over S2 is determined by the homotopy type of its clutching map

S1 → GL(R
n). But since π1(GL(R

n)) = Z2 for all n ≥ 3, we have p ⊕ p ∼ e ⊕ e.

In K-theory we have K0(C ⊗C) ∼= Z ⊕ Z and K0(C) ∼= Z ⊕ Z2. With this identifi-

cation, we have [e] = (2, 0), [p] = (2, 2) and [r(e)] = [r(p)] = (2, 0).
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Similar to the proof to Lemma 4.3, let A = M4(R) ⊗
(⊗∞

i=1 C(S2,R)
)
, and we

have corresponding projections e, p j ∈ A. The projections p j correspond to vector

bundles µn over (S2)∞. In M2(A) we have r(e) ∼ r(p j) for all j, and in C ⊗ A we

have that e is not a subprojection of p1 ⊕ p2 ⊕ · · · ⊕ p j , since the chern classes are

given by ch(θ2) = 1 and ch(µ1 ⊕µ2 ⊕· · ·⊕µ j) =
∏ j

i=1(1 + x j), where H∗((S2)∞) =

Z[x1, x2, . . . , ]/(x2
1, x

2
2, . . . ).

Proof of Theorem 4.1: non-simple case Let A be the real C∗-algebra from Lemma

4.3 and define B as in equation (4.1). Since e ∼ p j holds in C ⊗ A, we have e ⊗ 12 ∼
p j ⊗ 12 in M2(A). Then by Lemma 4.2(ii) (with n = 2), we have that B is not stable.

Now note that

BC
∼=

∞⋃

j=1

q j(AC ⊗K)q j .

Therefore Lemma 4.2(i) applied to C ⊗ A shows that C ⊗ B is stable. This proves

part (i).

For part (ii), let A be the real C∗-algebra from Lemma 4.4 and define B as in

equation (4.1). Since e ⊗ 12 ∼ p j ⊗ 12 in M2(C ⊗ A), Lemma 4.2(ii) immediately

gives that C ⊗ B is not stable. Finally, since e ⊗ 12 ∼ p j ⊗ 12 holds in M2(A), part (i)

of the same lemma tells us that M2(B) is stable.

Proof of Theorem 4.1: simple case We now describe how to construct examples that

are simple. We will use the same construction as Rørdam in [13, Section 5], following

Villadsen in [17]. The only differences are our choice of the initial topological space

X and that we will be using functions with values in matrices over R instead of C.

To begin, choose sequences {ki}, {mi}, and {di} as in [13]. Let X = T and define

Xi = Xdi and Ai = M2mi
(C(Xi ,R)). Then we get connecting maps φi : Ai → Ai+1

defined by

φi( f )(x) = diag(( f ◦ πi
1)(x), ( f ◦ πi

2)(x), . . . , ( f ◦ πi
i )(x), f (xi))

for any f ∈ Ai and x ∈ Xi+1. In this expression, π1, . . . , πi are certain projections

from Xi+1 onto distinct factors of Xi and xi ∈ Xi are points selected such that for each

i, the union of the images of x j ∈ X j under all possible compositions of projections

X j → Xi for all j ≥ i is dense in Xi .

Then as in [13] the limit A = limi→∞ Ai is simple, as is the complexification C⊗A.

Furthermore, using the projections e, p ∈ A1 from the proof of Lemma 4.3 we obtain,

as in the proof of [13, Proposition 5.2], a sequence of projections e, p1, p2, · · · ∈ A

satisfying the statement of Lemma 4.3.

The C∗-algebra B obtained as in equation (4.1) is a real regular hereditary sub-

C∗-algebra (in the sense of [16]) of the simple C∗-algebra A ⊗ K. The proof of

[9, Theorem 3.2.8] carries over to the case of real C∗-algebras to show that a real

hereditary sub-C∗-algebra of a simple C∗algebra is simple. Therefore, B is simple, as

is C ⊗ B.

Finally, we note that [17, Proposition 10] implies that the C∗-algebra AC above has

stable rank one, and [12, Theorem 3.3] shows that Mn(AC) has real rank one for all n.

This property is preserved by direct limits, so AC ⊗K has real rank one. The method
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of proof of Lemma 3.4 can be used to show that the corner algebras q j(AC ⊗ K)q j

then have real rank one. Hence BC has real rank one. All of these results cited apply in

the case of real C∗-algebras (with the same proofs) to show that B also has real rank

one.

Finally, to create a simple, stable rank one, real C∗-algebra satisfying Theo-

rem 4.1(ii) we repeat the above construction using the space X = S2 and the pro-

jections e and p described in the proof of Lemma 4.4.
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