

Stability of Real C*-Algebras

Jeffrey L. Boersema and Efren Ruiz

Abstract. We will give a characterization of stable real C^* -algebras analogous to the one given for complex C^* -algebras by Hjelmborg and Rørdam. Using this result, we will prove that any real C^* -algebra satisfying the corona factorization property is stable if and only if its complexification is stable. Real C^* -algebras satisfying the corona factorization property include AF-algebras and purely infinite C^* -algebras. We will also provide an example of a simple unstable C^* -algebra, the complexification of which is stable.

1 Introduction

Let \mathcal{K} be the real C^* -algebra consisting of compact operators on a real, infinite dimensional, separable Hilbert space. We say that a real C^* -algebra A is *stable* if it is isomorphic to $A \otimes \mathcal{K}$ (throughout this paper, tensor products will be over the real numbers unless otherwise indicated). As in the complex case, there is an isomorphism $\mathcal{K} \otimes \mathcal{K} \cong \mathcal{K}$, implying that a real C^* -algebra A is stable if and only if it is isomorphic to $B \otimes \mathcal{K}$ for some real C^* -algebra B. In this paper, we investigate the relationship between the stability of a real C^* -algebra and the stability of its complexification $A_{\mathbb{C}} = \mathbb{C} \otimes A = A + iA$. The calculation

$$\mathbb{C} \otimes (A \otimes \mathcal{K}) = (\mathbb{C} \otimes A) \otimes_{\mathbb{C}} (\mathbb{C} \otimes \mathcal{K}) = A_{\mathbb{C}} \otimes_{\mathbb{C}} \mathcal{K}_{\mathbb{C}}$$

shows that if A is stable as a real C^* -algebra, then $A_{\mathbb{C}}$ is stable as a complex C^* -algebra. The converse is not true in general, as we will see in Section 4.

However, we will present results which provide a converse for a large class of real C^* -algebras. More specifically, our main theorem states that any real C^* -algebra satisfying the corona factorization property is stable if the complexification is. We will prove that this class includes both real AF-algebras and real purely infinite C^* -algebras. These results appear in Section 3.

To facilitate the proofs of the results mentioned above, we will develop in Section 2 a set of equivalent characterizations of stability for real C^* -algebras as well as some permanence properties for the stable C^* -algebras that follow, which are analogous to those results in [8].

2 Characterization of Stability for Real C*-Algebras

For a real C^* -algebra A, let F(A) be the set of all positive elements in A that have a positive multiplicative identity in A; that is,

$$F(A) = \{ a \in A_+ \mid ba = a \text{ for some } b \in A_+ \}.$$

Received by the editors October 7, 2008. Published electronically March 5, 2011. AMS subject classification: **46L05**. Keywords: stability, real C*-algebras.

For a and b in A, we write $a \sim b$ if a and b are Murray-von Neumann equivalent; that is, there exists x in A such that $x^*x = a$ and $xx^* = b$. Also, we write $a \perp b$ if ab = ba = 0.

Theorem 2.1 Let A be a real σ -unital C*-algebra. Then the following are equivalent:

- (S0) A is stable.
- (S1) For all $a \in F(A)$, there exists $b \in A_+$ such that $a \sim b$ and $a \perp b$.
- (S2) For all $a \in F(A)$ and for every $\epsilon > 0$, there exist $b, c \in A_+$ such that $||a b|| < \epsilon$, $b \sim c$ and $||bc|| < \epsilon$.
- (S3) For all $a \in F(A)$ and for every $\epsilon > 0$, there exists a unitary $u \in \widetilde{A}$ such that $\|auau^*\| < \epsilon$.
- (S4) There is a sequence $\{e_n\}_{n=1}^{\infty}$ of mutually orthogonal and equivalent projections in $\mathcal{M}(A)$ such that the infinite sum $\sum_{n=1}^{\infty} e_n$ converges to $1_{\mathcal{M}(A)}$ in the strict topology on $\mathcal{M}(A)$.
- (S5) For all $a \in A_+$ and all $\epsilon > 0$, there exists $b \in A_+$ such that $||ab|| < \epsilon$ and $a \sim b$.

And if A has a countable approximate identity consisting of projections then each condition above is equivalent to the following:

(S6) For all projections $p \in A$ there is a projection $q \in A$ such that $p \sim q$ and $p \perp q$.

These characterizations are identical to those given in [8], except for (S3), which is a weaker version of their Proposition 2.2(d). Note that the proof of $(c) \Rightarrow (d)$ in [8, p. 157] uses the complex structure in an essential way. We will prove Theorem 2.1 in stages in the rest of this section, referring to [8] when the proofs are the same.

First we will present some corollaries, including the following collection of permanence properties.

Corollary 2.2 Suppose that A is a real C^* -algebra.

- (P1) If A is σ -unital and is an inductive limit of stable σ -unital real C^* -algebras, then A is stable.
- (P2) If A is stable, then so is every ideal in A and every quotient of A.
- (P3) If B is a stable real sub- C^* -algebra of A containing an approximate identity for A, then A is stable.
- (P4) If A is a σ -unital and stable and if G is a countable discrete group acting on A, then $A \rtimes_{\alpha} G$ is stable.
- (P5) If A is a σ -unital and stable and $a \in A$ is positive with norm at most 1, then $\overline{(1-a)A(1-a)}$ is stable.

Proof The proofs of (P1) and (P2) are the same as in the complex case; see [8, Corollary 4.1] and [14, Corollary 2.3(ii)]. We will provide a proof of (P3) below, and the proof of (P4) follows from (P3) as in [8, Corollary 4.5].

For (P3), we show that A satisfies condition (S3) if B does. Let a be in F(A), and let ϵ be a positive number. Since B has an approximate identity that is an approximate identity of A and since F(B) is dense in B_+ , there exists e in F(B) with $\|e\| = 1$ such that $2\|a\| \|a - ae\| < \frac{\epsilon}{2}$. Then there exists a unitary w in \widetilde{B} such that

 $(\|a\|^2 + 1) \|ewew^*\| < \frac{\epsilon}{2}$. Then we have

$$\|awaw^*\| \le \|awaw^* - aewaw^*\| + \|aewaw^* - aeweaw^*\| + \|aeweaw^*\|$$

$$\le \|a - ae\| \|a\| + \|a\| \|a - ae\| + \|a\| \|ewe\| \|a\|$$

$$= 2 \|a - ae\| \|a\| + \|a\|^2 \|ewew^*\| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

For (P5), let $B = \overline{(1-a)A(1-a)}$ and let $b \in F(B) \subseteq F(A)$. Approximating a+b with elements in F(A) and using condition (S3), we obtain a sequence of unitaries $u_n \in \widetilde{A}$ such that $\lim_{n\to\infty} \|u_n(a+b)u_n^*(a+b)\| = 0$. The rest of the proof proceeds as in [8, Corollary 4.3].

Recall that any complex C^* -algebra A can be considered a real C^* -algebra by forgetting the structure of complex scalar multiplication. Since the characterization of (S5) is the same as that given in [8] and makes no reference to the field of scalars used, we immediately have the following corollary.

Corollary 2.3 Let A be a σ -unital complex C^* -algebra. Then $A \otimes_{\mathbb{C}} \mathcal{K}_{\mathbb{C}}$ is isomorphic to A as complex C^* -algebras if and only if $A \otimes \mathcal{K}$ is isomorphic to A as real C^* -algebras.

Proof of equivalence of (S1), (S2), and (S3) The statement (S1) \Rightarrow (S2) is immediate. The proofs of [8, Lemmas 2.3 and 2.5] work the same way in the real case to prove (S2) \Rightarrow (S3). Also, the proof of (S3) \Rightarrow (S1) is the same as the proof of the (b) \Rightarrow (c) implication of [8, Proposition 2.2], including Lemma 2.4.

We define an element a in a real C^* -algebra A to be *strictly positive* if it is strictly positive in the complexification $A_{\mathbb{C}}$, that is, if $\phi(a) > 0$ for every nonzero positive linear functional ϕ on $A_{\mathbb{C}}$. As in [8] we define

$$f_{\epsilon}(x) = \begin{cases} 0 & 0 \le t \le \epsilon \\ \epsilon^{-1}t - 1 & \epsilon \le t \le 2\epsilon \\ 1 & 2\epsilon \le t, \end{cases}$$

and for every strictly positive element a we define

$$F_a(A) = \{ b \in A_+ \mid \exists \epsilon > 0 : f_{\epsilon}(a)b = b \}.$$

If $a \in A$ is strictly positive, then the sequence $\{f_{1/n}(a)\}$ is an approximate identity for A. Indeed, as in [11, Proposition 3.10.5] it is an approximate identity for $A_{\mathbb{C}}$. Also, note that if $\{e_n\}$ is an approximate identity for A, then $a = \sum_{n=1}^{\infty} e_n/2^n$ is a strictly positive element of A (again see [11, Proposition 3.10.5]).

Lemma 2.4 Let A be a σ -unital real C^* -algebra that satisfies (S1). Then the following hold for every strictly positive element a:

- (i) For all $b \in F_a(A)$, there exists $c \in F_a(A)$ with $b \sim c$ and $b \perp c$.
- (ii) For all $\epsilon > 0$, there exists a projection $p \in \mathcal{M}(A)$ satisfying $1 p \perp f_{\epsilon}(a)$, $p \sim 1$, and $1 p \gtrsim 1$.

Proof If a is a positive element in a real C^* -algebra, then \overline{aAa} is hereditary. (Although the hereditary C^* -algebra generated by a may be strictly smaller. In the language of [16], \overline{aAa} is the regular hereditary C^* -algebra generated by a.) With this in mind, the proof is the same as the proof of [8, Lemma 2.6].

Proof of equivalence of (S0), (S1), and (S4) Using Lemma 2.4, we can use the same argument as in the proof of [8, Theorem 2.1].

Proof of equivalence of (S0) and (S5) Condition (S5) directly implies (S2). For the other direction, let a be a positive element of a stable C^* -algebra A, and let $\epsilon > 0$. We may assume that $||a|| \le 1$ and $a \ne 0$. Also, we may assume that $\epsilon < 1$. Since F(A) is dense in A_+ , there exists a_0 in F(A) such that $||a - a_0|| < \frac{\epsilon}{9}$.

By (S3), there exists a unitary u in \widetilde{A} such that $||a_0ua_0u^*|| < \frac{\epsilon}{2}$. Set $x = ua^{\frac{1}{2}}$ and set $b = xx^* = uau^*$. Then $a \sim b$ and

$$||ab|| \le ||a_0ua_0u^*|| + ||ab - aua_0u^*|| + ||aua_0u^* - a_0ua_0u^*||$$

$$\le \frac{\epsilon}{2} + ||a|| ||a - a_0|| + ||a - a_0|| ||a_0|| < \frac{\epsilon}{2} + \frac{\epsilon}{8} + \frac{\epsilon}{8} (1 + \frac{\epsilon}{8}) < \epsilon.$$

Proof of equivalence of (S0) and (S6) This is proved in the same was as in Section 3 of [8].

3 The Corona Factorization Property

As in [10], we define the corona factorization property for a real C^* -algebra as follows. A projection is *norm-full* in A if the only ideal in A containing p is A itself.

Definition 3.1 A real C^* -algebra A has the *corona factorization property* if every norm-full projection p in the multiplier algebra $\mathcal{M}(A \otimes \mathcal{K})$ is Murray–von Neumann equivalent to $1_{\mathcal{M}(A \otimes \mathcal{K})}$.

Note that A has the corona factorization property if and only if $A \otimes \mathcal{K}$ has the corona factorization property. The goal of this section is to prove the following theorems. Recall from [16] that a real C^* -algebra A is *purely infinite* if the subalgebra \overline{AAa} contains an infinite projection for every $a \in A^+$.

Theorem 3.2 Let A be a real C^* -algebra with the corona factorization property. Then A is stable if and only if $A_{\mathbb{C}}$ is stable.

Theorem 3.3 The following classes of real C*-algebras satisfy the corona factorization property:

- (i) AF-algebras
- (ii) separable, simple, purely infinite C^* -algebras A such that $A_{\mathbb{C}}$ is also purely infinite.

Corollary 3.4 A real C^* -algebra A in either of the classes mentioned above is stable if and only if $A_{\mathbb{C}}$ is stable.

Peter Stacey has pointed out that in the case of AF-algebras, the same result can be obtained via a *K*-theoretic argument using scale.

We note that Zhang's Dichotomy for real purely infinite C^* -algebras follows using Corollary 3.4 from the same result in the complex case ([19, Theorem 1.2]) with the additional assumption that $A_{\mathbb{C}}$ is purely infinite. Unfortunately, the question of whether or not the complexification of a purely infinite real C^* -algebra is purely infinite is open (see [16] for partial results).

However, we note that simply by repeating the argument of [1, Section 27.5] we can prove Zhang's Dichotomy in full generality.

Theorem 3.5 (Zhang's Dichotomy) Every real σ -unital, simple, and purely infinite C^* -algebra A is either unital or stable.

Following Cuntz in [7], we consider the following conditions that can be placed on a set \mathcal{P} of projections of a real C^* -algebra A.

- (Π_1) If p and q are in \mathcal{P} and p is orthogonal to q, then p+q are in \mathcal{P} .
- (Π_2) If p is an element of \mathcal{P} and q is a projection of A such that $p \sim q$, then q is an element of \mathcal{P} .
- (Π_3) For all p and q in \mathcal{P} , there exists e in \mathcal{P} such that $p \sim e$, e < q, and q e is an element of \mathcal{P} .
- (Π_4) If p and q are projections in A with $p \leq q$ and $p \in \mathcal{P}$, then $q \in \mathcal{P}$.

If p is a projection, then [p] will denote the Murray–von Neumann equivalence class represented by p. Using similar techniques as in [7, Theorem 1.4] one can show that the following holds.

Theorem 3.6 Let A be a real C^* -algebra with a non-empty subset \mathcal{P} of projections in A satisfying (Π_1) , (Π_2) , and (Π_3) above. Then $G = \{[p] : p \in \mathcal{P}\}$ is a group with the natural addition [p] + [q] = [p' + q'], where p' and q' are elements of \mathcal{P} chosen such that $p \sim p'$, $q \sim q'$, and p' is orthogonal to q'. Moreover, if A is a unital real C^* -algebra and in addition \mathcal{P} satisfies (Π_4) , then the obvious map from G to $K_0(A)$ is a group isomorphism.

As in the complex case, we say that a projection p in a real C^* -algebra A is properly infinite if there are orthogonal projections p_1 and p_2 with $p_1 \sim p_2 \sim p$.

Lemma 3.7 If the set \mathbb{P} of properly infinite norm-full projections in a real C^* -algebra A is nonempty, then it satisfies (Π_1) , (Π_2) , (Π_3) , and (Π_4) .

Proof (Π_1) Suppose p and q are elements of \mathcal{P} and p is orthogonal to q. Then there exist projections $p_1, p_2 \leq p$ and $q_1, q_2 \leq q$ such that p_1 is orthogonal to p_2, q_1 is orthogonal to $q_2, p_1 \sim p_2 \sim p$, and $q_1 \sim q_2 \sim q$.

Set $r_1 = p_1 + q_1$, $r_2 = p_2 + q_2$, and r = p + q. A computation shows that r_1 is orthogonal to r_2 , $r_1 \sim r_2 \sim r$, and $r_1, r_2 \leq r$.

 (Π_2) Let p be an element of \mathcal{P} and p' be a projection such that $p \sim q$. Since p is an element of \mathcal{P} , there exist orthogonal projections p_1 and p_2 such that $p_1, p_2 \leq p$ and $p_1 \sim p_2 \sim p$. Since $p \sim q$, there exists v in A such that $vv^* = p$ and $v^*v = q$.

Let $q_1 = v^* p_1 v$ and $q_2 = v^* p_2 v$. A computation shows that q_1 is orthogonal to q_2 , that $q_1 \sim q_2 \sim q$, and that $q_1, q_2 \leq q$.

 (Π_4) Let p be an element of \mathcal{P} and let q be a projection such that $p \leq q$. Since p is norm-full in A, there is a positive integer n such that we have

$$q \sim q' \leq \operatorname{diag}(p, \dots, p)$$

in $M_n(A)$. Since p is an element of \mathcal{P} , there exist n mutually orthogonal projections p_1,\ldots,p_n in pAp all of which are Murray–von Neumann equivalent to p. Thus $\mathrm{diag}(p,\ldots,p)\sim p_1+\cdots+p_n\leq p$. Therefore, $q\lesssim p$, i.e., q is Murray–von Neumann equivalent to a subprojection of p. Since p is an element of \mathcal{P} , there exist orthogonal projections p_1 and p_2 in pAp such that $p_1\sim p_2\sim p$. Therefore, $q\lesssim p_1\leq p$ and $q\lesssim p_2\leq p$. Hence, there exist orthogonal projections q_1 and q_2 in $pAp\subset qAq$ such that $q_1\sim q_2\sim q$. Since p=pq and p is norm-full in A, q is norm-full in A. Hence, q is an element of \mathcal{P} .

 (Π_3) Let p and q be elements of \mathcal{P} . As in the proof of (Π_4) , we have that $p \lesssim q$. Therefore, $p \sim e \leq q$ for some projection e, which is in \mathcal{P} by (Π_2) . Therefore, there exist orthogonal projections e_1 and e_2 such that $e_1 \sim e_2 \sim e$ and $e_1, e_2 < e$. Note that $e_1 + e_2 \leq e \leq q$. So, $e_2 \leq q - e_1 < q$. Since $e \sim e_2$, by (Π_2) we have that e_2 is an element of \mathcal{P} . By (Π_4) , we have that $q - e_1$ is an element of \mathcal{P} .

Proposition 3.8 Let A be a real C^* -algebra and let p and q be norm-full, properly infinite, projections of A. Then $[p]_0 = [q]_0$ if and only if p is Murray–von Neumann equivalent to q.

Proof By (Π_3) , we may assume that p and q are orthogonal. Let r = p + q. The projection r is norm-full, so by [2, Proposition 9], we have $[p]_0 = [q]_0$ in $K_0(A)$ if and only if $[p]_0 = [q]_0$ in $K_0(rAr)$. By Theorem 3.6 and Lemma 3.7, this holds if an only if p and q are Murray–von Neumann equivalent.

Lemma 3.9 Let A be a real C^* -algebra. Then $\mathfrak{M}(A \otimes \mathfrak{K})$ contains a unital copy of $\mathfrak{O}_n^{\mathbb{R}}$ for all n.

Proof There is a faithful representation of the real Cuntz algebra $\mathcal{O}_n^{\mathbb{R}}$ on a separable real Hilbert space (see [15, p. 4]). Therefore, $B(H) = \mathcal{M}(\mathcal{K})$ contains a unital copy of $\mathcal{O}_n^{\mathbb{R}}$. Then the unital embedding $\mathcal{M}(\mathcal{K}) \hookrightarrow \mathcal{M}(A \otimes \mathcal{K})$ completes the proof.

Proposition 3.10 ([5, Theorem 4.23]) Let A be a stable real C^* -algebra. Then a projection p in $\mathcal{M}(A)$ is Murray–von Neumann equivalent to $1_{\mathcal{M}(A)}$ if and only if pAp is a norm-full, stable sub- C^* -algebra of A.

Proof It is clear that if p is Murray–von Neumann equivalent to $1_{\mathcal{M}(A)}$, then pAp is norm-full in A and stable. Conversely, suppose pAp is norm-full and stable in A. Then $(pAp)_{\mathbb{C}} \cong pA_{\mathbb{C}}p$ is norm-full in $A_{\mathbb{C}}$ and stable. Then by [5, Theorem 4.23], the projection p is Murray–von Neumann equivalent to $1_{\mathcal{M}(A_{\mathbb{C}})}$ and hence is norm-full in $\mathcal{M}(A_{\mathbb{C}}) \cong \mathcal{M}(A)_{\mathbb{C}}$. It follows that p is norm-full in $\mathcal{M}(A)$.

Now Lemma 3.9 implies that p is properly infinite, since it is the unit of $\mathcal{M}(pAp) \cong p\mathcal{M}(A)p$. As $K_0(\mathcal{M}(A)) = 0$ by [2, Theorem 4], Proposition 3.8 implies that p is Murray–von Neumann equivalent to $1_{\mathcal{M}(A)}$.

Proof of Theorem 3.2. The "only if" direction is clear. We prove the "if" direction. Suppose $A_{\mathbb{C}}$ is stable as a complex C^* -algebra. Then by Corollary 2.3, $A_{\mathbb{C}}$ is stable as a real C^* -algebra. Note that $A_{\mathbb{C}}$ can be embedded into $M_2(A)$ such that there exists an approximate identity of $A_{\mathbb{C}}$ that is an approximate identity of $M_2(A)$. Therefore, by Corollary 2.2(P3), $M_2(A)$ is stable.

We claim that $M_2(A)$ stable implies A stable. Let $\{e_{ij}\}_{i,j=1}^{\infty}$ be the standard system of matrix units of \mathcal{K} , and let $p=1_{\mathcal{M}(A)}\otimes e_{11}\in \mathcal{M}(A)\otimes \mathcal{K}$. Then $A\cong p(A\otimes \mathcal{K})p$ is a norm-full hereditary real sub- C^* -algebra of $A\otimes \mathcal{K}$. By Lemma 3.9, there are isometries s_1 and s_2 in $\mathcal{M}(A\otimes \mathcal{K})$ such that $s_1s_1^*+s_2s_2^*=1_{\mathcal{M}(A)}$. Letting $q=s_1ps_1^*+s_2ps_2^*$, we have $q(A\otimes \mathcal{K})q\cong M_2(A)$. Since $p(A\otimes \mathcal{K})p$ is a norm-full real sub- C^* -algebra of $A\otimes \mathcal{K}$, so is $q(A\otimes \mathcal{K})q$. Therefore, by Proposition 3.10, q is Murray-von Neumann equivalent to $1_{\mathcal{M}(A\otimes \mathcal{K})}$. Hence, q is a norm-full projection of $\mathcal{M}(A\otimes \mathcal{K})$. Hence, p is a norm-full projection of $\mathcal{M}(A\otimes \mathcal{K})$. Since $p(A\otimes \mathcal{K})$ satisfies the corona factorization property, p is Murray-von Neumann equivalent to $p(A\otimes \mathcal{K})$. Hence $p(A\otimes \mathcal{K})$ is $p(A\otimes \mathcal{K})$. Hence $p(A\otimes \mathcal{K})$ is $p(A\otimes \mathcal{K})$. Hence

We now turn to the proof that real AF-algebras satisfy the corona factorization property. We begin by considering the case of a complex AF-algebra. The following result is closely related to, but does not exactly fall under the scope of, [10, Proposition 2.1].

Lemma 3.11 Let A be a stable complex AF-algebra. Then for every norm-full projection $p \in \mathcal{M}(A)$, p is Murray–von Neumann equivalent to $1_{\mathcal{M}(A)}$.

Proof Let p be a norm-full projection in $\mathfrak{M}(A)$. We will first show that pAp is stable. Since it is AF, it is enough to show that pAp has no bounded trace by [14, Proposition 3.4].

Suppose on the contrary that pAp has a bounded trace. Since p is a norm-full projection in $\mathcal{M}(A)$, pAp is full in A. By [4, Corollary 2.6], $pAp \otimes \mathcal{K}$ is isomorphic to A. Hence, we can extend τ to a lower-semicontinuous trace on A, which in turn extends to a trace $\widetilde{\tau}$ on $\mathcal{M}(A)_+$. Note that $\widetilde{\tau}(1_{\mathcal{M}(A)}) = \infty$, since otherwise $\widetilde{\tau}$ restricts to a bounded trace on A, contradicting the fact that A is stable.

Since *p* is a norm-full projection in $\mathcal{M}(A)$, there exist $x_1, \ldots, x_n \in \mathcal{M}(A)$ such that

$$1_{\mathfrak{M}(A)} = \sum_{k=1}^n x_k p x_k^* .$$

Hence,

$$\widetilde{\tau}(1_{\mathcal{M}(A)}) \leq \widetilde{\tau}(p) \sum_{k=1}^{n} \|x_k x_k^*\|,$$

which implies that $\widetilde{\tau}(p) = \infty$.

Since *A* is a complex AF-algebra, there exists an approximate identity $\{e_n\}_{n\in\mathbb{N}}$ of *A* consisting of projections.

Since τ is a bounded trace on pAp,

$$|\tau(pe_np)| \leq ||\tau|| ||pe_np|| \leq ||\tau|| ||p||.$$

600

Hence,

$$\widetilde{\tau}(p) = \limsup_{n \to \infty} \tau(e_n p e_n) = \limsup_{n \to \infty} \tau(p e_n p) \le ||\tau|| \, ||p|| < \infty,$$

which is a contradiction to the fact that $\widetilde{\tau}(p) = \infty$.

We have just shown that pAp is a stable complex AF-algebra. Therefore, $\mathcal{M}(pAp) \cong p\mathcal{M}(A)p$ is properly infinite. Hence, p is a norm-full, properly infinite projection in $\mathcal{M}(A)$. Thus, p is Murray–von Neumann equivalent to $1_{\mathcal{M}(A)}$.

Lemma 3.12 Let A be a real AF-algebra and p, q be projections in A. Then [p] < [q] holds in $K_0(A)$ if and only if [p] < [q] in $K_0(A_{\mathbb{C}})$.

Consequently, since A and $A_{\mathbb{C}}$ both have cancellation, p is Murray–von Neumann equivalent to a proper sub-projection of q in A if and only if p is Murray–von Neumann equivalent to a proper sub-projection of of q in $A_{\mathbb{C}}$.

Proof We have $K_{-1}(A) = 0$ for any finite dimensional real C^* -algebra, so the same is true for any real AF-algebra. Thus the exact sequence ([15, Theorem 1.4.7])

$$K_{n-1}(A) \to K_n(A) \to K_n(A_{\mathbb{C}}) \to K_{n-2}(A) \to K_{n-1}(A)$$

implies that the inclusion $A \hookrightarrow A_{\mathbb{C}}$ induces a monomorphism on the ordered groups $(K(A), K^+(A)) \to (K(A_{\mathbb{C}}), K^+(A_{\mathbb{C}}))$.

Proof of Theorem 3.3(i) Let A be a real AF-algebra, which we may assume is stable. Let p be a norm-full projection in $\mathcal{M}(A) \subset \mathcal{M}(A_{\mathbb{C}})$. Since p is a norm-full projection in $\mathcal{M}(A)$, we have that p is a norm-full projection in $\mathcal{M}(A_{\mathbb{C}}) = \mathcal{M}(A)_{\mathbb{C}}$. Hence, by Lemma 3.11, p is Murray–von Neumann equivalent in $\mathcal{M}(A_{\mathbb{C}})$ to $1_{\mathcal{M}(A_{\mathbb{C}})} = 1_{\mathcal{M}(A)}$.

Let $\{e_n\}_{n\in\mathbb{N}}$ and $\{p_n\}_{n\in\mathbb{N}}$ be sequences of finite rank orthogonal projections in A such that

$$\sum_{n=1}^{\infty} e_n = 1_{\mathcal{M}(A)} \quad \text{and} \quad \sum_{n=1}^{\infty} p_n = p$$

where the sums converge in the strict topology of $\mathcal{M}(A)$, hence also in the strict topology of $\mathcal{M}(A_{\mathbb{C}})$.

Set $q_n = \sum_{k=1}^n p_k$. We will inductively construct a strictly increasing sequence $\{n_k\}_{k\in\mathbb{N}}$ such that e_k is Murray–von Neumann equivalent to a proper projection of $q_{n_k} - q_{n_{k-1}}$. Since $e_1 \leq 1_{\mathcal{M}(A)}$ and $1_{\mathcal{M}}(A) \sim p$ in $\mathcal{M}(A_{\mathbb{C}})$, there exists n_1 and a unitary u in the unitization of $A_{\mathbb{C}}$ such that $ue_1u^* < q_{n_1}$. By Lemma 3.12, e_1 is Murray–von Neumann equivalent to a proper sub–projection of q_{n_1} in A.

Consider the projections $1_{\mathcal{M}(A)} - e_1$ and $p - q_{n_1}$. A computation shows that these projections are norm-full projections. Hence, by Lemma 3.11, $1_{\mathcal{M}(A)} - e_1 \sim 1_{\mathcal{M}(A)} \sim p - q_{n_1}$ in $\mathcal{M}(A_{\mathbb{C}})$. Since e_2 is a sub-projection of $1_{\mathcal{M}(A)} - e_1$, there exists $n_2 > n_1$ and a unitary ν such that $\nu e_2 \nu^* < q_{n_2} - q_{n_1}$. Thus, by Lemma 3.12, e_2 is Murray-von Neumann equivalent to a proper sub-projection of $q_{n_2} - q_{n_1}$ in A.

We now continue this process by considering the norm-full projections $1_{\mathcal{M}(A)} - e_1 - e_2$ and $p - q_{n_2}$. To get $n_3 > n_2$ such that e_3 is Murray–von Neumann equivalent

to a proper sub-projection of $q_{n_3} - q_{n_2}$. Continuing this process we get the desired sequence $\{n_k\}_{k\in\mathbb{N}}$.

Let $v_k \in A$ such that $v_k^* v_k = e_k$ and $v_k v_k^* \le q_{n_k} - q_{n_{k-1}}$. Set $v = \sum_{k=1}^{\infty} v_k$, where the sum converges in the strict topology of $\mathcal{M}(A)$. Since $\{e_k\}_{k \in \mathbb{N}}$ and $\{q_{n_k} - q_{n_{k-1}}\}_{k \in \mathbb{N}}$ are collections of mutually orthogonal projections, we have that

$$v^*v = \sum_{k=1}^{\infty} e_k = 1_{\mathcal{M}(\mathcal{K}_{\mathbb{R}} \otimes A)}$$
 and $vv^* \leq \sum_{k=1}^{\infty} (q_{n_k} - q_{n_{k-1}}) = \sum_{k=1}^{\infty} p_k = p$

Therefore, p is a norm-full properly infinite projection in $\mathcal{M}(A)$. Hence, p is Murray– von Neumman equivalent to $1_{\mathcal{M}(A)}$.

Finally, we work toward the proof that a real purely infinite C^* -algebra whose complexification is also purely infinite satisfies the corona factorization property. As observed by Stacey in [16], the proof in the complex case of the equivalence of the properties of real rank zero, FS, and HP (in [6]) carries over to give us the same theorem in the real case. Also, the proof of the following is the same as in the complex case in [6].

Proposition 3.13 Let A be a real C^* -algebra. For p in $\mathcal{M}(A)$, RR(A) = 0 if and only if RR(pAp) = 0 and $RR((1_{M(A)} - p)A(1_{M(A)} - p)) = 0$.

Proposition 3.14 Let A be a σ -unital real C^* -algebra with real rank zero. Then there exists a sequence of pairwise orthogonal projections $\{p_k\}_{k=1}^{\infty}$ in A such that $\{\sum_{k=1}^{n} p_k\}_{n=1}^{\infty}$ is an approximate identity of A consisting of projections. Consequently, $\sum_{k=1}^{\infty} p_k = 1_{\mathcal{M}(A)}$ where the sum converges in the strict topology.

Proof Let $\{e_n\}_{n=1}^{\infty}$ be an approximate identity of A. Since RR(A) = 0, every hereditary sub- C^* -algebra has an approximate identity consisting of projections (property (HP)). So there exists a projection p_1 in A such that $\|(1_{\mathcal{M}(A)} - p_1)e_1\| < 1$. Repeating the argument in the corner algebra $(1_{\mathcal{M}(A)} - p_1)A(1_{\mathcal{M}(A)} - p_1)$, there exists a projection p_2 orthogonal to p_1 such that

$$\|(1_{\mathcal{M}(A)}-p_2)(1_{\mathcal{M}(A)}-p_1)e_2^2(1_{\mathcal{M}(A)}-p_1)\|<\left(\frac{1}{2}\right)^2.$$

So, $\|(1_{\mathcal{M}(A)} - (p_1 + p_2))e_2\| < \frac{1}{2}$. Repeating this same process, we inductively define pairwise orthogonal projections $\{p_n\}_{n=1}^{\infty}$ such that

$$\left\| \left(1_{\mathcal{M}(A)} - \sum_{k=1}^n p_k \right) e_n \right\| < \frac{1}{n}.$$

A computation shows that $\{\sum_{k=1}^{n} p_k\}_{n=1}^{\infty}$ is an approximate identity of A.

Lemma 3.15 Let A be a σ -unital, non-unital, real C*-algebra with real rank zero. If p is a projection in $\mathcal{M}(A)$, then there exists a sequence of pairwise orthogonal projections $\{e_n\}_{n=1}^{\infty}$ in A such that $p=\sum_{n=1}^{\infty}e_n$, where the sum converges in the strict topology.

Proof By Proposition 3.13, pAp is a real C^* -algebra with real rank zero. By Proposition 3.14, there exists a sequence of pairwise orthogonal projections $\{e_n\}_{n=1}^{\infty}$ in pAp such that $\sum_{k=1}^{\infty} e_k = 1_{\mathcal{M}(pAp)}$ in the strict topology of $\mathcal{M}(pAp)$.

Set $q_n = \sum_{k=1}^n e_k$ and note that $pq_n = q_n p = q_n$ for all n. For any element $a \in A$ and any $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that for all $n \geq N$,

$$||pa^*ap(q_n-p)|| < \epsilon^2.$$

Then we get that

$$||aq_n - ap||^2 = ||(q_n - p)a^*a(q_n - p)|| = ||(q_n - p)pa^*ap(q_n - p)||$$

 $\leq ||pa^*ap(q_n - p)|| < \epsilon^2.$

Therefore, $aq_n \to ap$ for all $a \in A$, where the convergence is in the norm of A. By a similar argument or by applying adjoints, we get $q_n a \to pa$ for all $a \in A$. Hence $\sum_{k=1}^{\infty} e_k = p$ in the strict topology of $\mathcal{M}(A)$.

Proof of Theorem 3.3(ii) Assume that A is simple and stable and that $A_{\mathbb{C}}$ is purely infinite. We first consider the case in which $A_{\mathbb{C}}$ is also simple.

Let p be a norm-full projection in $\mathcal{M}(A \otimes \mathcal{K})$. Let π denote the canonical projection from $\mathcal{M}(A \otimes \mathcal{K})$ onto $\mathcal{Q}(A \otimes \mathcal{K})$. We will first show that $\pi(p)$ is an infinite projection in $\mathcal{Q}(A \otimes \mathcal{K})$.

Since $A \otimes \mathcal{K}$ is a real C^* -algebra with real rank zero, by Lemma 3.15 there exists a sequence of pairwise orthogonal projections $\{e_k\}_{k=1}^{\infty}$ in $A \otimes \mathcal{K}$ such that $p = \sum_{k=1}^{\infty} e_k$, where the convergence of the sum is in the strict topology. Since $A \otimes \mathcal{K}$ is a real, simple, purely infinite C^* -algebra, there exists a sequence of pairwise orthogonal projections $\{f_k\}_{k=1}^{\infty}$ of $A \otimes \mathcal{K}$ such that

- (i) f_k is Murray–von Neumann equivalent to e_{k+1} and
- (ii) f_k is a proper subprojection of e_k

for all k in \mathbb{N} .

Choose v_k in $A \otimes \mathcal{K}$ such that $v_k v_k^* = e_{k+1}$ and $v_k^* v_k = f_k$. Set $v = \sum_{k=1}^{\infty} v_k$. A computation shows that the sum converges in the strict topology and that

$$vv^* = \sum_{k=1}^{\infty} v_k v_k^* = \sum_{k=1}^{\infty} e_{k+1} = p - e_1 \text{ and}$$

$$v^* v = \sum_{k=1}^{\infty} v_k^* v_k = \sum_{k=1}^{\infty} f_k = p - \sum_{k=1}^{\infty} (e_k - f_k).$$

Since $e_k - f_k$ are nonzero projections for all k, the sum $\sum_{k=1}^{\infty} (e_k - f_k)$ is not an element of $A \otimes \mathcal{K}$. Therefore, $\pi(\nu \nu^*) = \pi(p)$ and

$$\pi(p-\nu^*\nu)=\pi\Big(\sum_{k=1}^{\infty}(e_k-f_k)\Big)\neq 0.$$

We have just shown that $\pi(p)$ is an infinite projection.

By [16, Theorem 4.4], $\Omega(A \otimes \mathcal{K})$ is a simple, real C^* -algebra (here we make use of the assumption that $A_{\mathbb{C}}$ is simple). We show that it is also purely infinite. Indeed $\Omega(A_{\mathbb{C}} \otimes_{\mathbb{C}} \mathcal{K}_{\mathbb{C}}) \cong \Omega(A \otimes \mathcal{K})_{\mathbb{C}}$ is purely infinite by [18, Theorem 1.3] (here we require the assumption that $A_{\mathbb{C}}$ is both simple and purely infinite). So, by [16, Theorem 3.3] (together with [3]), $\Omega(A \otimes \mathcal{K})$ is purely infinite. By [16, Proposition 4.1], there exists x in $\mathcal{M}(A \otimes \mathcal{K})$ such that $\pi(xpx^*) = 1_{\Omega(A \otimes \mathcal{K})}$.

It is easy to see that for every y in $A \otimes \mathcal{K}$, there exists an infinite rank projection $r \in 1 \otimes \mathcal{M}(\mathcal{K}) \subset \mathcal{M}(A \otimes \mathcal{K})$ such that $||yr|| < \epsilon$. Letting $s \in 1 \otimes \mathcal{M}(\mathcal{K})$ be an isometry such that $ss^* = r$, we have $||s^*ys|| < \epsilon$.

Applying this observation to the element $1_{\mathcal{M}(A \otimes \mathcal{K})} - xpx^*$ of $A \otimes \mathcal{K}$, we obtain an isometry s in $\mathcal{M}(A \otimes \mathcal{K})$ such that

$$||1_{\mathcal{M}(A\otimes\mathcal{K})} - s^*xpx^*s|| = ||s^*(1_{\mathcal{M}(A\otimes\mathcal{K})} - xpx^*)s|| < 1.$$

There exists a positive element y of $M(A \otimes K)$ such that

$$y^{-\frac{1}{2}}s^*xpx^*sy^{-\frac{1}{2}} = 1_{\mathcal{M}(A\otimes\mathcal{K})}.$$

Hence, $1_{\mathcal{M}(A\otimes\mathcal{K})}$ is Murray–von Neumann equivalent to a subprojection of p. Since $1_{\mathcal{M}(A\otimes\mathcal{K})}$ is properly infinite, p is properly infinite. Hence, p is a norm-full, properly infinite projection of $\mathcal{M}(A\otimes\mathcal{K})$. Therefore, p is Murray–von Neumann equivalent to $1_{\mathcal{M}(A\otimes\mathcal{K})}$.

In the case that $A_{\mathbb{C}}$ is not simple, let ψ be the conjugate linear automorphism on $A_{\mathbb{C}}$ defined by $\psi(a+ib)=a-ib$. Take A_1 to be a minimal non-trivial ideal and take $A_2=\psi(A_1)$. Then it is easily proven that $A_{\mathbb{C}}\cong A_1\oplus A_2$. Furthermore, the homomorphism from A to A_i , given by the inclusion in $A_{\mathbb{C}}$, composed with the projection on A_i , is an isomorphism of real C^* -algebras. It follows that each A_i is a simple and purely infinite complex C^* -algebra. By [10, Proposition 2.1], each A_i has the coronal factorization property. It follows that A has the corona factorization property.

4 Examples

In this section we prove the following theorem.

Theorem 4.1 (i) There exists a nonstable real C*-algebra B such that C⊗B is stable.
(ii) There exists a nonstable real C*-algebra B such that C⊗B is not stable, but M₂(B) is stable.

Furthermore, in either case, B can be taken so that B and $\mathbb{C} \otimes B$ are simple and have stable rank equal to one.

The following lemma is the real analog of [13, Proposition 3.6] and has the same proof, using Theorem 2.1.

Lemma 4.2 Suppose A is a real C^* -algebra with projections e, p_1, p_2, \ldots and let

$$(4.1) B = \overline{\bigcup_{j=1}^{\infty} q_j(A \otimes \mathcal{K})q_j},$$

where $q_i = p_1 \oplus p_2 \oplus \cdots \oplus p_i \in M_i(A) \subset A \otimes \mathcal{K}$.

- (i) If $e \otimes 1_n \sim p_j \otimes 1_n$ for all j, then $M_n(B)$ is stable.
- (ii) If, in addition to (i), e is not equivalent to a subprojection of $q_j \otimes 1_{n-1}$ for any j then $M_{n-1}(B)$ is not stable.

Lemma 4.3 There exists a real C^* -algebra A with projections e, p_1, p_2, \ldots such that

- (i) $e \sim p_i$ in $\mathbb{C} \otimes A$ for all j;
- (ii) *e* is not equivalent in *A* to a subprojection of $p_1 \oplus p_2 \oplus \cdots \oplus p_j$ for any *j*.

Proof Let \mathbb{T} be the unit circle in the complex plane. Let $C = M_2(\mathbb{R}) \otimes C(\mathbb{T}, \mathbb{R})$, and let $e, p \in C$ be projections corresponding respectively to the one-dimensional trivial bundle θ_1 and to the Möbius bundle μ over \mathbb{T} . Then $e \nsim p$ in C, since these bundles are not isomorphic, but as the complexification of these two bundles are isomorphic, we have $e \sim p$ in $\mathbb{C} \otimes C$.

In K-theory we have $[p] \neq [e]$ but c([p]) = c([e]). Indeed, under the appropriate homomorphisms we can identify [p] = (1,1) and [e] = (1,0) in $K_0(C) \cong \mathbb{Z} \oplus \mathbb{Z}_2$, and c([p]) = c([e]) = 1 in $K_0(\mathbb{C} \otimes C) \cong \mathbb{Z}$. Furthermore the Stieffel–Whitney classes are $\mathrm{sw}(\mu) = 1 + x$ and $\mathrm{sw}(\theta_1) = 1$, where $H^*(\mathbb{T}; \mathbb{Z}_2) = \mathbb{Z}_2[x]/(x^2)$.

Let $A = M_2(\mathbb{R}) \otimes \left(\bigotimes_{i=1}^{\infty} C(\mathbb{T}, \mathbb{R})\right)$ and let $\iota_j \colon C \to A$ be the unital homomorphism induced by inclusion of $C(\mathbb{T}, \mathbb{R})$ into the j-th factor of $\bigotimes_{i=1}^{\infty} C(\mathbb{T}, \mathbb{R})$. Let $p_j = \iota_j(p)$, and let e also denote the image of e in A under ι_1 . In $\mathbb{C} \otimes A$ we have $e \sim p_j$ for all j, establishing (i).

For (ii) assume that $e \sim f$ in A, where f is a subprojection of $p_1 \oplus p_2 \oplus \cdots \oplus p_n$. Then there is a projection f' such that $f \oplus f' = p_1 \oplus \cdots \oplus p_n$. Let ν, ν' , and μ_i denote the vector bundles over T^{∞} corresponding to the projections f, f', and p_i respectively. Since $e \sim f$, we have $\mathrm{sw}(\nu) = 1$.

Then in $H^*(\mathbb{T}^\infty; \mathbb{Z}_2) = \mathbb{Z}_2[x_1, x_2, \dots]/(x_1^2, x_2^2, \dots)$ we have

$$sw(\nu') = sw(\nu) sw(\nu') = sw(\mu_1) sw(\mu_2) \cdots sw(\mu_n)$$

= $(1 + x_1)(1 + x_2) \cdots (1 + x_n)$.

This implies $sw_n(\nu') = \prod_{i=1}^n x_i$. But this is impossible, since the vector bundle ν' has dimension less than n.

Lemma 4.4 There exists a real C^* -algebra A with projections e, p_1, p_2, \ldots such that

- (i) $e \otimes 1_2 \sim p_i \otimes 1_2$ in $M_2(A)$ for all j;
- (ii) *e is not equivalent in* $\mathbb{C} \otimes A$ *to a subprojection of* $p_1 \oplus p_2 \oplus \cdots \oplus p_j$ *for any j.*

Proof Let $C = M_4(C(S^2, \mathbb{R}))$, and let $e, p \in \mathbb{C} \otimes C$ be projections corresponding respectively to the (complex) 2-dimensional trivial bundle θ_2 and the direct sum $2\beta_U$ of two copies of the complex 1-dimensional Bott bundle over S^2 . Then $e \nsim p$ in $\mathbb{C} \otimes C$, but we will show that $e \otimes 1_2 \sim p \otimes 1_2$ in $M_2(C)$. Indeed, a real vector bundle of dimension n over S^2 is determined by the homotopy type of its clutching map $S^1 \to GL(\mathbb{R}^n)$. But since $\pi_1(GL(\mathbb{R}^n)) = \mathbb{Z}_2$ for all $n \geq 3$, we have $p \oplus p \sim e \oplus e$.

In *K*-theory we have $K_0(\mathbb{C} \otimes C) \cong \mathbb{Z} \oplus \mathbb{Z}$ and $K_0(C) \cong \mathbb{Z} \oplus \mathbb{Z}_2$. With this identification, we have [e] = (2,0), [p] = (2,2) and [r(e)] = [r(p)] = (2,0).

Similar to the proof to Lemma 4.3, let $A = M_4(\mathbb{R}) \otimes \left(\bigotimes_{i=1}^{\infty} C(S^2, \mathbb{R})\right)$, and we have corresponding projections $e, p_j \in A$. The projections p_j correspond to vector bundles μ_n over $(S^2)^{\infty}$. In $M_2(A)$ we have $r(e) \sim r(p_j)$ for all j, and in $\mathbb{C} \otimes A$ we have that e is not a subprojection of $p_1 \oplus p_2 \oplus \cdots \oplus p_j$, since the chern classes are given by $\operatorname{ch}(\theta_2) = 1$ and $\operatorname{ch}(\mu_1 \oplus \mu_2 \oplus \cdots \oplus \mu_j) = \prod_{i=1}^{j} (1+x_j)$, where $H^*((S^2)^{\infty}) = \mathbb{Z}[x_1, x_2, \ldots,]/(x_1^2, x_2^2, \ldots)$.

Proof of Theorem 4.1: non-simple case Let A be the real C^* -algebra from Lemma 4.3 and define B as in equation (4.1). Since $e \sim p_j$ holds in $\mathbb{C} \otimes A$, we have $e \otimes 1_2 \sim p_j \otimes 1_2$ in $M_2(A)$. Then by Lemma 4.2(ii) (with n = 2), we have that B is not stable. Now note that

$$B_{\mathbb{C}}\cong\overline{igcup_{j=1}^{\infty}q_{j}(A_{\mathbb{C}}\otimes\mathcal{K})q_{j}}.$$

Therefore Lemma 4.2(i) applied to $\mathbb{C} \otimes A$ shows that $\mathbb{C} \otimes B$ is stable. This proves part (i).

For part (ii), let A be the real C^* -algebra from Lemma 4.4 and define B as in equation (4.1). Since $e \otimes 1_2 \sim p_j \otimes 1_2$ in $M_2(\mathbb{C} \otimes A)$, Lemma 4.2(ii) immediately gives that $\mathbb{C} \otimes B$ is not stable. Finally, since $e \otimes 1_2 \sim p_j \otimes 1_2$ holds in $M_2(A)$, part (i) of the same lemma tells us that $M_2(B)$ is stable.

Proof of Theorem 4.1: simple case We now describe how to construct examples that are simple. We will use the same construction as Rørdam in [13, Section 5], following Villadsen in [17]. The only differences are our choice of the initial topological space X and that we will be using functions with values in matrices over $\mathbb R$ instead of $\mathbb C$. To begin, choose sequences $\{k_i\}, \{m_i\}$, and $\{d_i\}$ as in [13]. Let $X = \mathbb T$ and define $X_i = X^{d_i}$ and $A_i = M_{2m_i}(C(X_i, \mathbb R))$. Then we get connecting maps $\phi_i \colon A_i \to A_{i+1}$ defined by

$$\phi_i(f)(x) = \text{diag}((f \circ \pi_1^i)(x), (f \circ \pi_2^i)(x), \dots, (f \circ \pi_i^i)(x), f(x_i))$$

for any $f \in A_i$ and $x \in X_{i+1}$. In this expression, π_1, \ldots, π_i are certain projections from X_{i+1} onto distinct factors of X_i and $x_i \in X_i$ are points selected such that for each i, the union of the images of $x_j \in X_j$ under all possible compositions of projections $X_i \to X_i$ for all $j \ge i$ is dense in X_i .

Then as in [13] the limit $A = \lim_{i \to \infty} A_i$ is simple, as is the complexification $\mathbb{C} \otimes A$. Furthermore, using the projections $e, p \in A_1$ from the proof of Lemma 4.3 we obtain, as in the proof of [13, Proposition 5.2], a sequence of projections $e, p_1, p_2, \dots \in A$ satisfying the statement of Lemma 4.3.

The C^* -algebra B obtained as in equation (4.1) is a real regular hereditary sub- C^* -algebra (in the sense of [16]) of the simple C^* -algebra $A \otimes \mathcal{K}$. The proof of [9, Theorem 3.2.8] carries over to the case of real C^* -algebras to show that a real hereditary sub- C^* -algebra of a simple C^* algebra is simple. Therefore, B is simple, as is $\mathbb{C} \otimes B$.

Finally, we note that [17, Proposition 10] implies that the C^* -algebra $A_{\mathbb{C}}$ above has stable rank one, and [12, Theorem 3.3] shows that $M_n(A_{\mathbb{C}})$ has real rank one for all n. This property is preserved by direct limits, so $A_{\mathbb{C}} \otimes \mathcal{K}$ has real rank one. The method

of proof of Lemma 3.4 can be used to show that the corner algebras $q_j(A_{\mathbb{C}} \otimes \mathcal{K})q_j$ then have real rank one. Hence $B_{\mathbb{C}}$ has real rank one. All of these results cited apply in the case of real C^* -algebras (with the same proofs) to show that B also has real rank one.

Finally, to create a simple, stable rank one, real C^* -algebra satisfying Theorem 4.1(ii) we repeat the above construction using the space $X = S^2$ and the projections e and p described in the proof of Lemma 4.4.

References

- B. V. R. Bhat, G. A. Elliott, and P. A. Fillmore, eds., Lectures on operator theory. Fields Institute Monographs, 13, American Mathematical Society, Providence, RI, 1999.
- [2] J. L. Boersema, *The range of united K-theory*. J. Funct. Anal. **235**(2006), no. 2, 701–718.
- [3] J. L. Boersema and P. J. Stacey, Correction to the paper: "Real structure in purely infinite C*-algebras" [J. Operator Theory 49(2003), no. 1, 77–84]. J. Operator Theory 53(2005), no. 2, 441–442.
- [4] L. G. Brown, Stable isomorphism of hereditary subalgebras of C*-algebras. Pacific J. Math. 71(1977), no. 2, 335–348.
- [5] _____, Semicontinuity and multipliers of C*-algebras. Canad. J. Math. 40(1988), no. 4, 865–988. doi:10.4153/CJM-1988-038-5
- [6] L. G. Brown and G. K. Pedersen, C*-algebras of real rank zero. J. Funct. Anal. 99(1991), no. 1, 131–149. doi:10.1016/0022-1236(91)90056-B
- [7] J. Cuntz, K-theory for certain C*-algebras. Ann. of Math. (2) 113(1981), no. 1, 181–197. doi:10.2307/1971137
- [8] J. v. B. Hjelmborg and M. Rørdam, On stability of C*-algebras. J. Funct. Anal. 155(1998), no. 1, 153–170. doi:10.1006/jfan.1997.3221
- [9] G. J. Murphy, C*-algebras and operator theory. Academic Press Inc., Boston, MA, 1990.
- [10] P. W. Ng, *The corona factorization property*. In: Operator theory, operator algebras, and applications, Contemporary Mathematics, 414, American Mathematical Society, Providence, RI, 2006, pp. 97–110.
- [11] G. K. Pedersen, C*-algebras and their automorphism groups. London Mathematical Society Monographs, 14. Academic Press, Inc., London-New York, 1979.
- [12] M. Rieffel, Dimension and stable rank in the K-theory of C*-algebras. Proc. London Math. Soc. 46(1983), no. 2, 301–333. doi:10.1112/plms/s3-46.2.301
- [13] M. Rørdam, Stability of C*-algebras is not a stable property. Doc. Math. 2(1997), 375–386.
- [14] _____, Stable C*-algebras. In: Operator algebras and applications, Advanced Studies in Pure Mathematics, 38, Math. Soc. Japan, Tokyo, 2004, pp. 177–199.
- [15] H. Schröder, K-theory for real C*-algebras and applications. Pitman Research Notes Mathematics Series, 290, Longman, Scientific, & Technical, Harlow, 1993.
- [16] P. J. Stacey, Real structure in purely infinite C*-algebras. J. Operator Theory 49(2003), no. 1, 77–84.
- [17] J. Villadsen, Simple C*-algebras with perforation. J. Funct. Anal. 154(1998), no. 1, 110–116. doi:10.1006/jfan.1997.3168
- [18] S. Zhang, On the structure of projections and ideals of corona algebras. Canad. J. Math. 41(1989), no. 4, 721–742. doi:10.4153/CJM-1989-033-4
- [19] _____, Certain C*-algebras of real rank zero and their corona and multiplier algebras. I. Pacific J. Math. 155(1992), no. 1, 169–197.

Department of Mathematics, Seattle University, Seattle, WA 98122, U.S.A. e-mail: boersema@seattleu.edu

Department of Mathematics, University of Hawaii Hilo, Hilo, Hawaii 96720, U.S.A. e-mail: ruize@hawaii.edu