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Stability of Real C*-Algebras

Jeffrey L. Boersema and Efren Ruiz

Abstract. 'We will give a characterization of stable real C*-algebras analogous to the one given for
complex C*-algebras by Hjelmborg and Rerdam. Using this result, we will prove that any real C*-
algebra satisfying the corona factorization property is stable if and only if its complexification is stable.
Real C*-algebras satisfying the corona factorization property include AF-algebras and purely infinite
C*-algebras. We will also provide an example of a simple unstable C*-algebra, the complexification of
which is stable.

1 Introduction

Let K be the real C*-algebra consisting of compact operators on a real, infinite di-
mensional, separable Hilbert space. We say that a real C*-algebra A is stable if it is
isomorphic to A ® X (throughout this paper, tensor products will be over the real
numbers unless otherwise indicated). As in the complex case, there is an isomor-
phism X ® K = X, implying that a real C*-algebra A is stable if and only if it is
isomorphic to B ® X for some real C*-algebra B. In this paper, we investigate the
relationship between the stability of a real C*-algebra and the stability of its com-
plexification Ac = C ® A = A + iA. The calculation

CRIARK)=(C®A) 3 (CoK)=Ac®c Kc

shows that if A is stable as a real C*-algebra, then A is stable as a complex C*-algebra.
The converse is not true in general, as we will see in Section 4l

However, we will present results which provide a converse for a large class of real
C*-algebras. More specifically, our main theorem states that any real C*-algebra sat-
isfying the corona factorization property is stable if the complexification is. We will
prove that this class includes both real AF-algebras and real purely infinite C*-alge-
bras. These results appear in Section[3l

To facilitate the proofs of the results mentioned above, we will develop in Section[2]
a set of equivalent characterizations of stability for real C*-algebras as well as some
permanence properties for the stable C*-algebras that follow, which are analogous to
those results in [8]].

2 Characterization of Stability for Real C*-Algebras

For a real C*-algebra A, let F(A) be the set of all positive elements in A that have a
positive multiplicative identity in A; that is,

F(A)={a€ A |ba=aforsomeb € A,}.
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For a and b in A, we write a ~ b if a and b are Murray-von Neumann equivalent;
that is, there exists x in A such that x*x = a and xx* = b. Also, we write a_Lb if
ab = ba = 0.

Theorem 2.1 Let A be a real o-unital C*-algebra. Then the following are equivalent:

(S0) A is stable.

(S1) Foralla € F(A), there exists b € A, such thata ~ b and ab.

(S2) Foralla € F(A) and for every € > 0, there exist b, c € Ay such that ||a — b|| < ¢,
b~ cand ||bc|| <e.

(S3) For all a € F(A) and for every € > 0, there exists a unitary u € A such that
lauau*|| < e.

(S4) There is a sequence {e, }>°, of mutually orthogonal and equivalent projections in
M(A) such that the infinite sum’y | e, converges to Loy in the strict topology on
M(A).

(S5) Foralla € A, and all € > 0, there exists b € A, such that ||ab|| < e and a ~ b.

And if A has a countable approximate identity consisting of projections then each condi-
tion above is equivalent to the following:

(S6) For all projections p € A there is a projection g € A such that p ~ qand p L q.

These characterizations are identical to those given in [8]], except for (S3), which
is a weaker version of their Proposition 2.2(d). Note that the proof of (c) = (d) in
[8} p. 157] uses the complex structure in an essential way. We will prove Theorem[2.1]
in stages in the rest of this section, referring to [8] when the proofs are the same.

First we will present some corollaries, including the following collection of per-
manence properties.

Corollary 2.2 Suppose that A is a real C*-algebra.

(P1) If A is o-unital and is an inductive limit of stable o-unital real C*-algebras, then
A is stable.

(P2) If A is stable, then so is every ideal in A and every quotient of A.

(P3) If B is a stable real sub-C* -algebra of A containing an approximate identity for A,
then A is stable.

(P4) IfAis a o-unital and stable and if G is a countable discrete group acting on A, then
A X, Gis stable.

(P5) If A is a o-unital and stable and a € A is positive with norm at most 1, then
(1 — a)A(1 — a) is stable.

Proof The proofs of (P1) and (P2) are the same as in the complex case; see [8, Corol-
lary 4.1] and [14, Corollary 2.3(ii)]. We will provide a proof of (P3) below, and the
proof of (P4) follows from (P3) as in [8} Corollary 4.5].

For (P3), we show that A satisfies condition (S3) if B does. Let a be in F(A),
and let € be a positive number. Since B has an approximate identity that is an ap-
proximate identity of A and since F(B) is dense in By, there exists e in F(B) with
lle]| = 1 such that 2 ||a|| [[a — ae|| < 5. Then there exists a unitary w in B such that
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(||all> + 1) |lewew*|| < 5+ Then we have

lawaw™|| < |lawaw™ — aewaw™ || + ||aewaw™ — aeweaw™ || + ||aeweaw™ |

< |la — aell |jal| + [[all l|a — ae]| + [|a] [lewe]| [|al]

= 2la — ael| [l + [la]*[lewew* || < 5+ =e.

For (P5),let B= (1 — a)A(1 —a) and let b € F(B) C F(A). Approximating a + b
with elements in F(A) and using condition (S3), we obtain a sequence of unitaries
u, € A such that lim,,— o0 ||un(a + b)ui(a + b)|| = 0. The rest of the proof proceeds
as in [8, Corollary 4.3]. [ |

Recall that any complex C*-algebra A can be considered a real C*-algebra by for-
getting the structure of complex scalar multiplication. Since the characterization of
(S5) is the same as that given in [8] and makes no reference to the field of scalars
used, we immediately have the following corollary.

Corollary 2.3 Let A be a o-unital complex C*-algebra. Then A @¢ K is isomorphic
to A as complex C*-algebras if and only if A @ K is isomorphic to A as real C*-algebras.

Proof of equivalence of (S1), (S2), and (S3) The statement (S1) = (S2) is immedi-
ate. The proofs of [8, Lemmas 2.3 and 2.5] work the same way in the real case to
prove (S2) = (S3). Also, the proof of (53) = (S1) is the same as the proof of the (b)
= (c) implication of [8, Proposition 2.2], including Lemma 2.4. [ ]

We define an element a in a real C*-algebra A to be strictly positive if it is strictly
positive in the complexification Ac, that is, if ¢(a) > 0 for every nonzero positive
linear functional ¢ on Ac. As in [8] we define

0 0<t<e
fox) =< et —1 e<t<2e
1 2e < t,

and for every strictly positive element a we define
F,(A)={be A, |Je>0: f(a)b=Db}.

If a € Ais strictly positive, then the sequence {f/,(a)} is an approximate identity
for A. Indeed, as in [[11}, Proposition 3.10.5] it is an approximate identity for Ac. Also,
note that if {e,} is an approximate identity for A, thena = > ° e,/2" is a strictly
positive element of A (again see [[11} Proposition 3.10.5]).

Lemma 2.4 Let A be a o-unital real C*-algebra that satisfies (S1). Then the following

hold for every strictly positive element a:

(i) Forallb € F,(A), there exists c € F,(A) withb ~ cand b_Lc.

(ii) Forall € > 0, there exists a projection p € M(A) satisfying1 — p_Lf.(a), p ~ 1,
and1l—p 2 1.
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Proof If a is a positive element in a real C*-algebra, then aAa is hereditary. (Al-
though the hereditary C*-algebra generated by a may be strictly smaller. In the lan-
guage of [[16]], aAa is the regular hereditary C*-algebra generated by a.) With this in
mind, the proof is the same as the proof of [[8, Lemma 2.6]. [ ]

Proof of equivalence of (S0), (S1), and (S4) Using Lemma[2.4] we can use the same
argument as in the proof of [8, Theorem 2.1]. ]

Proof of equivalence of (S0) and (S5) Condition (S5) directly implies (S2). For the
other direction, let a be a positive element of a stable C*-algebra A, and let ¢ > 0. We
may assume that ||a|| < 1and a # 0. Also, we may assume that € < 1. Since F(A) is
dense in A, there exists aq in F(A) such that [ja — a|| < §.

By (S3), there exists a unitary u in A such that ||aguaou*| < 5. Setx = ua: and
set b = xx* = uau*. Thena ~ b and

[|abll

A

laouaou™|| + ||ab — auaou™|| + ||auaou™ — aguaou™||

IN

s+ lallla—aoll+lla = aoll laol < $+5+5(1+5) <e.  m

Proof of equivalence of (S0) and (S6) This is proved in the same was as in Section 3
of [8]]. [ |

3 The Corona Factorization Property

As in [10], we define the corona factorization property for a real C*-algebra as fol-
lows. A projection is norm-full in A if the only ideal in A containing p is A itself.

Definition 3.1 A real C*-algebra A has the corona factorization property if every
norm-full projection p in the multiplier algebra M(A ® K) is Murray—von Neumann
equivalent to 1atagx).

Note that A has the corona factorization property if and only if A ® X has the
corona factorization property. The goal of this section is to prove the following theo-
rems. Recall from [16]] that a real C*-algebra A is purely infinite if the subalgebra aAa
contains an infinite projection for every a € A*.

Theorem 3.2 Let A be a real C*-algebra with the corona factorization property. Then
A is stable if and only if Ac is stable.

Theorem 3.3 The following classes of real C*-algebras satisfiy the corona factorization
property:

(i)  AF-algebras

(ii) separable, simple, purely infinite C*-algebras A such that Ac is also purely infinite.

Corollary 3.4 A real C*-algebra A in either of the classes mentioned above is stable if
and only if Ac is stable.
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Peter Stacey has pointed out that in the case of AF-algebras, the same result can be
obtained via a K-theoretic argument using scale.

We note that Zhang’s Dichotomy for real purely infinite C*-algebras follows using
Corollary 3.4] from the same result in the complex case ([19, Theorem 1.2]) with
the additional assumption that A¢ is purely infinite. Unfortunately, the question
of whether or not the complexification of a purely infinite real C*-algebra is purely
infinite is open (see [[16] for partial results).

However, we note that simply by repeating the argument of [[I} Section 27.5] we
can prove Zhang’s Dichotomy in full generality.

Theorem 3.5 (Zhang’s Dichotomy) Every real o-unital, simple, and purely infinite
C*-algebra A is either unital or stable.

Following Cuntz in [7], we consider the following conditions that can be placed
on a set P of projections of a real C*-algebra A.

(II) If p and g are in P and p is orthogonal to g, then p + g are in P.

(IL,) If p is an element of P and g is a projection of A such that p ~ g, then g is an
element of P.

(II3) For all p and g in P, there exists e in P such that p ~ ¢, e < g, and q — eis an
element of P.

(I14) If p and q are projections in A with p < gand p € P, theng € P.

If p is a projection, then [p] will denote the Murray—von Neumann equivalence
class represented by p. Using similar techniques as in [7, Theorem 1.4] one can show
that the following holds.

Theorem 3.6 Let A be a real C*-algebra with a non-empty subset P of projections in
A satisfying (I1y), (I1p), and (I1) above. Then G = {[p] : p € P} is a group with
the natural addition [p] + [q] = [p’ + q'], where p’ and q’ are elements of P chosen
such that p ~ p', q ~ q', and p’ is orthogonal to q'. Moreover, if A is a unital real
C*-algebra and in addition P satisfies (I14), then the obvious map from G to Ko(A) is a
group isomorphism.

As in the complex case, we say that a projection p in a real C*-algebra A is properly
infinite if there are orthogonal projections p; and p, with p; ~ p, ~ p.

Lemma 3.7 If the set P of properly infinite norm-full projections in a real C*-algebra
A is nonempty, then it satisfies (I1,), (IL,), (I13), and (114).

Proof (II;) Suppose p and q are elements of P and p is orthogonal to q. Then there
exist projections py, p» < p and q1,42 < g such that p; is orthogonal to p;, q; is
orthogonal to q;, p1 ~ p2 ~ p,and q; ~ g2 ~ q.

Setry = py+q1, 1 = pr+ g, and r = p 4+ q. A computation shows that r; is
orthogonal to 15, 1y ~ 1, ~ r,and ry, 1, <.

(IT,) Let p be an element of P and p’ be a projection such that p ~ g. Since p is
an element of P, there exist orthogonal projections p; and p, such that p;, p, < p
and p; ~ p, ~ p. Since p ~ g, there exists v in A such that vv* = p and v*v = gq.
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Let g1 = v*pyvand q; = v*p,v. A computation shows that q; is orthogonal to g5,
that q; ~ g, ~ g, and that q1, ¢, < ¢q.

(I14) Let p be an element of P and let g be a projection such that p < g. Since p is
norm-full in A, there is a positive integer n such that we have

q~q <diag(p,...,p)

in M,,(A). Since p is an element of P, there exist n mutually orthogonal projections
P1y- .-, pn in pAp all of which are Murray—von Neumann equivalent to p. Thus
diag(p,...,p) ~ p1+---+pn < p. Therefore, q < p, i.e., qis Murray—von Neumann
equivalent to a subprojection of p. Since p is an element of P, there exist orthogonal
projections p; and p, in pAp such that p; ~ p, ~ p. Therefore,q < p; < p and
q S p2 < p. Hence, there exist orthogonal projections q; and ¢, in pAp C gAq such
that g, ~ g ~ g. Since p = pq and p is norm-full in A, g is norm-full in A. Hence,
q is an element of P.

(IT3) Let p and q be elements of P. As in the proof of (II,), we have that p < g.
Therefore, p ~ e < q for some projection e, which is in P by (II,). Therefore, there
exist orthogonal projections e; and e, such thate; ~ e; ~ eand e, e; < e. Note that
e1t+te <e<gq. So,e < q—e <q. Sincee ~ e, by (II;) we have that e, is an
element of P. By (I14), we have that g — e; is an element of . [ |

Proposition 3.8 Let A be a real C*-algebra and let p and q be norm-full, properly
infinite, projections of A. Then [plo = [qlo if and only if p is Murray—von Neumann
equivalent to q.

Proof By (II3), we may assume that p and q are orthogonal. Let r = p + q. The
projection r is norm-full, so by [2 Proposition 9], we have [ply = [q]o in Ky(A) if
and only if [p]o = [glo in Ko(rAr). By Theorem[3.6land Lemma[3.7] this holds if an
only if p and q are Murray—von Neumann equivalent. ]

Lemma 3.9 Let A be a real C*-algebra. Then M(A ® K) contains a unital copy of O%
for all n.

Proof There is a faithful representation of the real Cuntz algebra OF on a separable
real Hilbert space (see [I5) p. 4]). Therefore, B(H) = M(XK) contains a unital copy
of O%. Then the unital embedding M(X) < M(A ® X) completes the proof. [ ]

Proposition 3.10 ([5, Theorem 4.23]) Let A be a stable real C*-algebra. Then a
projection p in M(A) is Murray—von Neumann equivalent to 1ya) if and only if pAp
is a norm-full, stable sub-C*-algebra of A.

Proof It is clear that if p is Murray—von Neumann equivalent to 1y), then pAp
is norm-full in A and stable. Conversely, suppose pAp is norm-full and stable in A.
Then (pAp)c = pAcp is norm-full in A¢ and stable. Then by [5, Theorem 4.23], the
projection p is Murray—von Neumann equivalent to 1y¢4.) and hence is norm-full
in M(Ac¢) = M(A)c. It follows that p is norm-full in M(A).

Now Lemma implies that p is properly infinite, since it is the unit of
M(pAp) = pM(A)p. As Ko(M(A)) = 0 by [2} Theorem 4], Proposition 3.8 im-
plies that p is Murray—von Neumann equivalent to Ly (a). ]
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Proof of Theorem[3.2} The “only if” direction is clear. We prove the “if” direction.
Suppose Ac is stable as a complex C*-algebra. Then by Corollary[2.3] A is stable as
a real C*-algebra. Note that A¢ can be embedded into M,(A) such that there exists
an approximate identity of Ac that is an approximate identity of M,(A). Therefore,
by Corollary[2.2[(P3), M,(A) is stable.

We claim that M, (A) stable implies A stable. Let {¢; j}?,?:l be the standard system
of matrix units of K, and let p = 1yya) ® 17 € M(A) ® K. Then A = p(A ® K)p
is a norm-full hereditary real sub-C*-algebra of A ® X. By Lemma there are
isometries s5; and s, in M(A ® K) such that s;s7 + 5555 = 1ov(a). Letting g = s, ps} +
s2psy, we have (A @ K)g = M;,(A). Since p(A ® K)p is a norm-full real sub-C*-
algebra of A ® XK, so is q(A ® K)gq. Therefore, by Proposition[3.10 g is Murray—von
Neumann equivalent to 1yagx). Hence, q is a norm-full projection of M(A @ X).
Hence, p is a norm-full projection of M(A ® X). Since A ® X satisfies the corona
factorization property, p is Murray—von Neumann equivalent to 1agagx). Hence
A=pAXK)p AR XK. ]

We now turn to the proof that real AF-algebras satisfy the corona factorization
property. We begin by considering the case of a complex AF-algebra. The following
result is closely related to, but does not exactly fall under the scope of, [10, Proposi-
tion 2.1].

Lemma 3.11 Let A be a stable complex AF-algebra. Then for every norm-full projec-
tion p € M(A), p is Murray—von Neumann equivalent to 1ya).

Proof Let p be a norm-full projection in M(A). We will first show that pAp is stable.
Since it is AF, it is enough to show that pAp has no bounded trace by [14, Proposi-
tion 3.4].

Suppose on the contrary that pAp has a bounded trace. Since p is a norm-full
projection in M(A), pAp is full in A. By [4} Corollary 2.6], pAp ® X is isomorphic
to A. Hence, we can extend 7 to a lower-semicontinuous trace on A, which in turn
extends to a trace 7 on M(A),. Note that 7(1p4)) = 00, since otherwise 7 restricts
to a bounded trace on A, contradicting the fact that A is stable.

Since p is a norm-full projection in M(A), there exist xi, . . ., x, € M(A) such that

n
1M(A) = Zxkpx,f .
k=1

Hence,
n
T(Ivw) < 7(p) Z llocexi]]
k=1

which implies that 7(p) = oo.

Since A is a complex AF-algebra, there exists an approximate identity {e, },en of
A consisting of projections.

Since 7 is a bounded trace on pAp,

[T (penp)| < 7l I penpll < [l llpll -
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Hence,

T(p) = limsup 7(e, pe,) = limsup 7(pe,p) < ||7] ||| < oo,
n— 00

n— 00

which is a contradiction to the fact that 7(p) = oc.

We have just shown that pAp is a stable complex AF-algebra. Therefore,
M(pAp) = pM(A)p is properly infinite. Hence, p is a norm-full, properly infinite
projection in M(A). Thus, p is Murray—von Neumann equivalent to 1yg4). ]

Lemma 3.12 Let A be a real AF-algebra and p, q be projections in A. Then [p] < [q]
holds in Ko (A) if and only if [p] < [q] in Ko(Ac)-

Consequently, since A and A¢ both have cancellation, p is Murray—von Neumann
equivalent to a proper sub-projection of q in A if and only if p is Murray—von Neu-
mann equivalent to a proper sub-projection of of g in Ac.

Proof We have K_;(A) = 0 for any finite dimensional real C*-algebra, so the same
is true for any real AF-algebra. Thus the exact sequence ([[15, Theorem 1.4.7])

Kn—l(A) — Kn(A) — Kn(A(C) — Kn—Z(A) — Kn—l(A)

implies that the inclusion A < A¢ induces a monomorphism on the ordered groups
(K(A),K*(A)) = (K(Ac), K" (Ac)). |

Proof of Theorem[3.3(i) Let A be a real AF-algebra, which we may assume is stable.
Let p be a norm-full projection in M(A) C M(Ac). Since p is a norm-full projection
in M(A), we have that p is a norm-full projection in M(A¢) = M(A)c. Hence, by
Lemma[3.T1} p is Murray—von Neumann equivalent in M(Ac) to Iyt = Ina)-
Let {e, }nen and {pn }nen be sequences of finite rank orthogonal projections in A

such that
oo oo
Zen = IM(A) and an =p
n=1 n=1

where the sums converge in the strict topology of M(A), hence also in the strict topol-
ogy of M(Ac).

Set g, = >_;_, px. We will inductively construct a strictly increasing sequence
{n }ren such that e is Murray—von Neumann equivalent to a proper projection of
Gne — G- Since e; < 1y(a) and 1 (A) ~ p in M(Ac), there exists 1, and a unitary
u in the unitization of A¢ such that ue;u* < ¢q,,. By Lemma[3.12] e, is Murray—von
Neumann equivalent to a proper sub-projection of g, in A.

Consider the projections 1ya) — € and p — ¢q,,,. A computation shows that these
projections are norm-full projections. Hence, by LemmaB.1T} 1y —er ~ Loy ~
P — qn, in M(Ac). Since e; is a sub-projection of 1ya) — e;, there exists n, > n;
and a unitary v such that ve;v* < gy, — q,,,. Thus, by Lemma[3.12] e, is Murray—von
Neumann equivalent to a proper sub-projection of q,,, — ¢, in A.

We now continue this process by considering the norm-full projections 1) —
e; — e and p — gy,. To get n3 > n, such that e; is Murray—von Neumann equivalent
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to a proper sub-projection of g,, — g,,. Continuing this process we get the desired
sequence {n }ren.

Let v € A such that vivy = e; and vy} < gy, — gy, Setv = Z,fil Vi, where the
sum converges in the strict topology of M(A). Since {ex }xen and {qn, — Gu,_, }ren
are collections of mutually orthogonal projections, we have that

0o 00 0o
V*V = Zek = 1M(3<1R®A) and VV* S Z(an - an_l) = Zpk = p
k=1 k=1 k=1

Therefore, p is a norm-full properly infinite projection in M(A). Hence, p is Murray—
von Neumman equivalent to 1y(a). ]

Finally, we work toward the proof that a real purely infinite C*-algebra whose
complexification is also purely infinite satisfies the corona factorization property. As
observed by Stacey in [[16], the proof in the complex case of the equivalence of the
properties of real rank zero, FS, and HP (in [6]) carries over to give us the same
theorem in the real case. Also, the proof of the following is the same as in the complex
case in [6]].

Proposition 3.13 Let A be a real C*-algebra. For p in M(A), RR(A) = 0 if and only
if RR(pAp) = 0 and RR((1na) — p)A(Ina) — p)) = 0.

Proposition 3.14 Let A be a o-unital real C*-algebra with real rank zero. Then
there exists a sequence of pairwise orthogonal projections {pi}s2, in A such that
{371, pr}ec, is an approximate identity of A consisting of projections.

Consequently, >~ | px = Lai(a) where the sum converges in the strict topology.

Proof Let {e,}52, be an approximate identity of A. Since RR(A) = 0, every heredi-
tary sub-C*-algebra has an approximate identity consisting of projections (property
(HP)). So there exists a projection p; in A such that ||(1nga) — p1)e1]] < 1. Repeat-
ing the argument in the corner algebra (1nr) — p1)A(1na) — p1), there exists a
projection p, orthogonal to p; such that

v = p2)(neeay = PR Moy — p)[| < (£)7

So, [|(1atay — (p1 + p2))ez|| < 3. Repeating this same process, we inductively define
pairwise orthogonal projections {p, }22, such that

n
k=1
A computation shows that {>";_, px}52, is an approximate identity of A. ]

Lemma 3.15 Let A be a o-unital, non-unital, real C*-algebra with real rank zero. If
p is a projection in M(A), then there exists a sequence of pairwise orthogonal projections
{en}o2) in Asuchthat p = 3" ° | ey, where the sum converges in the strict topology.
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Proof By Proposition[3.13] pAp is a real C*-algebra with real rank zero. By Proposi-
tion[3.14} there exists a sequence of pairwise orthogonal projections {e,}52, in pAp
such that > °| ex = Lyg(pap) in the strict topology of M(pAp).

Set g, = >_;_, ex and note that pg, = q,p = g, for all n. For any element a € A
and any € > 0 thereis an N € N such that foralln > N,

| pa*ap(g, — p)|| < €.

Then we get that

lagn — ap|* = [|(qn — p)a*a(g, — p)|| = ||(@n — p)pa*ap(q. — p)||
< |pa*ap(g, — p)|| < €.

Therefore, aq, — ap for all a € A, where the convergence is in the norm of A. By
a similar argument or by applying adjoints, we get g,a — pa for all a € A. Hence
> io, e = p in the strict topology of M(A). [ |

Proof of Theorem [3.3(ii) Assume that A is simple and stable and that A is purely
infinite. We first consider the case in which A¢ is also simple.

Let p be a norm-full projection in M(A ® X). Let 7w denote the canonical pro-
jection from M(A ® K) onto Q(A ® K). We will first show that 7(p) is an infinite
projection in Q(A ® X).

Since A ® X is a real C*-algebra with real rank zero, by Lemma 315l there exists a
sequence of pairwise orthogonal projections {ex};°, in A®K such that p = Y7 e,
where the convergence of the sum is in the strict topology. Since A ® X is a real, sim-
ple, purely infinite C*-algebra, there exists a sequence of pairwise orthogonal projec-
tions { fi } 2, of A ® K such that

(i)  fx is Murray—von Neumann equivalent to e, and
(i)  fi is a proper subprojection of e
for all kin .
Choose v in A ® X such that viv] = exy1 and vi{vi = fi. Setv = Zk Ve A
computation shows that the sum converges in the strict topology and that

o0 o0

w' = kav,f = Zekﬂ =p—e and
k=1 k=1
oo oo oo

vy Vi vi =ka p- Z(ek fo)-

k=1

Since e — fi are nonzero projections for all k, the sum Z;:il(ek — fi) is not an
element of A ® K. Therefore, 7(vv*) = 7(p) and

w(p —vv)—w(i )

k=

—
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We have just shown that 7(p) is an infinite projection.

By [16, Theorem 4.4], Q(A ® X) is a simple, real C*-algebra (here we make use
of the assumption that A¢ is simple). We show that it is also purely infinite. Indeed
Q(Ac ®c Ke) =2 QA ® K)c is purely infinite by [[18}, Theorem 1.3] (here we require
the assumption that Ac is both simple and purely infinite). So, by [16, Theorem 3.3]
(together with [3]]), 9Q(A ® X) is purely infinite. By [16} Proposition 4.1], there exists
xin M(A ® K) such that m(xpx™) = lougx)-

It is easy to see that for every y in A ® K, there exists an infinite rank projection
rel®@MEK) C M(A® X) such that ||yr| < e. Lettings € 1 ® M(X) be an
isometry such that ss* = r, we have ||s*ys|| < e.

Applying this observation to the element 1yagx) —xpx™ of A® K, we obtain an
isometry s in M(A ® XK) such that

[1atags) — s*xpx”s|| = [Is* (Ivasx) — xpx™)s|| < 1.

There exists a positive element y of M(A ® K) such that

y_%s*xpx*sy_% = Invagx)-

Hence, 1yagx) is Murray—von Neumann equivalent to a subprojection of p. Since
Iv(agx) is properly infinite, p is properly infinite. Hence, p is a norm-full, properly
infinite projection of M(A ® X). Therefore, p is Murray—von Neumann equivalent
to Intagx)-

In the case that Ac is not simple, let ¢ be the conjugate linear automorphism
on Ac defined by ¥(a + ib) = a — ib. Take A; to be a minimal non-trivial ideal
and take A, = (A;). Then it is easily proven that Ac = A; @ A,. Furthermore,
the homomorphism from A to A;, given by the inclusion in A¢, composed with the
projection on A;, is an isomorphism of real C*-algebras. It follows that each A; is
a simple and purely infinite complex C*-algebra. By [10} Proposition 2.1], each A;
has the coronal factorization property. It follows that A has the corona factorization
property. |

4 Examples
In this section we prove the following theorem.

Theorem 4.1 (i) There exists a nonstable real C*-algebra B such that C® B is stable.
(ii) There exists a nonstable real C*-algebra B such that C ® B is not stable, but M, (B)
is stable.
Furthermore, in either case, B can be taken so that B and C ® B are simple and have
stable rank equal to one.

The following lemma is the real analog of [[13}, Proposition 3.6] and has the same
proof, using Theorem 2.1}

Lemma 4.2 Suppose A is a real C*-algebra with projections e, py, pa, ... and let

o0

(4.1) B={J qj(A®X)qj,

J=1

https://doi.org/10.4153/CMB-2011-019-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2011-019-0

604 J. L. Boersema and E. Ruiz

whereq; =p @O p,®---®p;j € Mj(A) CAR K.

(i) Ife®l,~ p;j® 1, forall j, then M,(B) is stable.

(ii) If, in addition to (i), e is not equivalent to a subprojection of q; ® 1, for any j
then M,,_(B) is not stable.

Lemma 4.3 There exists a real C*-algebra A with projections e, p1, pa, . .. such that
(i) e~p;inCRAforall j;
(ii) e is not equivalent in A to a subprojection of p1 ® p» ® --- @ p; for any j.

Proof Let T be the unit circle in the complex plane. Let C = M,(R) ® C(T,R), and
let e, p € C be projections corresponding respectively to the one-dimensional trivial
bundle 6; and to the Mobius bundle p over T. Then e « p in C, since these bundles
are not isomorphic, but as the complexification of these two bundles are isomorphic,
wehavee ~ pin C® C.

In K-theory we have [p] # [e] but c([p]) = c([e]). Indeed, under the appropriate
homomorphisms we can identify [p] = (1, 1) and [e] = (1,0) in Ko(C) = Z & 7,
and ¢([p]) = ¢([e]) = 1in Ko(C®C) =2 Z. Furthermore the Stieffel-Whitney classes
are sw(p) = 1+ x and sw(6,) = 1, where H*(T;7,) = 7Z,[x]/(x?).

Let A = M(R) ® (®il C(T, ]R{)) and let ;: C — A be the unital homomor-
phism induced by inclusion of C(T,R) into the j-th factor of ®1O:01 C(T,R). Let
pj = tj(p), and let e also denote the image of e in A under +;. In C ® A we have
e ~ p; forall j, establishing (i).

For (ii) assume that e ~ f in A, where f is a subprojection of p; ® p, © - - - & py.
Then there is a projection f’ such that f & ' = p; @ --- @ p,. Let v, v/, and p;
denote the vector bundles over T* corresponding to the projections f, f', and p;
respectively. Since e ~ f, we have sw(v) = 1.

Then in H*(T%;7,) = Zs[x1, %2, ...1/(x3,x%,...) we have

sw(v') = sw(v) sw(v') = swlpg) sw(pa) - - - swlpn)

=1 +x)(1+x) - (1+x,).
This implies sw, (') = []’_, x;. But this is impossible, since the vector bundle v/
has dimension less than . ]

Lemma 4.4 There exists a real C*-algebra A with projections e, py, p2, . . . such that

(i) e®1l;~p;®1,inM,(A) forall j;
(ii) e is not equivalent in C ® A to a subprojection of p1 ® p, @ --- @ pj forany j.

Proof Let C = M,(C(S*,R)), and let e, p € C ® C be projections corresponding
respectively to the (complex) 2-dimensional trivial bundle 6, and the direct sum 2,
of two copies of the complex 1-dimensional Bott bundle over S>. Then e = p in
C ® C, but we will show thate ® 1, ~ p ® 1, in M(C). Indeed, a real vector bundle
of dimension n over S* is determined by the homotopy type of its clutching map
St — GL(R™). But since 7 (GL(R")) = 7, foralln > 3, wehave p® p ~ e D e.

In K-theory we have Ko (C® C) = Z @ 7 and Ko(C) = 7 & 7Z,. With this identifi-
cation, we have [e] = (2,0), [p] = (2,2) and [r(e)] = [r(p)] = (2,0).
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Similar to the proof to Lemma[d3] let A = M;(R) ® (®?§1 C(s?, ]R{)), and we
have corresponding projections e, p; € A. The projections p; correspond to vector
bundles y,, over (5?)°°. In M,(A) we have r(e) ~ r(pj) for all j, and in C ® A we
have that e is not a subprojection of p; & p, @ - - - @ pj, since the chern classes are
given by ch(6,) = land ch(u ® o ® - - - ® ) = [[/_, (1 +x;), where H*((§*)>°) =
Llx1, %0,y 1/ (62, x5, . ..). ]

Proof of Theorem[4.T} non-simple case Let A be the real C*-algebra from Lemma
[4.3land define B as in equation (.I]). Since e ~ p; holds in C ® A, we have e ® 1, ~
pj ® 1 in My (A). Then by Lemmal[4.2(ii) (with n = 2), we have that B is not stable.
Now note that

Be = U q;(AK‘ X K)ql
j=1
Therefore Lemma [£.2((i) applied to C ® A shows that C ® B is stable. This proves
part (i).

For part (ii), let A be the real C*-algebra from Lemma [£.4] and define B as in
equation ([4I). Since e ® 1, ~ p; ® 1, in M,(C ® A), Lemma [£2{(ii) immediately
gives that C ® B is not stable. Finally, since e ® 1, ~ p; ® 1, holds in M,(A), part (i)
of the same lemma tells us that M, (B) is stable. [ |

Proof of Theorem[4.1t simple case We now describe how to construct examples that
are simple. We will use the same construction as Rerdam in 13} Section 5], following
Villadsen in [17]]. The only differences are our choice of the initial topological space
X and that we will be using functions with values in matrices over R instead of C.
To begin, choose sequences {k;}, {m;}, and {d;} as in [13]]. Let X = T and define
X, = X% and A; = My, (C(Xi, R)). Then we get connecting maps ¢;: A; — Aiy
defined by

¢i(f)(x) = diag((f o m) (), (f o my)(x), ..., (f o ) (%), f(xi)

for any f € A; and x € X;y;. In this expression, 7y, ..., 7; are certain projections
from X;,; onto distinct factors of X; and x; € X; are points selected such that for each
i, the union of the images of x; € X; under all possible compositions of projections
X; — X;forall j > iis densein X;.

Then as in [13] the limit A = lim;_, A; is simple, as is the complexification CRA.
Furthermore, using the projections e, p € A; from the proof of Lemma[4.3]we obtain,
as in the proof of [13} Proposition 5.2], a sequence of projections e, p, p2,--- € A
satisfying the statement of Lemmal[4.3l

The C*-algebra B obtained as in equation (4.) is a real regular hereditary sub-
C*-algebra (in the sense of [16]) of the simple C*-algebra A @ K. The proof of
[O, Theorem 3.2.8] carries over to the case of real C*-algebras to show that a real
hereditary sub-C*-algebra of a simple C*algebra is simple. Therefore, B is simple, as
is C® B.

Finally, we note that [17, Proposition 10] implies that the C*-algebra A¢ above has
stable rank one, and [[12} Theorem 3.3] shows that M,,(Ac) has real rank one for all #.
This property is preserved by direct limits, so Ac ® X has real rank one. The method
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of proof of Lemma 3.4 can be used to show that the corner algebras g;(Ac ® X)q;
then have real rank one. Hence B¢ has real rank one. All of these results cited apply in
the case of real C*-algebras (with the same proofs) to show that B also has real rank
one.

Finally, to create a simple, stable rank one, real C*-algebra satisfying Theo-
rem [£1{(ii) we repeat the above construction using the space X = S$? and the pro-
jections e and p described in the proof of Lemmal[4.4] ]
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