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Modular Equations
and Discrete, Genus-Zero Subgroups
of SL(2,R) Containing Γ(N)

C. J. Cummins

Abstract. Let G be a discrete subgroup of SL(2,R) which contains Γ(N) for some N. If the genus
of X(G) is zero, then there is a unique normalised generator of the field of G-automorphic func-
tions which is known as a normalised Hauptmodul. This paper gives a characterisation of normalised
Hauptmoduls as formal q series using modular polynomials.

1 Introduction

Let G be a discrete subgroup of SL(2,R) which contains Γ(N) for some N . The
index of Γ(N) in G is necessarily finite and G acts on the extended upper half plane
H∗ = H ∪ Q ∪ {i∞} (cf. Lemma 3.2). The quotient G \H∗ has the structure of a
compact Riemann surface and will be denoted by X(G). If the genus of X(G) is zero
then there is a unique generator f of the field of G-automorphic functions which is
analytic on H and which has Fourier expansion:

f = q−1/s + a1q1/s + a2q2/s + · · · , q = e2πiz, ai ∈ C, i = 1, 2, . . .

where s ∈ Q>0 is called the width of the cusp at infinity (s is the smallest positive
rational such that the transformation z �→ z + s is in G). This function is called the
normalised Hauptmodul of G.

The aim of this paper is to give a characterisation of these normalised Haupt-
moduls as formal q series using modular polynomials, which are defined as follows:
Given a formal q series of the form

h(q) = q−1 +
∞∑
i=1

aiq
i

with ai ∈ C, i = 1, 2, . . . , a modular polynomial of order n > 1 for h is a polynomial
Fn(x, y) ∈ C[x, y] such that:

(M.1) Fn(x, y) is a monic polynomial of degree ψ(n) = n
∏

p|n
p prime

(1 + 1
p ) in y.

(M.2) For all a, b, d ∈ Z such that ad = n, gcd(a, b, d) = 1 and 0 ≤ b < d,
Fn

(
h(q), h(ζb

d q
a
d )
)
= 0 as formal q1/d series where ζd = e2πi/d.
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Modular Equations 37

It follows from these properties that Fn(x, y) = Fn(y, x) (see [K]). An equivalent,
and sometimes more convenient, property of h(q) is that

∏(
y − h(ζb

d qa/d)
)

is a
polynomial in y and h(q) where the product is taken over all a, b, d ∈ Z such that
ad = n, gcd(a, b, d) = 1 and 0 ≤ b < d.

If h(q) has a modular polynomial of order n then we also say that h(q) satisfies a
modular equation of order n. If the coefficients of h(q) are the Fourier coefficients
of a function f (z) which is analytic on the upper half plane so that f (z) = h(e2πiz)
then we also call Fn(x, y) a modular polynomial for f (z) and say that f (z) satisfies a
modular equation of order n.

Modular equations for the j function, the normalised Hauptmodul for SL(2,Z),
have a long history, see for example [Sh, Section 4.6], [L, Chapter 5 Section 2], [C].
Modular equations for the Hauptmoduls arising in moonshine have also be studied
[Mar, CY].

In [CG] it was shown that normalised Hauptmoduls for discrete, genus-zero sub-
groups of SL(2,R) containing some Γ0(N) and such that the width of the cusp at
infinity is 1, may be characterised by the property of satisfying a modular equation
of order n for all n ≡ 1 (mod N). By a Theorem of Thompson [T] there are only
finitely many such groups.

Theorems 1.1 and 1.2 extend these results to the general case described above. If G
contains Γ(N) then, as is shown in Lemma 1.4, a conjugate of G contains Γ1(N ′) =〈
Γ(N ′),

(
1 1
0 1

)〉
for some N ′ and has width 1 at infinity. So without loss of generality

we can consider the case when G is a discrete, genus-zero subgroup of SL(2,R) which
contains Γ1(N) for some N and such that the width of the cusp at infinity is 1. Unlike
the Γ0(N) case there are infinitely many such groups.

In order to state the main result we introduce some notation. Given a meromor-
phic function f defined on the upper half plane H, let

G( f ) =
{

m ∈ SL(2,R) | f (m(z)
)
= f (z)

}
.

For a positive integer K let XK be the set of positive integers n such that all positive
divisors of n are congruent to 1 modulo K.

Theorem 1.1 Let h(q) = q−1 +
∑∞

i=1 aiqi ai ∈ C, i = 1, 2, . . . be a formal q series
and let K > 0 be an integer. Suppose h(q) satisfies a modular equation of order n for
all n ∈ XK. Then f (z) = h

(
exp(2πiz)

)
is analytic on the upper half plane, G( f ) is a

discrete subgroup of SL(2,R) and

(A) if G( f ) �=
{
±
(

1 t
0 1

) ∣∣∣ t ∈ Z
}

then

(a) G( f ) contains Γ1(N) for some N with N coprime to any element of XK,

(b) G( f ) contains
(

1 k
0 1

)
if and only if k ∈ Z,

(c) the genus of X
(

G( f )
)

is zero,

(d) f is a normalised Hauptmodul for G( f );

(B) if G( f ) =
{
±
(

1 t
0 1

) ∣∣∣ t ∈ Z
}

and the coefficients ai , i = 1, 2, . . . are algebraic

integers, then f (z) = q−1 + ζq with ζdK+1 = ζ where d = 1 if K = 1 and
d = gcd(K − 1, 2)K otherwise.
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Theorem 1.2

(1) If f is a normalised Hauptmodul for a discrete, genus-zero subgroup G of SL(2,R)
satisfying:

(a) G contains Γ1(N) for some N,

(b) G contains
(

1 k
0 1

)
if and only if k ∈ Z,

(c) H is a subfield of Q(ζN ), where H is the field generated over Q by the coeffi-
cients of f ,

then there exists a modular polynomial Fn(x, y) for f of order n for all n ∈ XN .
Also Fn( f , y) is irreducible over C( f ).

(2) Let K > 0 be an integer. If f = q−1 + ζq where ζK+1 = ζ , then there exists a
modular polynomial for f of order n for all n ∈ XK.

It should perhaps be noted that in [CG] it was shown that in the case of Haupt-
moduls for groups containing Γ0(N) it is possible to introduce “generalised” modu-
lar polynomials Fn(x, y) when n �≡ 1 (mod N). In general this does not seem to be
possible. See Section 3 for a discussion of this point.

The results of [CG] were motivated by Borcherds’ proof [BR] of the moonshine
conjectures of Conway and Norton [CN]. The denominator formula for the Monster
Lie algebra implies that the Monstrous moonshine functions satisfy modular equa-
tions of order n for all n coprime to the order of the Monster group and so these
functions are normalised Hauptmoduls. In generalised [N] and modular moonshine
[BR] it is more difficult to show that the functions which arise are Hauptmoduls and
part of the motivation for this paper is to give weaker conditions under which formal
series are known to be Hauptmoduls. It seems probable that further progress can be
made in this direction. Cohn and McKay [CM] have used a computer to find all the
formal series of the form given in Theorem 1.1 which satisfy modular equations of
order 2 and 3 with the restriction that the coefficients are rational integers. Based
on this they conjecture that given any two primes p1 and p2 there are only finitely
many series which satisfy modular equations of order p1 and p2. Theorems 1.1 and
1.2 suggest a more precise conjecture:

Conjecture 1.3 Let h(q) = q−1 +
∑∞

i=1 aiqi ai ∈ C, i = 1, 2, . . . be a formal q series
and let p1 and p2 be any two distinct primes. Suppose h(q) satisfies modular equations
of order p1 and p2. Then f (z) = h

(
exp(2πiz)

)
is analytic on the upper half plane,

G( f ) is a discrete subgroup of SL(2,R) and

(A) if G( f ) �=
{
±
(

1 t
0 1

) ∣∣∣ t ∈ Z
}

then

(a) G( f ) contains Γ1(N) for some N with p1 and p2 coprime to N,

(b) G( f ) contains
(

1 k
0 1

)
if and only if k ∈ Z,

(c) the genus of X
(

G( f )
)

is zero,

(d) f is a normalised Hauptmodul for G( f );

(B) if G( f ) =
{
±
(

1 t
0 1

) ∣∣∣ t ∈ Z
}

then f (z) = q−1 + ζq with ζgcd(p1−1,p2−1)+1 = ζ .
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We conclude this introduction with the Lemma mentioned above: Let 12 denote
the identity 2 × 2 matrix and for any subgroup G of SL(2,R) define G∞ to be the
subgroup of G which fixes i∞.

Lemma 1.4 If G is a discrete subgroup of SL(2,R) which contains Γ(N) for some N
then G is conjugate to a group G ′ which contains Γ1(N ′) for some N ′ and such that the
width of the cusp i∞ is 1.

Proof By [Sh Proposition 1.17], G∞ =
〈

(G ∩ {±12}),
(

1 h
0 1

)〉
, with h ∈ R. As(

1 N
0 1

)
∈ G we have h = N/t ∈ Q , for some t ∈ Z. Let α =

(
N/t 0

0 1

)
, so

(α−1Gα)∞ =
〈

(G ∩ {±12}),
(

1 1
0 1

)〉
and α−1Gα ⊇ α−1Γ(N)α ⊇ Γ(tN2). Since

Γ1(tN2) is generated by Γ(tN2) and
(

1 1
0 1

)
the result follows.

Acknowledgements I thank Terry Gannon for many useful comments.

2 Proof of Theorem 1.1

Mahler [Mah, Theorem 8] has shown that if h(q) satisfies a modular equation for
some prime p, then it is the Laurent expansion of a meromorphic function defined
in some neighbourhood of q = 0. Kozlov [K, Proposition 3.3, see also CG Section 2]
shows that if h(q) satisfies a modular equation of order p for infinitely many primes
p, then it is the Laurent expansion of a function analytic on the interior of the unit
disc |q| < 1, except for a pole at q = 0 and so if h(q) is a formal q series satisfying the
hypotheses of Theorem 1.1 then f (z) = h

(
exp(2πiz)

)
is an analytic function on the

upper half plane. This shows the first part of Theorem 1.1.
In outline the proof of Theorem 1.1B is similar to the corresponding result of

[CG]. In particular the results of Sections 2, 3 and 4 of [CG] require only that f (z)
satisfies a modular equation for infinitely many primes and so these results continue
to hold in the case under consideration. It follows from these results that f has the
following property (P): if z1, z2 ∈ H and f (z1) = f (z2) then there exists g ∈ G( f )
such that g(z1) = z2. The next step is to show that G( f ) contains some Γ1(N). The
key result is the following [cf. CG Proposition 5.1]:

Proposition 2.1 Let G be a subgroup of SL(2,R) and K be a positive integer. Suppose

(1) G is a discrete subgroup.
(2) G∞ =

〈
−12,

(
1 1
0 1

)〉
.

(3) For all n ∈ XK and all m =
(

a b
c d

)
∈ G, there exist integers 
 and k such that 
|n,

0 ≤ −k < n/
 and such that

(2.1)
(

n 0
0 1

) (
a b
c d

) (

 −k
0 n/


)−1
=
(

na/
 ka+
b
c/
 (kc+
d)/n

)

is in G.

Then either G =
〈
−12,

(
1 1
0 1

)〉
or G contains±Γ1(N) where K|N.
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Proof For any discrete subgroup G of SL(2,R) there is an r > 0 such that if m =(
a ′ b ′

c ′ d ′
)
∈ G and c ′ �= 0 then |c ′| > r (see [Sh, p. 11]). We shall use the following re-

sult which follows from the proof of [CG, Lemma 5.7 c]: If G satisfies the hypotheses
of this proposition and G contains an element

( a ∗
c pd

)
where p ∈ XK is a prime such

that |c|/r < p then G contains an element of the form
( pa ∗

c d

)
.

If all m ∈ G fix i∞ then G =
〈
−12,

(
1 1
0 1

)〉
. Otherwise, using an identical ar-

gument to the start of the proof of [CG, Proposition 5.1], G contains m =
(

a b
c d

)
∈

G ∩ SL(2,Z) such that K|c, c �= 0, c coprime to any element of XK and d ≡ 1
(mod K).

As c and d are coprime, by considering m
(

1 kK
0 1

)
for a suitable choice of k we

find, by Dirichlet’s Theorem, that G contains g =
( a ∗

c p

)
with p a prime with p ≡ 1

(mod K) and p > |c|/r. Thus G contains
( ap ∗

c 1

)
. All operations used preserve

determinants, hence, pre-multiplying by a suitable translation, we see that G contains(
1 0
c 1

)
.

Consider any nonzero a, b ∈ Z with gcd(a, bc) = 1 and a ≡ 1 (mod c) and hence
a ≡ 1 (mod K) since K|c. Choose any prime q > |bc|/r, such that q ≡ a (mod bc).
Then q ∈ XK . From above G ∩ SL(2,Z) contains

(
1 0
bc 1

)
and so by post-multiplying

by a suitable translation G ∩ SL(2,Z) also contains an element of the form
(

1 ∗
bc q∗

)
.

Again using the result at the start of this proof, G ∩ SL(2,Z) contains an element of
the form

( q ∗
bc ∗

)
and hence also

(
a ∗
bc ∗

)
. As these matrices together with

(
1 1
0 1

)
(and if

|c| = 1,
(

0 −1
1 1

)
) are a complete set of coset representatives for the subgroup

〈(
1 1
0 1

)〉
in Γ1(c) the result follows with N = c.

Proof [(of Theorem 1.1A)] The proof of [CG, Lemma 7.1] shows that G( f ) is a
discrete subgroup of SL(2,R). Thus by [Sh Proposition 1.17] G∞ =

〈
±
(

1 h
0 1

)〉
and as f has a simple pole at infinity we have G∞ =

〈
±
(

1 1
0 1

)〉
. So if G �= G∞

then G contains an element m =
(

a b
c d

)
with c �= 0. From Proposition 2.1 and

[CG Lemma 7.1] G( f ) contains Γ1(N) for some N , with K|N and N coprime to any
element of XK .

Thus f (z) gives rise to a function f̂ on X(G) that is analytic except possibly at the
cusps. At the cusp corresponding to infinity f̂ has a simple pole. By property (P) (see
above) at the other cusps, if any, f̂ is bounded and hence has removable singularities.
It follows that f is an automorphic function. Again by property (P) f̂ maps X(G)
isomorphically to a subset of the Riemann sphere and since X(G) is compact this
must be the whole of the Riemann sphere. Thus the genus of X(g) is zero and f is a
Hauptmodul for G, as required.

To prove Theorem 1.1B we need the following:

Lemma 2.2 Let f and K be as in as in Theorem 1.1 and suppose G( f ) is trivial (i.e.
consists only of translations by integers) and that all the coefficients ai of f are algebraic
integers. Then f (z) = q−1 +ζq where ζdK+1 = ζ , q = exp(2πiz) where d = 1 if K = 1
and d = gcd(K − 1, 2)K otherwise.

Proof If f = q−1 then we are done, so assume otherwise. The same proof as in [CG:
Proposition 7.2] shows that f (z) = q−1 + ζq with |ζ| = 1, q = exp(2πiz). For any
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prime p ≡ 1 (mod K) the sum of the zeros of the modular equation Fp

(
f (z), x

)
=

0 is a polynomial in f (z). This gives

1/qp + ζqp = Qp, f ( f )

where Qp, f is the unique polynomial such that

Qp, f

(
f (q)
)
= q−p + terms of positive degree

Comparing the coefficients of qp shows that ζ p = ζ . If K = 1 then we have ζ2 =
ζ3 = 1 and so ζ = 1 as require. If K > 1 then by Dirichlet’s Theorem there is
some integer r such that p = rdK + 1 with p a prime. Since dK is even there is
an integer t such that gcd(r, t) = 1 and tdK + 1 ≡ −1 (mod 
) for all (necessarily
odd) primes 
 such that 
|r and 
 � dK and hence gcd(rdK, tdK + 1) = 1. So again
by Dirichlet’s Theorem there is an integer r ′ such that p ′ = r ′(rdK) + tdK + 1 is a
prime. Since p, p ′ ∈ XK we have ζrdK = ζr ′rdK+tdK = 1 and hence ζdK = 1, since
gcd(r, r ′r + t) = 1, as required.

This completes the proof of Theorem 1.1B.

3 Proof of Theorem 1.2

In this section if m is a nonsingular 2 × 2 integer matrix with positive determinant
then 〈m〉 will denote the corresponding element of PGL(2,Q)+. For any such m we
have m = λm ′ where m ′ is a primitive integer matrix and m ′ is unique up to a sign.
Write |m| = det(m ′).

For any positive integer n define A(n) = {
〈

a b
0 d

〉 ∣∣∣ ad = n, gcd(a, b, d) = 1, 0 ≤

b < d}. Also fix βn = 〈 1 0
0 n 〉.

Let FN be the field of automorphic functions of Γ(N) with Fourier coefficients in
Q(ζN) (See [Sh, Chapter 6]). For n coprime to N , ∗n will denote the Galois auto-
morphism of Q(ζN) such that ζN ∗ n = ζn

N . In the rest of this section f will be a
non-constant element of FN and f ∗ n will be the function obtained by applying ∗n
to the Fourier coefficients of f . Where no confusion can arise we shall write G for
G( f ) and G ∗ n for G( f ∗ n).

For proofs of the following two Lemmas see [CG; Section 6]:

Lemma 3.1 G is a discrete subgroup of SL(2,R) which containsΓ(N) with finite index.

Lemma 3.2 There is a group homomorphism φ : G → PGL(2,Q)+ with ker(φ) =
{±12}. Ḡ = φ(G) is a discrete subgroup of PGL(2,Q)+.

Let T =
{(

1 t
0 1

)
∈ SL(2,R) | t ∈ Z

}
and T̄ = φ(T). For each integer a coprime to

N fix an element σa ∈ SL(2,Z) such that σa ≡
(

a−1 0
0 a

)
(mod N). For α =

〈
a b
0 d

〉
∈

A(n) we also write σα for σa.

Proposition 3.3 Let n be any integer coprime to N. If G contains Γ1(N), then the
following are equal:
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(1)
⋃
α∈A(n) Ḡσαα

(2)
⋃
α∈A(n) T̄ασαG ∗ n

(3)
⋃
α∈A(n) T̄σ ′ααG ∗ n

(4) Γ̄1(N)βnG ∗ n.

where σ ′a ∈ SL(2,Z) also satisfies σ ′a ≡
(

a−1 0
0 a

)
(mod N), but is not necessarily equal

to σa.

Proof We begin by showing that these sets are equal when G ∗ n and G are replaced
by Γ1(N). The equality

(3.1).
⋃

α∈A(n)

Γ1(N)σαα = Γ1(N)βnΓ1(N)

follows from [Sh, Propositions 3.36 and 3.32(1)] and the observation that a matrix(
a b
0 d

)
with ad = n, a > 0, has the same elementary divisors as β iff gcd(a, b, d) = 1.

Shimura’s Propositions also show that the two sets are equal to:

∆ =
{
α =
(

a b
c d

)
∈ M2×2(Z) |

det(α) = n, a ≡ 1 (mod N), c ≡ 0 (mod N), gcd(a, b, c, d) = 1
}
.

From the definition of σa it follows that
⋃

α∈A(n)

T̄ασαΓ1(N) ⊆ ∆ =
⋃

α∈A(n)

Γ1(N)σαα.

Conversely for any α ∈ A(n) and γ1 ∈ Γ1(N) we have from [CG, Proposition 6.8]
that γ1σαα = tα ′γ0 for some t ∈ T̄, α ′ ∈ A(n) and γ0 ∈ Γ0(N). Reducing modulo
N we find that γ0 = σα ′γ

′
1 for some γ ′1 ∈ Γ1(N). This establishes the equality
⋃

α∈A(n)

Γ1(N)σαα =
⋃

α∈A(n)

T̄ασαΓ1(N)

Again from [CG, Proposition 6.8] we have that for any α ∈ A(n), ασα = γα ′

for some γ ∈ Γ0(N) and α ′ ∈ A(n). Reducing modulo N we find that we can

write γ = tσ ′α ′ for some translation t and σ ′α ′ ≡
(

a ′−1 0
0 a ′

)
(mod N). This shows

⋃
α∈A(n) T̄ασαΓ1(N) ⊆

⋃
α∈A(n) T̄σ ′ααΓ1(N) and the reverse inclusion again follows

from the fact that
⋃
α∈A(n) T̄σ ′ααΓ1(N) ⊆ ∆.

To show equality in the general case, choose any α ∈ A(n) and g ∈ Ḡ. By equation
(3.1) we know gσαα = ghβnh ′ for some h, h ′ ∈ Γ1(N). By [CG, Lemma 6.4] we may
write gh ∈ Ḡ as h ′ ′m where m =

〈
a nb
nc d

〉
, with

(
a nb
nc d

)
a primitive integer matrix and

h ′′ ∈ Γ1(N). Now mβn = βnm ′ where m ′ =
〈

a n2b
c d

〉
∈ G ∗ n by [CG, Corollary 6.7].

Thus we have shown that
⋃

α∈A(n)

Ḡσαα ⊂ Γ1(N)βnG ∗ n,
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where we absorbed the h ′ because, by an argument identical to the proof of [CG,
Corollary 6.6 b], Γ1(N) ⊆ G ∗ n. The reverse inclusion follows by identical argu-
ments. Finally, the equalities

⋃
α∈A(n)

T̄ασαΓ1(N) =
⋃

α∈A(n)

T̄σ ′ααΓ1(N) = Γ1(N)βnΓ1(N),

have been established above and multiplying on the right by G ∗ n gives the general
result.

Corollary 3.4 Let n be any integer such that every prime divisor of n is congruent to 1
modulo N. If G contains Γ1(N), then the following are equal:

(1)
⋃
α∈A(n) Ḡα

(2)
⋃
α∈A(n) T̄αḠ

(3) Γ̄1(N)βnḠ.

Proof Clear.
To complete the proof of Theorem 1.2 define

Fn(y) =
∏

α∈A(n)

(y − f ◦ α)

Using Corollary 3.4 and the same proofs as in [CG, Propositions 6.16, 6.17 and 6.18],
we obtain the following two results:

Proposition 3.5 If n is such that every prime divisor of n is congruent to 1 modulo
N and f ∈ FN is a normalised Hauptmodul for a group containing Γ1(N) then the
polynomial Fn(y) has coefficients in H[ f ] and is irreducible over C( f ).

Proposition 3.6 With f and n as in Proposition 3.6, Fn(x, y) is a modular polynomial
for f .

This completes the proof of Theorem 1.2 1. The proof of Theorem 1.2 2 is essen-
tially identical to the proof of [CG, Theorem 1.4 2].

In general it does not appear to be possible to define “generalised” modular poly-
nomials. A natural candidate is

∏
α∈A(n)

(y − f ◦ σαα)

However, consider the case when f (z) is the normalised Hauptmodul for Γ1(5) and
n = 2. We can take σ2 =

(
2 1
5 3

)
. It is not difficult to see that the three roots, f (σ22z),

f (z/2) and f
(

(z + 1)/2
)

are distinct and so by Proposition 3.3 Γ1(5) ∗ 2 = Γ1(5)
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permutes these zeros and so the symmetric functions of the roots are automorphic
functions forΓ1(5). The symmetric function s1(z) = f (σ22z)+ f (z/2)+ f

(
(z+1)/2

)
has no pole at i∞. So if we can write it as a polynomial in some (unnormalised)
Hauptmodul for Γ1(5), w(z) say, then w(z) is finite at i∞. But the symmetric func-
tion s2(z) = f 2(σ22z) + f 2(z/2) + f 2

(
(z + 1)/2

)
has a pole at i∞. So it cannot

be written as a polynomial in w(z). Thus there is no choice of an (unnormalised)
Hauptmodul w(z) such that the coefficients of

∏
α∈A(2)(y − f ◦ σαα) can be written

as polynomials in w(z).

Using some computer algebra we can be more explicit in this example. Set g(z) =
η(z)6

η(5z)6 + 6, which is the normalised Hauptmodul for Γ0(5). Then g(z) = f (z) −

1/
(

f (z) + 5
)

. Let

F2(x, y) = y3 − y2(x2 − 30)−
(−1426 + 10 x3 + 40 x2 − 335 x)y

x + 5

−
−1060 x− 4030 + 25 x3 + 74 x2

x + 5

and define w(z) = −1/
(

f (z) + 5
)
− 5 = f (σ2z), which is an unnormal-

ised Hauptmodul for Γ1(5). Then F2

(
w(z),w(2z)

)
= F2

(
w(z), f (z/2)

)
,

F2

(
w(z), f

(
(z+1)/2

))
= 0 and so

(
y−w(2z)

) (
y− f (z/2)

)(
y− f
(

(z+1)/2
))
=

F2

(
w(z), y

)
. So the symmetric functions of the roots are rational functions of w(z)

even though the trace term is a polynomial.
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