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Abstract. We prove, using purely combinatorial methods, that there is a pairing

Syma�2 × Syma�2 −→ �

with an M2(�)-equivariance property.
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1. Introduction. In associating the Galois representations to modular eigenforms
of weight k, one considers étale cohomology of modular curves with coefficients that
are essentially �-adic sheaves Symk−2�2

�. In order to prove properties of the Galois
representations, we need to know as much as possible about these cohomology groups.
It was asserted by Taylor [4, p. 270] that there is an explicit pairing 〈 , 〉 : SymaR2 ×
SymaR2 −→ R for any ring R with the property that 〈xα, yα〉 = det(α)a〈x, y〉, where
α ∈ M2(R) has an induced right action on the symmetric power module. This was used
there (and elsewhere) to give an explicit Poincaré duality on the étale cohomology
groups, leading to a clearer understanding of the Galois representations.

However, as Kevin Buzzard pointed out to the author, the pairing defined by
Taylor [4] does not actually satisfy the asserted property. In this note, we alter Taylor’s
definition slightly, and show, using entirely elementary combinatorial methods, that
the desired property holds, at least if the ring has characteristic 0. Jordan and Livné [2,
Corollary 2.16] also seem to prove the existence of such a pairing, using properties of
quaternion algebras, but the proof we give is rather more explicit, as well as elementary.

This result repairs the gap in [4] so that the results there are now valid for
characteristic 0 and also all but finitely many finite characteristics. The result was used
in the PhD thesis of the author’s student Crane [1], where level raising was considered
for the Galois representations over totally real fields; this level raising is also treated in
a recent work of Kisin [3].

2. The main theorem. For the moment, we will let R denote a �-algebra so that
every number is invertible. We let R2 have standard basis {e1, e2}. Then there is an
obvious action of a matrix α = (

α11 α12
α21 α22

) ∈ M2(R) on R2, which we write on the right (as
in [4]); the basis element e1 = (1 0) is mapped to (α11 α12) = α11e1 + α12e2, and similarly
e2 is mapped to α21e1 + α22e2. This action induces an action on SymaR2, where we take
the standard basis {e⊗a

1 , e⊗a−1
1 ⊗ e2, . . . , e⊗a

2 }; the basis element e⊗i
1 ⊗ e⊗a−i

2 is mapped
to (α11e1 + α12e2)⊗i ⊗ (α21e1 + α22e2)⊗a−i, and we extend this linearly to all elements of
SymaR2. (One can think of SymaR2 as homogeneous polynomials of degree a, spanned
by xa, xa−1y, . . . , ya.)
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Define the matrix W to be the (a + 1) × (a + 1)-matrix, where we index the rows
and columns from 0, . . . , a, by

Wij =
{

0, if i + j �= a
(−1)i

(a
i

)−1
, if i + j = a

.

Define the pairing

SymaR2 × SymaR2 −→ R

(x, y) 	→ xWyt,

where, as above, we think of elements as row vectors with respect to the standard basis.
With this notation, we claim that this pairing satisfies the required property.

THEOREM 2.1. Let x, y ∈ SymaR2. Then for any matrix α = (
α11 α12
α21 α22

) ∈ M2(R),

〈xα, yα〉 = det(α)a〈x, y〉.

Proof. Let us write A for the (a + 1) × (a + 1)-matrix giving the action of α on
SymaR2 with respect to the standard basis.

A short, elementary calculation shows that Akl is given by

a∑
t=0

(
a − k

t

)(
k

l − t

)
αa−k−t

11 αt
12α

k+t−l
21 αl−t

22 ,

where we again index rows and columns from 0 to a. Then the claim is equivalent to

AWAt = daW,

where d = det α = α11α22 − α12α21.
It is easy to see, however, that this equality is equivalent to the equality AtW−1A =

daW−1. It therefore suffices to prove something similar for the transpose matrix. The
entries of W−1 are just like those of W except that the klth entry is (−1)a−k

(a
k

)
if

k + l = a.
We need to see that if i + j �= a, then the ijth entry of AtW−1A vanishes, and if

i + j = a, then the ijth entry is da(−1)a−i
(a

i

)
.

Using the expression for Akl, a calculation gives the ijth entry of AtW−1A to be

a∑
r=0

αa−r
11 αr

12α
a+r−i−j
21 α

i+j−r
22

[
a∑

m=0

(−1)a−m
(

a
m

) a∑
s=0

(
a − m

s

)(
m

i − s

)(
m

r − s

)(
a − m

j + s − r

)]
.

Write the term αa−r
11 αr

12α
a+r−i−j
21 α

i+j−r
22 as αa

11α
a−i−j
21 α

i+j
22 zr, where z is α12α21

α11α22
.

Then our sum can be rewritten as

αa
11α

a−i−j
21 α

i+j
22

a∑
m=0

(−1)a−m
(

a
m

) a∑
r=0

a∑
s=0

zr
(

a − m
s

)(
m

i − s

)(
m

r − s

)(
a − m

j + s − r

)
,
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or, writing t = r − s,

αa
11α

a−i−j
21 α

i+j
22

a∑
m=0

(−1)a−m
(

a
m

) a∑
t=0

a∑
s=0

zs+t
(

a − m
s

)(
m

i − s

)(
m
t

)(
a − m
j − t

)
.

It is easy to see that the inner double sum is just the coefficient of xiyj in the product
(1 + xz)a−m(1 + x)m(1 + yz)m(1 + y)a−m. Therefore the sum

a∑
m=0

(−1)a−m
(

a
m

) a∑
t=0

a∑
s=0

zs+t
(

a − m
s

)(
m

i − s

)(
m
t

)(
a − m
j − t

)

is the coefficient of xiyj in

a∑
m=0

(−1)a−m
(

a
m

)
(1 + xz)a−m(1 + x)m(1 + yz)m(1 + y)a−m

= [(1 + x)(1 + yz) − (1 + xz)(1 + y)]a

by the binomial formula. But

(1 + x)(1 + yz) − (1 + xz)(1 + y) = (1 − z)(x − y),

so the coefficient of xiyj in [(1 + x)(1 + yz) − (1 + xz)(1 + y)]a is the same as the
coefficient of xiyj in (1 − z)a(x − y)a. But clearly there are no terms except in degree a,
so unless i + j = a, the sum vanishes, as required.

If i + j = a, the sum

αa
11α

a−i−j
21 α

i+j
22

a∑
m=0

(−1)a−m
(

a
m

) a∑
t=0

a∑
s=0

zs+t
(

a − m
s

)(
m

i − s

)(
m
t

)(
a − m
j − t

)

becomes the coefficient of xiyj in

αa
11α

a
22(1 − z)a(x − y)a.

But

1 − z = 1 − α12α21

α11α22
= α11α22 − α12α21

α11α22
= d

α11α12
,

so that αa
11α

a
22(1 − z)a is just da, and we need the coefficient of xiyj in da(x − y)a, namely

da(−1)a−i
(a

i

)
, which is da multiplied by the ijth entry of W−1, exactly as required. �

REMARK 2.2. We stated this as a result for �-algebras, for simplicity. We only
require that the binomial coefficients

(a
0

)
,
(a

1

)
, . . . ,

(a
a

)
should be invertible in R. Since

no prime greater than a divides any of these binomial coefficients, we see that the result
holds for any ring R in which primes up to a are invertible. In particular, the claim holds
if R is any field of characteristic greater than a. (We should remark that Taylor [4] uses
this claim only for rings that have this property, and the results of his paper therefore
remain valid.)

Now that we know that the identity for AtW−1A holds, the equivalent result for
AWAt implies the following identity for binomial coefficients: If the numbers a, i, j
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and r are given, with 0 ≤ r ≤ a, then

a∑
m=0

(−1)m(a
m

)
[

a∑
s=0

(
a − i

s

)(
i

m − s

)(
a − j

a + r − i − j − s

)(
j

i + j + s − r − m

)]
,

or, equivalently, its obvious rearrangement

a∑
s=0

(
a − i

s

)(
a − j

a + r − i − j − s

) [
a∑

m=0

(−1)m(a
m

) (
i

m − s

)(
j

i + j + s − r − m

)]
,

is equal to 0 if i + j �= a, and if i + j = a, it is

(−1)i+r

(a
r

)
(a

i

) = (−1)i+r i!j!
r!(a − r)!

.

This follows because this is a coefficient of one of the monomials in the ijth entry of
AWAt.
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