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doi:10.1017/S1743921322000461

A numerical criterion evaluating the
robustness of planetary architectures;

applications to the υ Andromedæ system

Ugo Locatelli1 , Chiara Caracciolo2, Marco Sansottera2

and Mara Volpi1

1Dipartimento di Matematica dell’Università degli Studi di Roma “Tor Vergata”,
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Abstract. We revisit the problem of the existence of KAM tori in extrasolar planetary systems.
Specifically, we consider the υ Andromedæ system, by modelling it with a three-body problem.
This preliminary study allows us to introduce a natural way to evaluate the robustness of the
planetary orbits, which can be very easily implemented in numerical explorations. We apply our
criterion to the problem of the choice of a suitable orbital configuration which exhibits strong
stability properties and is compatible with the observational data that are available for the
υ Andromedæ system itself.
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1. Introduction

From the very beginning of their history, physical sciences have been an inexhaustible
source of problems and inspiration for mathematics. In particular, the orbital character-
istics of more and more extrasolar systems are raising very challenging questions which
concern the modern theory of stability for planetary Hamiltonian systems.

Since the announcement of the discovery of the first one (Mayor & Queloz 1995), thou-
sands of exoplanets have been detected. Systems hosting more than one planet show a
rather surprising variety of configurations which can be remarkably different with respect
to that of the Solar System, which presents planetary orbits that are well separated,
quasi-circular and nearly coplanar. The situation is made even more complex by the fact
that none of the detection methods nowadays available to discover extrasolar planets is
able to measure all their orbital elements. In this regard, the Radial Velocity (hereafter,
RV) method is the most effective observation technique, because it provides values for
the semi-major axis a, the eccentricity e, and the argument of the pericentre ω of an
exoplanet (see, e.g., Perryman 2018). Moreover, the RV method is able to evaluate the
so-called minimal mass m sin(ι), where m and ι are the mass and the inclination† of the
observed exoplanet, respectively. Indeed, this is as a very serious limitation of the cur-
rently available detection techniques, since they are often unable to completely determine

† More precisely, ι refers to the inclination of the Keplerian ellipse with respect to the plane
orthogonal to the line of sight (i.e., the direction pointing to the object one is observing), which
is usually said to be “tangent to the celestial sphere”.
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such an important parameter like the mass of an exoplanet (which is crucial to draw
conclusions about, e.g., its habitability). In particular, the three-dimensional architecture
of a multi-planetary system eludes the observational measures, when they are made
using the RV method. However, this can be determined by crossing the results provided
by multiple detection techniques, when different methods can be applied to the same
system. Since the transit photometry is the most prolific technique in the discovering
of exoplanets, its joined use with the RV method is expected to be very promising for
what concerns their orbital characterisation. For instance, the combination of the transit
and the RV method allowed to measure the inclination of three exoplanets orbiting
around the L 98-59 star and so to determine rather narrow ranges for the values of
their masses (Cloutier et al. 2019). Although the data obtained through astrometry
are less precise with respect to the aforementioned detection techniques, they can be
joined with the measures provided by the RV method to evaluate both the inclination ι
and the longitude of the node Ω for some massive-enough exoplanets (e.g., in the case
of HD 128311 c, see McArthur et al. 2014). Moreover, combining astrometry and RV
methods it was possible to determine ranges of values for all the orbital elements except
the mean anomalies M for the two exoplanets that are expected to be the most massive
ones among those orbiting the υ Andromedæ A star† (McArthur et al. 2010). On one
hand, this allowed to describe rather carefully the 3D structure of the main part of this
extrasolar system, with an instantaneous value of the mutual inclination of 29.9◦ ± 1◦;
on the other hand, the uncertainty on the knowledge of a few orbital elements is so large
that the estimated error on the mass of one of the exoplanets is quite relevant (i.e.,

 30%), which is also due to the fact that its orbital plane is very inclined with respect
to the line of sight.

According to the approach designed by Morbidelli & Giorgilli (1995), the stability
of quasi-integrable systems can be efficiently analysed by combining the KAM theorem
with the Nekhoroshev’s one. In fact, their joint application can ensure the effective sta-
bility (that is valid for interval of times larger than the estimated age of the universe)
for Hamiltonian systems of physical interest. This strategy has been successfully applied
to a pair of non-trivial planetary models describing the dynamics of the two or three
innermost Jovian planets of our Solar System; in both those cases, upper bounds on the
diffusion speed have been provided by suitable estimates on the remainder of the Birkhoff
normal form which is preliminarily constructed in the neighbourhood of an invariant torus
(Giorgilli et al. 2009 & 2017). The so-called Arnold diffusion is a phenomenon which can-
not take place in Hamiltonian systems having two degrees of freedom (hereafter, d.o.f.),
because 2D invariant tori act as topological barriers separating the orbits. Nevertheless,
reverse KAM theory can be applied in a way that is far from being trivial for what con-
cerns the secular dynamics of extrasolar systems including three bodies (which can be
described by a Hamiltonian model with 2 d.o.f.). In fact, in Volpi et al. (2018) the explicit
construction of invariant KAM tori is used to infer information on the possible ranges of
values of the mutual inclinations between the orbital planes of the two exoplanets hosted
in the three following systems: HD 141399, HD 143761 and HD 40307. However, such an
approach suffers serious limitations, mainly due to the fact that is based on an algorithm
which was designed to construct suitable normal forms for the secular dynamics of our
Solar System (Locatelli & Giorgilli 2000). Firstly, this computational procedure is appar-
ently unable to deal with the case of eccentricities larger than 0.1, which is quite frequent

† Indeed, υ Andromedæ is a binary star. Since the companion is a red dwarf that is quite far
(about 750 AU) from the primary star, the former is expected to not appreciably affect the plan-
etary system orbiting the latter one. For the sake of simplicity, with the name of υ Andromedæ
hereafter we will refer to both its primary star (which is, more precisely, υ Andromedæ A) and
the extrasolar system hosting the exoplanets that have been discovered around it.

https://doi.org/10.1017/S1743921322000461 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921322000461


A . . . criterion evaluating the robustness of planetary architectures . . . 67

for exoplanets discovered by the RV detection method. Moreover, although the algorithm
constructing the normal forms can work with bunches of initial conditions at the same
time (if the implementation is made by using interval arithmetics, see Volpi et al. 2018),
this kind of procedures can be rather demanding from a computational point of view,
if they are not tailored carefully to the model under consideration. Therefore, the pos-
sibility to apply extensively such an approach to the study of many extrasolar systems
looks rather doubtful. The so-called criterion of the Angular Momentum Deficit (here-
after AMD, see Laskar & Petit 2017, and Petit et al. 2017 for its reformulation adapted
to planetary systems in mean motion resonance) gives an elegant answer to the need of a
“coarse-graining” method for quickly studying the stability of many extrasolar planetary
systems. However, also the AMD criterion does not cover all the extrasolar planetary
systems that are known up to now, in the sense that is unable to ensure the stability
for some of them. In particular, the AMD criterion can become inapplicable to systems
where the orbital plane of (at least) one exoplanet is highly inclined with respect to
the line of sight; for instance, this is exactly what occurs in the case of υ Andromedæ,
which is very challenging. On the one hand, the 2D three-body model which includes
the star and its two exoplanets with the largest minimal masses looks stable according
to the AMD criterion, when the line of sight lies in their common orbital plane (Fig. 7
of Laskar & Petit 2017). On the other hand, when also the inclinations and the longitudes
of the nodes are taken into account, then there is a remarkable fraction of the possible
initial conditions that generates motions which are evidently unstable (McArthur et al.
2010; Deitrick et al. 2015). This is mainly due to the fact that the actual value of the
mass of υ And c should be larger than 5 times the minimal one, while the increasing
factor affecting the value of υ And d ’s mass is about 2.5 . Therefore, the perturbation of
the Keplerian orbits (that is mainly due to the mutual gravitation) due to the updated
values of the exoplanetary masses is one order of magnitude larger than the perturbation
in the two-dimensional models of the υ Andromedæ system considering the data derived
by the first observational measures provided by the RV detection method.

In Caracciolo et al. 2022, we have studied the secular dynamics of the υ Andromedæ
system by adopting the so called averaged model at order two in the masses. In that
framework we have shown how to construct an invariant (KAM) manifold which is a very
accurate approximation of the orbit originating from initial conditions that are within
the range of the observed values. Moreover, we have also shown rigorously the existence
of such a KAM torus, by adopting a suitable technique based on a computer-assisted
proof. Let us recall that this ensures that there is a small region around those initial
conditions (and so, consistent with the observational data) for which the secular dynamics
is effectively stable (see again the aforementioned paper by Morbidelli & Giorgilli 1995).
Indeed, we have carefully selected those initial conditions by using a numerical criterion
to evaluate the robustness of the corresponding orbit. The present work is devoted to
the description of such a criterion. As it will be discussed in the next sections, the
concept of robustness actually refers to the eventually existing torus which covers the
orbit. The key remark which allows us to introduce such a criterion can be shortly
summarised as follows: for what concerns the secular dynamics of the υ Andromedæ
system, a KAM torus is as more persistent to the perturbing terms as it is closer to a
periodic orbit which corresponds to the anti-alignment of the pericentre arguments of
υ And c and υ And d. Thus, it is natural to apply our robustness criterion in situations
where the exoplanets are in a librational regime with respect to the difference of their
pericentre arguments. Let us recall that υ And c and υ And d were conjectured to be
in such an apsidal locking state just a few years after their discovery (Chiang et al.
2001, see also Michtchenko & Malhotra 2004 for an explanation of such a dynamical
mechanism within the framework of a secular model). Although our robustness criterion
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Table 1. Orbital elements and minimal masses of the exoplanets υ And c and υ And d. All the
data appearing in the following first three columns are reported from Table 13 of McArthur et al.
(2010). In the rightmost column we have included also the relative errors for each quantity. In
all our numerical integrations the stellar mass of υ Andromedæ is assumed to be m0 = 1.31M� .
As usual, M� and MJ denote the solar mass and the Jupiter one, respectively.

υ And c υ And d rel. err.

a(0) [AU] 0.829± 0.043 2.53± 0.014 � 5 %

e(0) 0.245± 0.006 0.316± 0.006 � 5 %

ι(0) [◦] 7.868± 1.003 23.758± 1.316 1.4/180

ω(0) [◦] 247.66± 1.76 252.99± 1.31 1.8/360

Ω(0) [◦] 236.85± 7.53 4.07± 3.31 7.6/360

m sin(ι(0)) [MJ ] 1.96± 0.05 4.33± 0.11 <∼ 3 %

simply applies in combination with numerical integrations (any averaging procedure is
not strictly necessary), it is somehow related with the dynamical phenomenon we have
described by adopting the language of the normal forms and the refined computational
procedure which is fully detailed in Caracciolo et al. 2022. Therefore, our robustness
numerical indicator does not aim to be as general as the AMD stability criterion, at least
in its first formulation we are going to introduce; eventual extensions to contexts different
with respect to the librations in an apsidal locking regime (or in the anti-apsidal one)
could need some nontrivial adaptations.

2. The orbital dynamics of the exoplanets in the υ Andromedæ
system: a short overview

The discovery of three exoplanets orbiting around υ Andromedæ was made at the end
of the last century, by applying the RV detection method (Butler et al. 1999). Moreover,
McArthur et al. (2010) remarked that a long-period trend in the analysis of the signals
is an indication of the presence of a fourth planet (named υ And e). The long-term
stability of a planetary system which includes υ And b, υ And c and υ And d has been
studied in Deitrick et al. 2015, by performing many numerical integrations; let us also
recall that several of them have shown unstable motions. In the present work, we are
going to further restrict the model by limiting us to consider the two exoplanets that
are expected to be the largest ones. There are good reasons to assume that the influence
exerted by υ And b and υ And e is negligible: the latter is known quite poorly (and the
RV method is rather sensitive to more massive bodies), while the former is very tightly
close to the star and its minimal mass is one order of magnitude smaller than the ones
of υ And b and υ And c†.

The initial values of the orbital elements (except the mean anomalies, that are
unknown) for the pair of exoplanets υ And c, υ And d and their minimal masses are
reported in Table 1. Hereafter, in our three-body model of the υ Andromedæ extraso-
lar system the indexes 1, 2 will be used to refer to the inner planet and the outer one,
respectively, while m0 will denote the stellar mass. Looking at Table 1, one can appreciate
that all the reported data are given with a relative uncertainty that is not larger than a
few percentage units. Due to the occurrence of the increasing factor 1/ sin(ιj(0)) (with
j = 1, 2), this is no more true for the exoplanetary masses. A straightforward evaluation
starting from the data reported in Table 1 gives m1 = 14.6 ± 2.2 and m2 = 10.8 ± 0.9.
Therefore, the relative uncertainty of at least one parameter (which plays a crucial role

† The ratio between the semi-major axes of two consecutive planets is � 14 in the case of the
pair υ And c – υ And b, while it is a bit more than 3 in the case of υ And d – υ And c. In the
case of υ And b the value of the quantity m sin(ι(0)) is known to be 0.0594± 0.0003 MJ (see
Table 13 of McArthur et al. (2010), whose data concerning υ And c and υ And d are reported
in our Table 1 above). Let us also recall that the initial inclination ι(0) of υ And b is unknown
and, thus, the minimal value is the only information available about its mass.
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Table 2. List of the values of the parameters that are kept fixed in all our numerical explo-
rations. In the first two rows, the initial conditions concerning with semi-major axes and
eccentricities of the exoplanets υ And c and υ And d are reported. In the last row, their values
of the minimal masses are given.

υ And c υ And d

a(0) [AU] 0.829 2.53

e(0) 0.239 0.310

m sin(ι(0)) [MJ ] 1.91 4.22
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Figure 1. On the left, a colour-grid plot of the maximal value reached by the eccentricity e2 of
υ And d. On the right, the same for the maximal value of the difference between the pericentres,
i.e., maxt |ω1(t)− ω2(t)|. In both panels, the plots are made as a function of the initial values
of the mean anomalies M1(0) and M2(0). See the text for more details about the choice of the
initial conditions.

in the discussion about the stability of this extrasolar planetary system) can reach† 15 %
of the corresponding mid value; this is the case of the mass of υ And c.

We emphasise that an extensive study of the possible motions with an homogeneous
and accurate covering of all the possible initial conditions and parameters gets immedi-
ately far too complex from a computational point of view, because it would require to
deal with a fourteen-dimensional grid. For the sake of simplicity, we started to reduce
the complexity by fixing some of the parameters that are determined rather precisely by
the observational measures made by using the RV method; in detail, they are two pairs
of orbital elements, i.e., the initial values of semi-major axes and eccentricities, and the
minimal masses. The latter two pairs have been fixed so to be equal to the lowest possible
values of the corresponding ranges given in Table 1. This choice has been made in order
to increase the fraction of the orbital motions that are apparently stable. All the values
of the parameters that have been so fixed by us are reported in Table 2.

We start our numerical explorations by investigating the dependence on the pair of
the orbital elements that are unknown, namely the mean anomalies M1 and M2 ‡. For
this purpose, we decide to consider sets of initial conditions such that ιj(0), ωj(0) and
Ωj(0) are set to be equal to the corresponding mid values reported in Table 1, ∀ j = 1, 2.
Moreover, the initial conditions are complemented with the data reported in Table 2,
while the initial values of the mean anomalies are taken from a regular 2D grid covering all
the set [0◦, 360◦] × [0◦, 360◦] with a grid-step of 5◦. Hereafter, the mass of each exoplanet
is always determined by multiplying its minimal value (appearing in Table 2) by the

† Taking into account all the uncertainties due to the observational measures, the errors
ranges are even wider. Indeed, in Table 13 of McArthur et al. (2010) the following values for the
exoplanetary masses are given: m1 = 13.98+2.3

−5.3 and m2 = 10.25+0.7
−3.3.

‡ The observational data reported in both online catalogues and published papers determine
values for the orbital period and the epoch of periastron. From these two values it is possible to
infer the values of the mean anomalies, but they are never explicitly determined. In this respect,
we then consider them as unknown.
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Figure 2. Orbital evolution of the exoplanets υ And c and υ And d in the case of one single
set of initial conditions among those that have been considered also in Fig. 1 with the particular
choice M1(0) = 0◦ and M2(0) = 120◦ for what concerns the initial values of the mean anomalies.
From top to bottom, the five graphs include the plots of the evolution for the following quantities:
semi-major axes a1 and a2 , eccentricities e1 and e2 , inclinations ι1 and ι2 , difference of the
arguments of the pericentres ω2 − ω1, arguments of the pericentres ω1 and ω2 . The plots in
green refer to the orbital motion of υ And d. The inclinations are evaluated with respect to the
direction of the total angular momentum. In all the abscissas, the year is assumed as unit of
measure of time.

corresponding increasing factor 1/ sin(ι(0)). Starting from each of the initial conditions
defined just above, we have numerically integrated the Hamilton equations describing our
three-body planetary model, by using the symplectic method SBABC3 as it is defined
in Laskar & Robutel (2001) for a timespan of 105 yr, with an integration step of 0.02 yr.
The main results so obtained are summarised in Fig. 1, which highlights that the choice of
the initial values of the mean anomalies affects the orbital dynamics in a very remarkable
way. In fact, the regions that appear with lighter colours in the left panel correspond to
motions that can experience close encounters. Let us recall that the threshold value of
the eccentricity of the outer planet on top of which collisions with the inner planet are
possible can be roughly evaluated as 1 − (a1(0)/a2(0)) 
 0.67 . On the other hand, about
50 % of the colour-grid plot in the left panel is in dark; this means that the maximum value
of the eccentricity of the outer planet looks to be safely below that threshold allowing
close encounters with the inner one. The strong similarity between the two panels of
Fig. 1 clearly suggests that stable configurations are possible when the difference of the
pericentre arguments is in a librational regime, i.e., the orbital motions are such that the
maximum of the half-width of the oscillations concerning with ω1(t) − ω2(t) is less than
180◦. Let us emphasise that this kind of phenomena has already been observed in the
last few years. In fact, the relevance of the impact due to the mean anomalies on the
orbital dynamics of extrasolar systems that are close or in mean motion resonance has
been shown, e.g., in Libert & Sansottera (2013) and Sansottera & Libert (2019).
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In order to make clear the ideas, it can be convenient to have a close look at the
dynamical evolution of most of the orbital elements, for a motion starting form one
single set of initial conditions, that is selected among those considered in Fig. 1. In
particular, the orbital evolution described by the plots included in Fig. 2 refers to M1(0) =
0◦ and M2(0) = 120◦; let us recall that the other values of the initial conditions are taken
from the mid values of Table 1 (for what concerns ι(0), ω(0) and Ω(0) only) and from
Table 2 (for the remaining data). Looking at the plots of the orbital elements one can
appreciate that the orbit is unstable; for any of those plots, the lack of quasi-periodicity
is particularly evident after 50000 yr. From the behaviour of the semi-major axes and
the eccentricities, it is obvious that the outer planet is ejected from the system at the
end of the numerical simulation. Let us also stress that our standard implementation of
the symplectic method SBABC3 usually crashes for all the motions starting from initial
conditions which correspond to regions of lighter colour in the plot of the left panel in
Fig. 1.

Hereafter, we will refer to the three-body planetary problem that has been described
in the present section as the complete model, in order to distinguish it with respect to the
secular one. The latter is an Hamiltonian system which is defined by a suitable procedure
of averaging that will be briefly discussed in the next section.

3. The construction of invariant tori in the secular dynamics of the
υ Andromedæ system as a source of inspiration

The present section is devoted to recall some of the ideas we recently used in order
to successfully construct KAM tori, that are invariant for the secular dynamics of the
υ Andromedæ planetary system and are also in librational regime with respect to the
difference of the pericentre arguments (Caracciolo et al. 2022). Our aim is to explain
in a rather natural way the reasons to introduce our numerical criterion evaluating the
robustness of planetary configurations, that will be properly defined in the next section.

In the case of the secular dynamics of the υ Andromedæ planetary system, the pre-
liminary construction of the normal form for a particular elliptic torus is essential to
be performed before the one constructing the final KAM torus. These two constructive
procedures can be described in an unified way, as we explained in Locatelli et al. (2022).
We defer the reader to those pedagogical notes for all the details about this kind of
(so-called) semi-analytic algorithms, that can be summarised as follows for our goals.

The proof scheme of the KAM theorem can be formulated in terms of a construc-
tive algorithm whose convergence is ensured if some suitable hypotheses are satisfied.
This procedure starts by considering an analytic Hamiltonian function H(0) : A×T

n �→R

(being A⊆R
n an open set) of the form H(0)(p, q) = ν · p+ h(0)(p, q) + εf (0)(p, q), where

n denotes the number of degrees of freedom, ν ∈R
n is an angular velocity vector and

h(0) is at least quadratic with respect to the actions p, i.e., h(0)(p) = O(‖p‖2) for p→ 0.
The term εf (0)(p, q) appearing in H(0) is usually called the perturbing term and it is
made smaller and smaller by the normalisation procedure, which is defined by an infinite
sequence of canonical transformations. This entails that we have to introduce a sequence
of Hamiltonians H(r) that are iteratively defined so that

H(r) = exp
(L

χ
(r)
2

)
exp

(L
χ
(r)
1

)
H(r−1) ∀ r≥ 1 , (3.1)

where the generating functions χ
(r)
1 and χ

(r)
2 are determined in such a way to remove the

part of the perturbation term that is both O(εr) and not dependent on p or linear in p,
respectively. We then say that formula (3.1) defines the r-th normalization step. We stress
that the Lie series operators exp

(L
χ
(r)
2

)
and exp

(L
χ
(r)
1

)
define canonical transformations

when they are applied to the whole set of variables (p, q). This is due to the fact that
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they are given in terms of the Lie derivatives L
χ
(r)
2

L
χ
(r)
1

(which in turn are expressed as

Poisson brackets, i.e., Lgf = {f, g} for any pair of dynamical functions f and g that are
defined on the phase space). The statement of the KAM theorem (see Kolmogorov 1954,
Arnold 1963 and Moser 1962) can be shortly formulated as follows:

if ν is non-resonant enough, h(0) is non-degenerate with respect to the actions p and the
parameter ε is small enough, then there is a canonical transformation (p, q) = Ψ(P ,Q),
leading H(0) in the so called Kolmogorov normal form

K(P ,Q) = ν ·P + O(‖P ‖2) , (3.2)

being K =H ◦ Ψ .
Indeed, the final canonical transformation Ψ is obtained by composing all the canoni-

cal transformations induced by exp
(L

χ
(1)
1

)
, exp

(L
χ
(1)
2

)
, . . . exp

(L
χ
(r)
1

)
, exp

(L
χ
(r)
2

)
. . .

Moreover, one can easily verify that the quasi-periodic motion law t �→ (P (t) = 0 , Q(t) =
Q0 + νt) is the unique solution for the Hamilton equations related to the Kolmogorov
normal form (3.2) with initial conditions (P (0) , Q(0)) = (0 , Q0). Since the canonical
transformations have the property of preserving solutions, then the n-dimensional KAM
torus

{
(p, q) = Ψ(0,Q) , ∀Q∈T

n
}

is invariant with respect the flow induced by the

initial Hamiltonian H(0).

3.1. Preliminaries

As it has been first explained in Locatelli & Giorgilli (2000), the so-called secular
model at order two in the masses can be properly introduced by performing a first step
of normalization, which aims at removing the perturbation terms depending on the fast
revolution angles. In order to set the ideas let us recall that a three-body Hamiltonian
problem has nine degrees of freedom. Three of them can be easily separated because they
describe the uniform motion of the centre of mass in an inertial frame. The nontrivial
part of the dynamics is represented in astrocentric canonical coordinates and its degrees
of freedom can be further reduced by two using the conservation of the total angular
momentum C. As it is shown in section 6 of Laskar (1989), this allows us to write the
Hamiltonian as a function of four pairs of Poincaré canonical variables, that are

Λj =
m0mj

√
G(m0 +mj)aj

m0 +mj
, ξj =

√
2Λj

√
1−

√
1 − e2j cos (ωj) ,

λj =Mj + ωj , ηj =−√2Λj

√
1−

√
1 − e2j sin (ωj) ,

∀ j = 1, 2 . (3.3)

We also recall that the reduction of the total angular momentum makes implicit the
dependence on the orbital elements that are missing in formula (3.3). They are the incli-
nations and the longitudes of the nodes, which are conveniently expressed with respect to
the so-called Laplace invariant plane, that is orthogonal to the total angular momentum
C. However, also the instantaneous values of these two pairs of orbital elements can be
recovered by the knowledge of all the others and the euclidean norm of C. The actions Λ1

and Λ2 (that are conjugate with respect to the mean anomalies λ1 and λ2 , respectively)
are usually expanded around a pair of reference values, namely Λ∗

1 and Λ∗
2. These values

are obtained by replacing the semi-major axes appearing in the corresponding definition
included in formula (3.3) with their initial values a1(0) and a2(0) reported in Table 2.
Thus, after the reduction of the constants of motion, the Hamiltonian describing the
three-body planetary problem can be expressed as a function of four pairs of canonical
variables: L= Λ−Λ∗, λ, ξ and η. We can introduce the secular model at order two in the
masses thanks to the following three operations: we perform a first step of normalization
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aiming to reduce the perturbing part that does not depend on L and does depend on
the angles λ; we put L= 0 (this is made because we expect that the oscillations of the
semi-major axes close to their initial values have negligible effects); we finally average
over the mean anomalies λ (as it is usual, when the analysis is focused on the long-term
evolution of a planetary system). Therefore, we can write our secular Hamiltonian model
as follows:

H(sec)(ξ, η) =

NS/2∑
s=1

h
(sec)
2s (ξ, η) , (3.4)

where h2s is an homogeneous polynomial of degree 2s. This means that the expansion
contains just terms of even degree, as a further consequence of the well known D’Alembert
rules. Let us stress that the canonical variables (ξ, η) appearing in formula (3.4) are
not the ones defined in (3.3), by abuse of notation. Indeed, the former variables are
obtained from the latter ones, by performing the canonical transformation defined by
the normalization step introducing the secular model at order two in the masses. Since
this change of variables differs from the identity, because of a small correction that is of
order one in the masses, then the values of the canonical variables (ξ, η) appearing in
formula (3.4) are quite close to the corresponding ones that are defined in (3.3). These
last comments joined with the remark that both ξj and ηj are O(ej) for ej → 0 ∀ j = 1, 2
(as it can be easily checked by looking at the definition (3.3)) allow us to give a meaning
to the parameter NS , in the sense that H(sec) provides an approximation of the secular
dynamics up to order NS in the eccentricities. On the one hand, in practical applications
one is interested in expansions up to high order in eccentricities†; on the other hand,
the computational effort critically increases with respect to NS . To fix the ideas, in the
case of the υ Andromedæ planetary system we have found that setting NS = 8 is a good
balance between these two different needs that are in opposition to each other.

We have explicitly performed all the computations of Poisson brackets (required by
Lie series formalism to express canonical transformations) and all the expansions briefly
described in the present section, by using Xρóνoς. It is a software package especially
designed for doing computer algebra manipulations into the framework of Hamiltonian
perturbation theory (see Giorgilli & Sansottera 2012 for an introduction to its main
concepts). Such computations also allow an easy visualisation of the secular dynamics
by adopting a classical tool in the context of the numerical investigations: the Poincaré
sections. In fact, we have performed many numerical integrations of the secular model
H(sec) that is defined in (3.4) by simply applying the RK4 method‡.

A few dynamical features of the Hamiltonian model defined by H(sec) are summarised
in the plots reported in Fig. 3. The orbit plotted in red in both panels refers to a set
of initial conditions of the same type with respect to those considered in the previous
Section 2. In detail, the initial values of the mean anomalies have been set so that
M1(0) =M2(0) = 0◦, while the other initial conditions are taken from the mid values of
Table 1 (for what concerns ι(0), ω(0) and Ω(0) only) and from Table 2 (for the remaining
data). Since the Poincaré sections are plotted in correspondence to the hyperplane η2 = 0
(with the additional condition ξ2 > 0) and the canonical variables (ξ, η) appearing in
formula (3.4) are close to those defined in (3.3), then we can assume that on the surface
of section ω2 
 0. In the left panel of Fig. 3, therefore, the difference of the pericentre

† However, it must be taken into account that too large expansions of the secular model intro-
duced here can be meaningless, because the high quality of the approximation in the eccentricities
can be shadowed by the lack of precision with respect to the masses.

‡ It is very well known that long-term numerical integrations of secular models are much
less computationally expensive than those dealing with the corresponding complete planetary
system (see, e.g., Laskar 1988 and the references therein).
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Figure 3. On the left, Poincaré sections that are corresponding to the hyperplane η2 = 0 (with
the additional condition ξ2 > 0) and are generated by the flow of the Hamiltonian secular model

H(sec), given in (3.4) at order two in the masses for the exoplanetary system υ Andromedæ;
the orbit in red refers to the motion starting from initial conditions of the same type of those
considered in Figs. 1–2 with the additional choice of the initial mean anomalies, that have
been fixed so that M1(0) =M2(0) = 0◦. On the right panel, the same orbit in red is shown:
approximately at its centre the symbol + represents the orbit of a one-dimensional elliptic torus
(that reduces to a fixed point in these Poincaré sections). See the text for more details.

arguments ω2 − ω1 is evaluated by the polar angle, whose width is measured, as usual,
with respect to the set of the positive abscissas, i.e., {(ξ1 > 0, η1 = 0)}. Thus, we can
easily appreciate that this angle is librating around 0◦ also in the case of the secular
model, in agreement with the corresponding plots reported in Figs. 1–2, that refer to
the dynamics of the complete planetary system. By taking into account the fact that the
nodes are opposite in the Laplace frame, this means that the pericentres of υ And c and
υ And d are in the so-called apsidal locking regime in the vicinity of the anti-alignment
of the pericentres. It is easy to remark that the Poincaré sections plotted in red (that
are corresponding to the motion starting from the initial conditions we have chosen to
consider) are orbiting around a fixed point, whose presence is also highlighted in the
right panel of Fig. 3. Let us recall that all the Poincaré sections reported in Fig. 3 refer
to the same level of energy, say E, corresponding to the set of the initial conditions we
have previously described. Since H(sec) is a two degrees of freedom Hamiltonian, the
manifold labelled by such a value of the energy will be three-dimensional; in other words,
by plotting the Poincaré sections, we automatically reduce by one the dimensions of the
orbits. This is the reason why a fixed point actually corresponds to a periodic orbit. Since
such a fixed point with positive value of the abscissa is surrounded by closed curves, then
we can argue that such a periodic orbit is linearly stable for what concerns the transverse
dynamics. This means that it can be seen as a one-dimensional elliptic torus. Therefore,
we can conclude that the orbit which intersects the hyperplane η2 = 0 in correspondence
with the red dots is actually winding around a linearly stable periodic orbit, by remaining
in its vicinity. This explains why it can be convenient to adopt a strategy based on two
different algorithms: the first one refers to the elliptic torus (that corresponds to a fixed
point in the Poincaré sections) and provides a good enough approximation to start the
second computational procedure that constructs the final KAM torus (which shall include
also the points marked in red in Fig. 3).

3.2. Construction of the normal form for an one-dimensional elliptic torus

It is now convenient to introduce a new set of canonical coordinates by including
among them also an angle which describes the libration of the difference of the pericentre
arguments, i.e., ω2 − ω1 . For such a purpose, we first introduce a set of action-angle
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variables (J ,ψ) via the canonical transformation

ξj =
√

2Jj cosψj , ηj =
√

2Jj sinψj , ∀ j = 1, 2, (3.5)

being (ξ, η) the variables appearing as arguments of the secular Hamiltonian H(sec)

defined in (3.4). Then, we define a new set of variables (I,ϑ) such that

ϑ1 =ψ1 −ψ2 , ϑ2 =ψ2 , I1 = J1 , I2 = J2 + J1 . (3.6)

In view of the discussion included in the previous subsection, we have that the angle
ϑ1 
 ω2 − ω1 is expected to librate in the model under consideration. We now move to
(new) canonical polynomial variables (x, y) defined as

xj =
√

2Ij cos ϑj , yj =
√

2Ij sin ϑj , ∀ j = 1, 2 . (3.7)

Let us also remark that making Poincaré sections with respect to the hyperplane η2 = 0,
when ξ2 > 0 is equivalent to impose ψ2 = 0, because of the definitions in (3.5). Therefore,
looking at formulæ (3.6)–(3.7), one can easily realise that the drawing in the left panel of
Fig. 3 can be seen as a plot of the Poincaré sections in coordinates (x1 , y1) with respect
to y2 = 0 and with the additional condition x2 > 0. By a simple numerical method, we can
easily determine the initial condition (x	, y	) that is in correspondence with a Poincaré
section and generates a periodic solution. We can now subdivide the variables in two dif-
ferent pairs. The first one is given by (p, q) ∈R×T, i.e., the action-angle pair describing
the periodic motion. Thus, we rename the angle φ2 as q, while the action is obtained by
translating the origin of I2 so that p= I2 −

(
(x	2)2 + (y	2)2

)
/2. For what concerns the sec-

ond pair of canonical coordinates, we start from the polynomial variables (x1, y1) in order
to describe the motion transverse to the periodic orbit. It is now convenient to rescale
the transverse variables (x̄1, y1), being x̄1 = x1 − x	1, in such a way that the Hamiltonian
part which is quadratic in the new variables (x, y) and does not depend on (p, q) is in
the form Ω(0)(x2 + y2)/2. This rescaling can be done by a canonical transformation as
the quadratic part does not have any mixed term x̄1y1 and the coefficients of x̄21 and
y21 have the same sign, because of the proximity to an elliptic equilibrium point. Thus,
since such a quadratic part is in the preliminary form ax̄21 + by21 , it suffices to define the

new variables (x, y) as x= 4
√

a
b x̄1, y= 4

√
b
a y1 . Finally, we introduce the second pair of

canonical coordinates (J, φ) ∈R+ ∪ {0} ×T so that x=
√

2J cos φ and y=
√

2J sin φ.
After having performed all the canonical transformation described above, the

Hamiltonian can be written in the following way:

H(0)(p, q, J, φ) =E(0) + ν(0)p+ Ω(0)J + h(p, J, φ) + εf (0)(p, q, J, φ) , (3.8)

where E(0) is constant (that is close to the energy value of the wanted periodic orbit), ν(0)

and Ω(0) are angular velocities, the function h(p, J, φ) = O(‖(p, J)‖3/2) when the action
vector† (p, J) → 0 and εf (0)(p, q, J, φ) is a generic perturbing term, with ε playing the
role of the small parameter. If such a perturbation is small enough, then it is possible
to successfully perform a normalization algorithm, which allows to construct another
canonical transformation Φ that conjugates the initial Hamiltonian H(0) to H(∞) = H(0) ◦
Φ having the following (normal) form:

H(∞)(P, Q, X, Y ) =E(∞) + ν(∞)P +
Ω(∞)

2

(
X2 + Y 2

)
+ R(P, Q, X, Y ) , (3.9)

where E(∞) is constant, ν(∞) and Ω(∞) are angular velocities and the remainder R is
such that R(P, Q, X, Y ) = o

(|P | + ‖(X, Y )‖2), when (P, X, Y ) → (0, 0, 0). Therefore, one

† Because of the change of coordinates which introduces the canonical pair of variables
(J, φ), i.e., x=

√
2J cos φ and y=

√
2J sin φ, also semi-integer powers of J can appear in the

expansion (3.8) of the Hamiltonian H(0).
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can easily check that

(P (t), Q(t), X(t), Y (t)) =
(
0, Q(0) + ν(∞)t, 0, 0

)
(3.10)

is a solution of the Hamilton equations, since the function H(∞), contains terms of type
O(P 2), O(|P |‖(X, Y )‖) and O(‖(X, Y )‖3) only, except for its main part (that is made
by a constant, a linear term in P and another quadratic in both X and Y ). Because
of this remark, it is evident that the 1D manifold

{
(P, Q, X, Y ) : P = 0, Q∈T, X =

Y = 0
}

is invariant. The energy level of such a solution is equal to E(∞). The elliptical
character is given by the fact that, in the remaining degree of freedom, the transverse
dynamics is given by an oscillatory motion whose period tend to the value 2π/Ω(∞) ,
in the limit of (P, X, Y ) → (0, 0, 0). Of course, this is due to the occurrence of the term
Ω(∞)(X2 + Y 2)/2 which overwhelms the effect of the remainder R in the so-called limit
of small oscillations.

In the case under study, dealing with the exoplanetary system υ Andromedæ, the nor-
malization algorithm can be adapted so as to construct the 1D elliptic torus with a value
of the parameter E(∞) equal to the energy level of the Poincaré sections (Caracciolo et al.
2022). In the right panel of Fig. 3 all the intersections of the corresponding orbit with
the Poincaré surface η2 = 0 are marked with a black cross. Of course, they perfectly
superpose each other in a single fixed point corresponding to the wanted periodic orbit.
In Caracciolo (2021), the normalization algorithm we have adopted to construct elliptic
tori is fully described and its convergence is thoroughly analysed from a theoretical point
of view. In short, such a procedure can be made in strict analogy with the construction of
the Kolmogorov normal form. In fact, it can be formulated in such a way to introduce a
sequence of Hamiltonians H(r) that are iteratively defined by a normalization step that is
mainly composed by three Lie series: the first aims to reduce the perturbation that is not
depending on the actions (p, J); the second achieves the same with the terms proportional

to
√
J ; also the third has the same goal for what concerns the terms that are linear in p

or in J . We remark that in the normal form Hamiltonian H(∞) written in (3.9) we have
expressed the dynamics that is transverse to the 1D elliptic torus in terms of the nor-
malised canonical coordinates (X, Y ) of polynomial type (instead of using action–angle
variables), in order to highlight the existence of the periodic solution (3.10).

3.3. Final construction of the invariant KAM torus

It is now convenient to express also the second pair of canonical coordinates appearing
in the normalised Hamiltonian (3.9) in the form of action–angle variables, i.e., we intro-

duce (I,Θ) so that X =
√

2I cos Θ and Y =
√

2I sin Θ. A very simple canonical change
of variables, i.e.,

p1 = P , q1 =Q , p2 = I − I	 , q2 =Q , (3.11)

is now enough in order to transform the Hamiltonian H(∞) (introduced at the end of the
previous subsection) to H(0)(p, q) = ν · p+ h(0)(p, q) + εf (0)(p, q), that is in a suitable
form to start the classical normalization algorithm that is the base of the proof scheme
of KAM theorem. In a first approximation, the translation constant can be determined
as I	 = (X2

0 + Y 2
0 )/2, where (X0 , Y0) are values of the canonical coordinates (X, Y )

corresponding to the initial conditions. Moreover, as a preliminary step we determine
the angular velocity vector ν by using the frequency analysis method. The choice of I	

can be optimised by applying a Newton method, so as to approach as much as possible
the vector ν (Caracciolo et al. 2022). Fig. 4 highlights that the algorithm constructing
the Kolmogorov normal form (3.2) is successful also for the initial conditions considered
in the present section, i.e., with mean anomalies fixed so that M1(0) =M2(0) = 0◦, while
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Figure 4. On the left, comparisons between the Poincaré sections generated by two different
initial conditions. The first ones are marked in red and are exactly the same as those appearing
in the left panel of Fig. 3 (where they are plotted in red as well). The second ones are marked
in black and correspond to the orbit on the invariant KAM torus. The other “background”
Poincaré sections are defined in the same way as those reported in Fig. 3; in particular, the
dots plotted in blue there are located exactly in the same positions as those marked in orange
here. The black symbol + refers to the orbit of the 1D elliptic torus also here. On the right, the

behaviour of ‖χ(r)
2 ‖ is plotted as a function of the normalization step r.

the other initial conditions are taken from the mid values of Table 1 (for what concerns
ι(0), ω(0) and Ω(0) only) and from Table 2 (for the remaining data). In the left panel
the Poincaré sections that are plotted (in red) during the numerical integration of the
equations of motion related to the Hamiltonian (3.4) perfectly superpose to the orbit
produced by composing all the canonical transformations briefly described in the present
section, which is marked in black. The right panel of Fig. 4 clearly shows the regularity
of the decrease of the norms of the generating functions (which are computed by simply
adding up the absolute values of all the Taylor–Fourier coefficients). This gives a clear
numerical indication of the convergence of the computational procedure in the case under
study dealing with the exoplanetary system υ Andromedæ.

We stress that the importance of the translation constant I	 is crucial. Indeed,
the abundance of the KAM manifolds surrounding an invariant torus is an increasing
function of the inverse of the distance from said torus (as it has been shown, e.g.,
in Morbidelli & Giorgilli 1995). This is in agreement with the rather well known fact
that the small parameter ε, which enters in the definition of the Hamiltonian H(0), is
proportional to the shift value I	 (see, e.g., Giorgilli et al. 2017). Therefore, also the
rate of the exponential decrease of the generating functions depends on I	: the smaller
the latter the faster the former. In other words, we can also say that the invariant tori
surrounding a reference one are more and more robust when the shift value I	 tends to
zero. This means that larger and larger additional perturbing terms are needed in order
to destroy this invariant structure for I	→ 0. Of course, all these remarks still hold true
also when the reference torus (corresponding to I	 = 0) is of elliptic type, as it is in the
case of the periodic orbit (P (t), Q(t), X(t), Y (t)) =

(
0, Q(0) + ν(∞)t, 0, 0

)
that is obvi-

ously invariant with respect to the Hamiltonian flow of the normal form H(∞) written
in (3.9).

4. The criterion of the minimal area as a robustness indicator

4.1. Motivation and definition

In the final discussion at the end of the previous section, we have explained why
the shift value I	 appearing in the canonical transformation (3.11) can be considered
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as a good indicator of the dynamical robustness of an eventually existing KAM torus.
However, such a concept is not easy to use in the context of numerical explorations,
because its computation would require to preliminarily construct the normal forms we
have previously described. Here, we are going to make the effort to reformulate our
approach in a way that is far more handy in view of practical applications.

Firstly, let us remark that from the definition (3.11) it immediately follows that
the shift value I	 has the physical dimensions of an action. Let us also recall that in
Hamiltonian systems having one degree of freedom, the action is usually introduced as
the area contoured by a closed orbit (see, e.g., § 50 of Arnold 1989). Since the action
I = (X2 + Y 2)/2 is a sort of squared distance in the pair of canonical coordinates (X, Y )
which describe the transverse dynamics with respect to the 1D elliptic torus, then it looks
rather natural to transfer the role of robustness indicator from the quantity I	 to the area
enclosed by an orbit in the Poincaré sections. Let us directly refer to Fig. 3 in order to
fix the ideas. We recall that we have adopted the non-normalised canonical coordinates
(ξ, η) to plot those Poincaré sections, instead of (X, Y ) that are much more expensive to
compute. Nevertheless, in the hyperplane η2 = 0 (after having fixed the energy level) the
pair (ξ1 , η1) evidently describes a manifold that is transverse to the 1D elliptic torus,
which is located by a fixed point marked with a black cross in the right panel. Since all
the invariant tori winding around that periodic orbit describe Poincaré sections which
are enclosing each other, then we can assume that the area embraced by the Poincaré
sections is proportional to the distance (in action) from the elliptic torus. Therefore,
by combining all the arguments explained at the end of the previous section with those
discussed at the beginning of the present one, it is natural to assume that an invariant
torus is as more robust as smaller is the area contoured by the corresponding Poincaré
sections.
We now come to the approximated evaluation of such an area. By focusing our attention
on the Poincaré sections marked in red in both panels of Fig. 3, we can say that the
corresponding area is nearly equal to(

max
t

{
ξ1(t)

}− min
t

{
ξ1(t)

}) (
max
t

{
η1(t)

}− min
t

{
η1(t)

})
. (4.1)

Let us recall that ξ1 and η1 are proportional to e1 cos ω1 and e1 sin ω1 , respectively, as
determined by the definitions (3.3). Therefore, we can assume that also the area written
in the formula above is proportional to

A =
[(
e1;max

)2 − (
e1;min

)2]
max
t

∣∣ω1(t) − ω2(t)
∣∣ , (4.2)

where the meaning of the new symbols we have just introduced is e1;max = maxt
{
e1(t)

}
and e1;min = mint

{
e1(t)

}
. Moreover, in order to write the definition of the quantity A

above as an approximation of the action surface written in formula (4.1), we have also
assumed that (by symmetry reasons) both the extremals maxt{ξ1(t)} and mint{ξ1(t)}
are in correspondence with ω1 = 0, while we have evaluated the width maxt{η1(t)} −
mint{η1(t)} with a circular arc centred in the origin (ξ1 , η1) = 0 of the frame of the
Poincaré surface. We remark that the half-width of that arc is evaluated by referring to∣∣ω1(t) − ω2(t)

∣∣, because ω2 is equal to zero in the region of the Poincaré surface with
ξ1 > 0 and we want to evaluate the quantity A for any motion in librational regime with
respect to the difference of the pericentre arguments.

We can summarise all the discussion above by formulating the following
robustness criterion: we assume that a quasi-periodic Hamiltonian motion

describing an invariant torus is as more robust as smaller is the corresponding
quantity A defined in (4.2).
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Figure 5. On the left, colour-code plot of the areaA for different initial values of the inclinations
ι1(0) and ι2(0). See formula (4.2) for the definition of the quantity A. On the right, Table
including the values of the masses and the initial conditions expected to correspond to the most
robust planetary orbit compatible with the observed data available for υ And c and υ And d,
according to the criterion of the minimal area.

It is quite evident that the statement above requires to minimise the area enclosed by
the Poincaré sections, when we look for the most robust orbit originating from a set of
possible initial conditions. For short, hereafter, we will refer to that as the criterion of
the “minimal area”.

4.2. An application to the υ Andromedæ extrasolar planetary system

In spite of the fact that we have constantly referred to a secular model in order to
introduce and motivate our robustness criterion, we emphasise that its formulation is
so flexible that it can be applied also to the study of the complete planetary dynamics
of extrasolar systems. As we have claimed since the Introduction of the present work,
we are going to select a set of initial conditions that is corresponding to an orbital
configuration of the υ Andromedæ three-body model which is extremely stable. In our
opinion, looking for robust invariant tori with a numerical criterion inspired by the secular
dynamics has a twofold meaning. Firstly, they have more chances to persist when the
perturbing effects due to the fast dynamics are taken into account; as we have shown
in Section 2, chaotic motions compatible with the initial conditions are not rare in a
probabilistic sense. Moreover, robust invariant tori describing the orbits υ And c and
υ And d are expected to stay within a dynamically stable region of the phase space also
when the effects due to υ And b and/or υ And e are included in the model.

In order to avoid the extensive study of a grid of initial conditions having a too
high dimensionality, we will split our analysis in three different layers. As a first
step, we consider initial conditions such that the mean anomalies are fixed so that
M1(0) =M2(0) = 0◦, while ω(0) and Ω(0) are taken from the corresponding mid val-
ues of Table 1; moreover, the assumed values of a(0), e(0) and minimal masses come
from Table 2; the initial data are completed by covering the range of values of ι1(0)
and ι2(0) which is reported in Table 1 with a regular grid of 10x10 points. For each of
these 100 initial conditions, we numerically integrate the equations of motion, by using
the symplectic method SBABC3 (also here we adopt the same integrator as in Section 2,
which is described in Laskar & Robutel 2001, with the same total timespan and integra-
tion step, that are 105 yr and 0.02 yr, respectively), and we compute the corresponding
value of the numerical indicator A. The results are reported in the left panel of Fig. 5. A
straightforward application of the minimal area criterion allows us to conclude that the
initial conditions that are expected to correspond to the most robust planetary orbit are
such that

ι1(0) = 6.865◦ , ι2(0) = 25.074◦ , =⇒ m1 = 15.9792MJ , m2 = 9.9578MJ . (4.3)
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Figure 6. On the left, colour-code plot of the area A for different initial values of the mean
anomaliesM1(0) andM2(0). See formula (4.2) for the definition of the quantity A. On the right,
in orange, plot of the Poincaré sections that are corresponding to the hyperplane η2 = 0 (with the
additional condition ξ2 > 0) and are generated by the flow of the complete Hamiltonian model of
the exoplanetary system υ Andromedæ; such a motion is started from the initial conditions listed
in the Table included on the right of Fig. 5. In red, plot of the Poincaré sections generated by
the flow of the secular model H(sec), given in (3.4) and starting from initial conditions generated
by those same values of the orbital elements.

The left panel of Fig. 5 clearly shows a rather surprising result: the most robust configu-
rations correspond to the minimal value of the initial inclination ι1(0) and, thus, to the
maximal value of the υ And c mass (i.e., 
 16MJ). This conclusion is in agreement with
a similar analysis that has been performed in Caracciolo et al. (2022), by studying the
ratio between the norm of the last- and first-computed generating function, among those
reported in a graph analogous to that appearing in the right panel of Fig. 4. The decrease

rate of the sequence of the generating functions {χ(r)
2 }r≥1 (which are defined by the nor-

malization algorithm eventually leading to the final Kolmogorov normal form) has been
been firstly adopted as a robustness indicator starting from Volpi et al. (2018). We stress
that this our new result looks to be rather unexpected when compared with the existing
ones in the scientific literature: none of the four stable (and prograde) orbital configura-
tions reported in Table 3 of Deitrick et al. (2015) is such that the υ And c mass is greater
than 11MJ , that is below the lowest possible value of m1 = 1.91/ sin(ι1(0))MJ , where
1.91MJ is the minimal mass of υ And c taken from Table 2 and its initial inclination
ι1(0) is ranging in the corresponding interval reported in Table 1.

We continue our analysis by studying a second layer. We now consider initial conditions
such that the mean anomalies are still fixed so that M1(0) =M2(0) = 0◦, while a(0),
e(0) are taken from Table 2 and the values of the initial inclinations and masses are as
written in formula (4.3). In this second layer of analysis, the initial data are completed
by covering the range of values of the angles ω(0) and Ω(0) with a regular 4D grid. Since
the uncertainties on the knowledge of both the pericentre arguments and the longitudes
of the node are not so large, we limit ourselves to define a grid which considers for
each of the angles ω1(0), ω2(0), Ω1(0), and Ω2(0) just three possible values that are the
minimum, the mid-point and the maximum of the corresponding values range reported
in Table 1, respectively. For each of the so defined 81 initial conditions, we perform the
same type of numerical integration we have described above. In this case, the application
of the minimal area criterion leads to the conclusion that the initial values of ω and Ω
that are expected to correspond to the most robust orbit are those reported in the Table
included on the right of Fig. 5.

We come now to the description of the third layer of our analysis. In this last case,
we consider the values of the planetary masses m1 , m2 and the initial conditions for the
orbital elements a, e, ι, ω and Ω as they are given in the Table included on the right of
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Figure 7. Orbital evolution of the exoplanets υ And c and υ And d in the case of the single
set of initial conditions which is described in the Table included on the right of Fig. 5.

Fig. 5, while we make the coverage of all the possible initial values of the mean anomalies{(
M1(0), M2(0)

)}∈ [0◦, 360◦] × [0◦, 360◦] by means of a regular 2D grid with a grid-step

of 5◦. Once again, for each of these 722 = 5184 different initial conditions, we perform the
same type of numerical integration we have described above. For all of them, we compute
the quantity A, that is defined in (4.2). The results are reported in the left panel of Fig. 6.
By comparing that colour-code plot with those included in Fig. 1, we can appreciate that
there is good agreement between them: the most robust regions (according to the criterion
of the minimal area) look also well apart from possible collisions (because the eccentricity
of the outer planet does not reach large values) and fairly inside the librational regime
with respect to the difference of the pericentre arguments. The initial values of the mean
anomalies that are expected to correspond to the most robust orbit are the following
ones:

M1(0) = 355◦ , M2(0) = 335◦ . (4.4)

In the right panel of Fig. 6, we have plotted the intersections of the corresponding “most
robust” orbit with respect to the Poincaré hypersurface η2 = 0. Moreover, we have done
the same also for the flow of the Hamiltonian H(sec), which is defined in (3.4), starting
from the corresponding initial conditions

(
ξ(0), η(0)

)
that are computed in terms of the

secular canonical coordinates. The comparison of these two different kinds of Poincaré
sections allows us to conclude that, for what concerns the most robust orbit, the behaviour
of the eccentricities in the case of the complete planetary Hamiltonian should be rather
close to that we can observe in the secular model at order two in the masses.

Fig. 7 describes the dynamical evolution of the exoplanets υ And c and υ And d in the
case of the orbit that we consider as the most robust, according to the analysis we have
widely discussed in the present section. The comparison with the corresponding graphs
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that are reported in Fig. 2 allows us to appreciate that the behaviour has now become
pleasantly quasi-periodic. Of course, this difference is entirely due to our accurate choice
of the initial conditions.

5. Conclusions and perspectives

At the very beginning, our main motivation to start the investigations we have
described in the present paper was essentially of mathematical character. Indeed, our
aim was to select a set of initial conditions corresponding to an invariant KAM torus
whose existence could have been proved rigorously. For such a purpose, the adoption of
an approach based on a Computer-Assisted Proof (hereafter, CAP) is somehow unavoid-
able. In the last few years, the performances of CAPs have been improved so much that
they are able to prove the existence of invariant tori for values of a small parameter
(say, ε) that are amazingly close to the so called breakdown threshold, i.e., the critical
value of ε beyond which the KAM manifold under study disappears (Figueras et al.
2017). For the time being, so-successful results have been obtained for benchmark sys-
tems (mappings with or without additional dissipative terms) that are quite interesting
but intrinsically simple. On the other hand, the application of CAPs to realistic mod-
els of physical interest highlights that there is still a gap to fill in order to approach
the numerical threshold (see, e.g., Calleja et al. 2022 and Valvo & Locatelli 2022; see
also Caracciolo & Locatelli 2020 for the rigorous evaluation of an effective stability time,
with a similar kind of CAP technique). This is the reason for which we were looking for
initial conditions that were not only corresponding to an invariant torus (that could have
been found by applying, e.g., the frequency analysis; see Laskar 2003), but also quite far
from its breakdown threshold (which is somehow depending on the physical parameters
characterising a planetary systems). This has been made with the hope that a rigorous
proof of the existence of such a KAM manifold would have been so relatively easy to
be completed even if the CAP technique we adopted needs further improvements, to be
extensively applied to Hamiltonian models of physical interest. This strategy of ours has
been successful: as it is discussed in Caracciolo et al. (2022), in the case of the secular
dynamics of the υ Andromedæ planetary system we have been able to rigorously prove
the existence of a KAM torus that is travelled by the motion law starting from the initial
conditions we have selected and reported in the Table included on the right of Fig. 5.

In order to solve such a challenging problem, we have introduced a robustness criterion
that we have named “of the minimal area”. The practical implementation of this method
of investigation is computationally inexpensive, making it suitable for extensive studies
of extrasolar systems. Indeed, it just requires a few additional computations during the
numerical integrations of the Hamilton equations, each of them starting from different
initial conditions, that all together should give a reasonable coverage of a data range which
is compatible with the observations. Our robustness criterion is also flexible enough to
be applied jointly with numerical integrations of a complete planetary model or a secular
one without any need of additional efforts for the adaptation. Moreover, the comparisons
reported in the right panel of Fig. 6 shows that in the case of the selected initial conditions
there is a good agreement between the Poincaré sections for the secular model at order
two in the masses and those related to the complete planetary system. Since the fraction
of the chaotic motions is expected to be much more relevant in the latter case than in the
former one (according to the discussions and figures widely commented in Sections 2–3),
this result is not a priori obvious and enforces our confidence in the accuracy of the
secular model, at least in the region where the invariant tori are more robust.

In our opinion, the possible applications of our approach are not limited to problems
which are interesting for reasons that are mainly mathematical. From an astronomical
point of view, we think that the most interesting result described in this work of ours
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concerns with the masses of the planets in the υ Andromedæ system. Our analysis allow
to conclude that configurations with a large mass of υ And c have to be considered
as more probable, because they are more robust In other words, one can expect that
configurations with larger values of the mass of υ And c are within a region that is
extremely stable because it is filled by tori so robust that they can eventually persist
also when other perturbing terms are considered. For instance, additional gravitational
effects could be taken into account, because of the eventual reintroduction of υ And b
and υ And e in the planetary model.

The conclusion we have commented just above could be thought as counter-intuitive,
because one might expect that stability is always gained by decreasing the values of the
planetary masses. On the other hand, the following easy remark could explain such a
situation which appears in contradiction: for fixed values of the semi-major axes and the
eccentricities, in the case of υ Andromedæ system, the configuration that we identify
as the most robust among the possible ones is that reducing as much as possible the
imbalance between the angular momenta† of υ And c and υ And d. It is natural to argue
about the real meaning of such a possible explanation: is this just by chance or is it quite
general that planetary stability is gained by a better balance of the angular momenta?
If the latter statement holds true, under which conditions? We think that there are also
other natural questions about the generality of our approach, which are mainly due to
the fact that our robustness criterion has been devised by studying the secular dynamics
of a planetary three-body problem in an apsidal locking regime. Could it be extended to
systems where the difference of the arguments of the pericentres is in rotation? Could
our approach be significantly adapted to systems hosting more than two exoplanets? In
our opinion, all these questions deserve to be further investigated.
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