Effect of a high-fat–high-fructose diet, stress and cinnamon on central expression of genes related to immune system, hypothalamic–pituitary–adrenocortical axis function and cerebral plasticity in rats

Nathalie Marissal-Arvy1,2*, Cécile Batandier3, Julien Dallennes1,2, Frédéric Canini4,5, Laurent Poulet4,5, Karine Couturier3, Isabelle Hining-Favier3, Marie-Pierre Moisan1,2, Anne-Marie Roussel3 and Pierre Mormède1,2†

1INRA, Laboratory of Nutrition and Integrative Neurobiology, UMR 1286, Pharmacy Building 2nd Floor, 33076 Bordeaux Cedex, France
2University of Bordeaux, Laboratory of Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux Cedex, France
3LBFA/INSERM, U1055, BP 53X, 38041 Grenoble Cedex, France
4IRBA-CRSSA, Unité de Neurophysiologie du stress, 38702 La Tronche Cedex, France
5Ecole du Val de Grâce, 1 place Laveran, 75005 Paris, France

(Submitted 4 December 2012 – Final revision received 10 September 2013 – Accepted 11 September 2013 – First published online 20 November 2013)

Abstract
The intake of a high-fat/high-fructose (HF/HFr) diet is described to be deleterious to cognitive performances, possibly via the induction of inflammatory factors. An excess of glucocorticoids is also known to exert negative effects on cerebral plasticity. In the present study, we assessed the effects of an unbalanced diet on circulating and central markers of inflammation and glucocorticoid activity, as well as their reversal by dietary cinnamon (CN) supplementation. A group of male Wistar rats were subjected to an immune challenge with acute lipopolysaccharide under a HF/HFr or a standard diet. Another group of Wistar rats were fed either a HF/HFr or a control diet for 12 weeks, with or without CN supplementation, and with or without restraint stress (Str) application before being killed. We evaluated the effects of such regimens on inflammation parameters in the periphery and brain and on the expression of actors of brain plasticity. To assess hypothalamic–pituitary–adrenocortical axis activity, we measured the plasma concentrations of corticosterone and the expression of central corticotrophin-releasing hormone, mineralocorticoid receptor, glucocorticoid receptor and 11β-hydroxysteroid dehydrogenase. We found that the HF/HFr diet induced the expression of cytokines in the brain, but only after an immune challenge. Furthermore, we observed the negative effects of Str on the plasma concentrations of corticosterone and neuroplasticity markers in rats fed the control diet but not in those fed the HF/HFr diet. Additionally, we found that CN supplementation exerted beneficial effects under the control diet, but that its effects were blunted or even reversed under the HF/HFr diet. CN supplementation could be beneficial under a standard diet, but deleterious under the unbalanced diet encountered in Western societies.

Key words: High-fat diets: Inflammation: Neurogenesis: Synaptogenesis

Nutritional overload of fat and refined carbohydrates contributes to the development of obesity and insulin resistance. Other medical consequences can be associated with visceral obesity, such as CVD[1], type 2 diabetes[2], cancer[3] and cognitive deficiencies[4,5], making its prevalence in Western countries a serious public health concern. The association of these diseases with obesity is well documented, but the biological connection between them is still under debate. The major experimental studies focusing on the association between diets and these diseases have been carried out using high-fat diets. However, during the last decade, public health campaigns have led to a decline in the intake of fat and there has been an increase in the intake of refined sugars high in fructose. This increase in the intake of refined sugars high in fructose appears to be an important factor for the

Abbreviations. 11β-HSD, 11β-hydroxysteroid dehydrogenase; BDNF, brain-derived neurotrophic factor; C, control; CN, cinnamon; DlGap2, discs, large (Drosophila) homolog-associated protein 2; GpI30, glycoprotein 130; GR, glucocorticoid receptor; HF/HFr, high-fat/high-fructose; HPA, hypothalamic–pituitary–adrenocortical axis; IL-1R, IL-1 receptor; ITGAM, integrin-αM; LPS, lipopolysaccharide; MR, mineralocorticoid receptor; NGF, nerve growth factor; qPCR, quantitative PCR; Str, stress; SYP, synaptophysin; TGF, transforming growth factor; TNF-R, TNF receptor 1.

*Corresponding author: N. Marissal-Arvy, fax +33 55 757 1227, email nathalie.arvy@bordeaux.inra.fr
† Present address: Laboratoire de Génétique Cellulaire, INRA, UMR444, 31 326 Castanet-Tolosan Cedex, France.
Effect of diet, stress and cinnamon in rats

Some cytokines, TNF-α, IL-1β and IL-6, partly secreted by visceral fat, could be involved in the development of obesity and related diseases, including the innate immune system and the hypothalamic–pituitary–adrenocortical (HPA) axis, in rats.

Some cytokines, TNF-α, IL-1β and IL-6, partly secreted by visceral fat, could be involved in the development of obesity and related diseases, including the innate immune system and the hypothalamic–pituitary–adrenocortical (HPA) axis, in rats.

The first objective of the present study was to investigate the impact of a high-fat/high-fructose (HF/HFr) diet on several biological processes that are suspected to play a role in the development of visceral obesity and related diseases, including the innate immune system and the hypothalamic–pituitary–adrenocortical (HPA) axis, in rats.

A large individual variability in HPA axis function(15), with a high genetic component(16) that influences feeding behaviour, metabolism and energy expenditure(17), has been described. Visceral obesity is usually associated with an overexpression of 11β-hydroxysteroid dehydrogenase (11β-HSD) type 1 in adipose tissue(18), an alteration of the HPA axis negative feedback(19,20) and a blunted circadian rhythm of corticosterone(21,22). Glucocorticoids are known to induce insulin resistance directly by altering insulin signal transduction and indirectly by promoting visceral fat deposition and lean mass loss. Through both the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR), glucocorticoids stimulate pselectin expression in aortic and endothelial cells, which could also be involved in cognitive deficiencies associated with obesity(10).

Some cytokines, TNF-α, IL-1β and IL-6, partly secreted by visceral fat, could be involved in the development of obesity and related diseases, including the innate immune system and the hypothalamic–pituitary–adrenocortical (HPA) axis, in rats.

Materials and methods

Animals

The present study was approved by the institutional ethics committee for animal care of the Centre de Recherche du Service de Santé des Armées. All the experiments were carried out according to the French (Directive 87/148, Ministère de l’Agriculture et de la Pêche) and international (Directive 86/609, 24 November 1986, European Community) legislation. The procedures followed in the study were approved by Région Aquitaine Veterinary Services (Direction Départementale de la Protection des Animaux, approval ID: A33-063-920). The local ethics committee specifically approved the study. Every effort was made to minimise suffering and the number of animals used. Male Wistar rats (Charles River), 5 weeks old (body weight 194±2 (s.e. 1.7) g), were used for the study. The rats were individually housed in a temperature-controlled room (22°C) under a 12 h light–12 h dark cycle (lights on at 08.00 hours). At the end of the experiments, in the morning (09.00–12.00 hours), the rats were killed under deep anaesthesia (5–4 % fluothane in 100 % O₂). Blood samples were collected by cardiac puncture into EDTA-coated tubes (Sarstedt) to avoid haemolysis. Blood samples were centrifuged at 4000 g for 10 min at 4°C. Cerebral tissue samples were dissected on an ice bed, and all the samples were stored at −80°C until use.

Diets

Diets used in the study were purchased from SAFE. The rats were allowed to acclimatisate and fed the control diet for 3 weeks. The control diet (C; 14 633 kJ/kg (3495 kcal/kg)) contained 5 % cellulose, 20 % casein, 25 % maize starch, 25 % potato starch, 16 % maltodextrin, 4 % soyabean oil, 3.5 % American Institute of Nutrition mineral mix, 1 % American Institute of Nutrition vitamin mix, 0.3 % dl-methionine and 0.2 % choline bitartrate. The HF/HFr diet was similar to the C diet, except that maize starch, potato starch and maltodextrin were replaced with 46 % fructose and 20 % lard (19 293 kJ/kg (4608 kcal/kg)). Insulin resistance induced by the HF/HFr diet has been confirmed in a previous study(120).

Experiment 1

A total of thirty-two male Wistar rats (5 weeks old) were randomly divided into two groups and fed ad libitum for 12 weeks the C diet or the HF/HFr diet. At the end of the dietary period, half the rats in each group were administered a single intraperitoneal injection of LPS, 100 μg/kg (Sigma-Aldrich, Escherichia coli serotype 0127:B8). The control rats were treated with saline, and all the injections were administered in the morning (09.00–12.00 hours). The rats were
killed 8 h after injection as described by Pohl et al.\(^\text{(11)}\), as this time point corresponds to the peak in the response of cytokines in obese rats after the administration of this dose of LPS.

Experiment 2

A total of 120 male Wistar rats (5 weeks old) were randomly divided into four groups of thirty and fed ad libitum for 12 weeks one of the following four diets: C diet, the HF/HFr diet, or the respective diets containing 20 g of CN per kg of diet (C + CN or HF/HFr + CN). The amount of CN used was based on our previous study showing a definite effect of 20 g of CN per kg of diet in rats\(^\text{(29)}\). The composition of CN has been described by Couturier et al.\(^\text{(28)}\). The CN powder \((Cinnamomum burmannii)\) was obtained from McCormick Spice. A water extract of the CN powder contained more than 5% type A polyphenols with a tetramer with a molecular weight of 1152 and two trimers with a molecular weight of 864\(^\text{(30,31)}\). From each group, ten rats were exposed to restraint Str in a contention tube for 30 min just before being killed. The rats were dissected to evaluate their body composition. The livers and two depots of adipose tissue were carefully removed and weighed: mesenteric (along the mesentery, starting from the lesser curvature of the stomach and ending at the sigmoid colon) and inguinal (subcutaneous fat between the lower part of the rib cage and the thighs).

Measurement of plasma concentrations of cytokines

The plasma concentrations of IL-1\(\beta\), IL-6, TNF-\(\alpha\), IL-2 and IL-10 were measured using a rat cytokine LINCOplex 5-plex kit (Linco research, Inc.) on a Bioplex-200 apparatus (Bio-Rad) following the manufacturer’s instructions as described previously\(^\text{(32)}\). The intra-assay CV were 4, 4, 5, 4 and 4% and inter-assay CV were 2, 3, 7, 3 and 6%, respectively, for Il-1\(\beta\), IL-6, TNF-\(\alpha\), IL-2 and IL-10.

![Fig. 1. Effect of lipopolysaccharide (LPS) under the control (C) diet or the high-fat/high-fructose (HF/HFr) diet on the plasma concentrations of (A) IL-1\(\beta\) and (B) hypothalamic and (C) hippocampal expression of IL-1\(\beta\) and integrin-\(\alpha\)M (ITGAM). a,b,c Values with unlike letters were significantly different (\(P<0.05\)).](image-url)
<table>
<thead>
<tr>
<th>Cytokines</th>
<th>C (n 20)</th>
<th>C + Str (n 10)</th>
<th>CN (n 20)</th>
<th>CN + Str (n 10)</th>
<th>HF/HFr (n 20)</th>
<th>HF/HFr + Str (n 10)</th>
<th>HF/HFr + CN (n 20)</th>
<th>HF/HFr + CN + Str (n 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1β</td>
<td>85.88</td>
<td>11.48</td>
<td>87.13</td>
<td>17.10</td>
<td>97.60</td>
<td>20.28</td>
<td>106.65</td>
<td>12.51</td>
</tr>
<tr>
<td>IL-6</td>
<td>9.39</td>
<td>2.99</td>
<td>10.20</td>
<td>8.28</td>
<td>33.60</td>
<td>17.33</td>
<td>50.99</td>
<td>8.30</td>
</tr>
<tr>
<td>TNF-α</td>
<td>20.38</td>
<td>3.63</td>
<td>26.21</td>
<td>12.11</td>
<td>48.77</td>
<td>21.12</td>
<td>45.31</td>
<td>12.79</td>
</tr>
<tr>
<td>IL-10</td>
<td>2.03</td>
<td>0.23</td>
<td>2.42</td>
<td>0.13</td>
<td>2.44</td>
<td>0.15</td>
<td>2.22</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Table 1. Plasma concentrations of cytokines (pg/ml) according to the diet (control (C) v. high-fat/high-fructose (HF/HFr)), the cinnamon (CN) supplementation or the stress (Str) condition in experiment 2 (Mean values with their standard errors)

* Diet effect, with reference to its control (P<0.05).
† Cinnamon effect, with reference to its control (P<0.05).
number, giving the threshold cycle (Ct) number at which the amplification reached a significant threshold. The Ct values were used to estimate the amount of PCR products according to the Ct of the housekeeping gene. ΔCt was calculated by subtracting the Ct of the control gene (enolase 2) from the Ct of the target gene, and the expression level of the target gene was calculated by considering the Ct of enolase 2 to be about 24±0 cycles. The relative expression level of the target gene (fold change) is expressed as 2−ΔΔCt, when compared with the mean ΔCt (threshold cycle) of the control group. Values are means, with their standard errors represented by vertical bars. Diet effect, with reference to its control: *P<0.05, **P<0.01, ***P<0.001. Cinnamon effect, with reference to its control: †P<0.05, ††P<0.01, †††P<0.001. Stress effect, with reference to its control: ‡P<0.05, ‡‡‡P<0.001. IL-1β: (a) ΔCt about −8±0.3, (b) ΔCt about −9±2; IL-1ra: (a) ΔCt about −9±1.7, (b) ΔCt about −10±2.8; IL-1R1: (a) ΔCt about −3±5.1, (b) ΔCt about −6±3.

Results

Inflammation status

Experiment 1. The plasma concentrations of IL-1β increased in response to the LPS treatment (Fig. 1(A)), but to a lesser extent under the HF/HFr diet than under the C diet (significant diet×treatment interaction P<0.05). The same pattern of increase in response to the LPS treatment was observed for the plasma concentrations of IL-6, TNF-α and IL-10 according to the diet (Table S2, available online).

Fig. 1(B) and (C) shows the results for the expression of IL-1β and ITGAM in the hypothalamus and hippocampus, respectively, in response to the HF/HFr diet and/or LPS treatment. The LPS treatment induced a strong increase in the expression of IL-1β and ITGAM in the hypothalamus (treatment effect P<0.001). This effect was less remarkable for the expression of ITGAM in the hippocampus. In both the structures, the LPS treatment induced a greater increase in the expression of IL-1β under the HF/HFr diet than under the C diet (diet×treatment interaction P<0.05). The same results were obtained for the expression of IL-6 and TNF-α (Table S2, available online).

Experiment 2. Among the cytokines, the plasma concentrations of only IL-6 were increased by the HF/HFr diet.
ANOVA revealed at least a diet and hippocampus. Results are reported only when main effects for the expression of cytokines in the hypothalamus and hippocampus, did not modify (IL-1R1, IL-6 and receptors) or counteract the effect of Str (IL-1β and IL-6) in the hypothalamus, and did not change (IL-1β) or counteract the effect of Str (IL-1R1, IL-6, Gp130, TNF-α and TNF-R1) in the hippocampus. Under the HF/HFr diet, CN supplementation also inhibited the effect of Str on the expression of IL-1R1 and IL-6 in the hypothalamus and on that of IL-1R1 and IL-6 and TNF-R1 in the hippocampus.

Results for the expression of intermediates of cytokine transduction, NF-κB, inhibitor of κB, targets such as COX2, ITGAM, and anti-inflammatory factors TGF-β1 and TGF-β2 and their two receptors in the hypothalamus and hippocampus, are given in Tables S6 and S7 (available online).

The body composition of the rats is summarised in Table S3 (available online). No significant effect was revealed by ANOVA for body weight or fat weight. A strong diet effect was revealed by ANOVA for liver weight. The HF/HFr diet globally increased the liver weight of the rats (P<0.05), and this effect was reversed by CN supplementation (Table 1).

Fig. 2 and Tables S4 and S5 (available online) show the main results for the expression of cytokines in the hypothalamus and hippocampus. Results are reported only when ANOVA revealed at least a diet × CN × Str interaction (P<0.05). Under the C diet, restraint Str decreased the expression of IL-1β, IL-1R1, IL-6 and Gp130 in the hypothalamus and hippocampus. Under the HF/HFr diet, restraint Str either exerted no effect or induced an increase in the expression of IL-1R1, IL-6 and Gp130 in both the structures.

Under the C diet, CN supplementation strongly increased the expression of IL-1 receptor antagonist (P<0.001) in the hypothalamus and hippocampus, did not modify (IL-1R1, IL-6R, TNF-α and receptors) or counteract the effect of Str (IL-1β and IL-6) in the hypothalamus, and did not change (IL-1β) or counteract the effect of Str (IL-1R1, IL-6, Gp130, TNF-α and TNF-R1) in the hippocampus. Under the HF/HFr diet, CN supplementation also inhibited the effect of Str on the expression of IL-1R1 and IL-6 in the hypothalamus and on that of IL-1R1 and IL-6 and TNF-R1 in the hippocampus.

Results for the expression of intermediates of cytokine transduction, NF-κB, inhibitor of κB, targets such as COX2, ITGAM, and anti-inflammatory factors TGF-β1 and TGF-β2 and their two receptors in the hypothalamus and hippocampus, are given in Tables S6 and S7 (available online).
Table 2. Hypothalamic expression of the mineralocorticoid receptor and corticotrophin-releasing hormone according to the diet (control (C) v. high-fat/high-fructose (HF/HFr)), the cinnamon (CN) supplementation or the stress (Str) condition§
(Mean values with their standard errors)

<table>
<thead>
<tr>
<th>HPA actors</th>
<th>C</th>
<th>C + Str</th>
<th>CN</th>
<th>CN + Str</th>
<th>HF/HFr</th>
<th>HF/HFr + Str</th>
<th>HF/HFr + CN</th>
<th>HF/HFr + CN + Str</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Mean SE</td>
<td>n</td>
<td>Mean SE</td>
<td>n</td>
<td>Mean SE</td>
<td>n</td>
<td>Mean SE</td>
</tr>
<tr>
<td>MR</td>
<td>20</td>
<td>1·13 0·15</td>
<td>10</td>
<td>0·73†‡‡</td>
<td>0·05</td>
<td>20</td>
<td>0·90 0·11</td>
<td>10</td>
</tr>
<tr>
<td>CRH</td>
<td>20</td>
<td>1·05 0·08</td>
<td>10</td>
<td>0·66††‡‡</td>
<td>0·05</td>
<td>20</td>
<td>0·83†</td>
<td>0·06</td>
</tr>
</tbody>
</table>

HPA, hypothalamic–pituitary–adrenocortical axis; MR, mineralocorticoid receptors; CRH, corticotrophin-releasing hormone.

Diet effect, with reference to its control: *P < 0·05, **P < 0·01.
Cinnamon effect, with reference to its control: †P < 0·05.
Stress effect, with reference to its control: ‡‡P < 0·01; ‡‡‡P < 0·001.
§ The relative expression level of the target gene (fold change) is expressed as 2\(^{-\Delta \Delta C_{t}}\), when compared with the mean \(\Delta C_{t}\) of the control group.

Table 3. Hippocampal expression of the mineralocorticoid receptor according to the diet (control (C) v. high-fat/high-fructose (HF/HFr)), the cinnamon (CN) supplementation or the stress (Str) condition§
(Mean values with their standard errors)

<table>
<thead>
<tr>
<th>MR</th>
<th>n</th>
<th>Mean SE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>1·04 0·07</td>
<td>10</td>
<td>0·78†‡‡</td>
<td>0·08</td>
<td>20</td>
<td>1·04 0·05</td>
<td>10</td>
<td>1·09†‡‡</td>
<td>0·07</td>
<td>20</td>
<td>1·08 0·05</td>
<td>10</td>
<td>1·12** 0·07</td>
<td>20</td>
<td>1·03 0·06</td>
<td>10</td>
<td>1·02 0·09</td>
</tr>
</tbody>
</table>

MR, mineralocorticoid receptors

Diet effect, with reference to its control: **P < 0·01.
Cinnamon effect, with reference to its control: ††P < 0·01.
Stress effect, with reference to its control: †††P < 0·001.
§ The relative expression level of the target gene (fold change) is expressed as 2\(^{-\Delta \Delta C_{t}}\), when compared with the mean \(\Delta C_{t}\) of the control group.
Table 4. Hypothalamic expression of some actors of neurogenesis and synaptogenesis according to the diet (control (C) vs high-fat/high-fructose (HF/HFr)), the cinnamon (CN) supplementation or the stress (Str) condition§
(Mean values with their standard errors)

<table>
<thead>
<tr>
<th>Actors of plasticity</th>
<th>C</th>
<th>Mean SE</th>
<th>C + Str</th>
<th>Mean SE</th>
<th>CN</th>
<th>Mean SE</th>
<th>CN + Str</th>
<th>Mean SE</th>
<th>HF/HFr</th>
<th>Mean SE</th>
<th>HF/HFr + Str</th>
<th>Mean SE</th>
<th>HF/HFr + CN</th>
<th>Mean SE</th>
<th>HF/HFr + CN + Str</th>
<th>Mean SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDNF</td>
<td>20</td>
<td>1·02</td>
<td>0·05</td>
<td>10</td>
<td>0·69†††</td>
<td>0·05</td>
<td>20</td>
<td>1·05†††</td>
<td>0·07</td>
<td>20</td>
<td>0·99</td>
<td>0·04</td>
<td>20</td>
<td>0·98**</td>
<td>0·05</td>
<td>0·94</td>
</tr>
<tr>
<td>TrkB</td>
<td>20</td>
<td>1·07</td>
<td>0·02</td>
<td>19</td>
<td>0·66†††</td>
<td>0·06</td>
<td>20</td>
<td>0·61†††</td>
<td>0·04</td>
<td>19</td>
<td>0·88</td>
<td>0·06</td>
<td>20</td>
<td>1·00**</td>
<td>0·04</td>
<td>0·87†</td>
</tr>
<tr>
<td>NGF</td>
<td>19</td>
<td>1·05</td>
<td>0·07</td>
<td>10</td>
<td>0·65†††</td>
<td>0·09</td>
<td>1·02</td>
<td>0·07</td>
<td>1·43†††‡‡‡</td>
<td>0·23</td>
<td>1·02</td>
<td>0·04</td>
<td>9</td>
<td>0·93</td>
<td>0·01</td>
<td>0·91</td>
</tr>
<tr>
<td>TrkA</td>
<td>20</td>
<td>1·01</td>
<td>0·03</td>
<td>10</td>
<td>0·64†††</td>
<td>0·13</td>
<td>1·13</td>
<td>0·08</td>
<td>2·24†††‡‡‡</td>
<td>0·47</td>
<td>1·91†‡</td>
<td>0·07</td>
<td>1·21††</td>
<td>0·11</td>
<td>1·98</td>
<td>0·04</td>
</tr>
<tr>
<td>SYP</td>
<td>20</td>
<td>0·80†</td>
<td>0·04</td>
<td>20</td>
<td>0·34††</td>
<td>0·08</td>
<td>0·80†</td>
<td>0·04</td>
<td>0·34††</td>
<td>0·08</td>
<td>0·80†</td>
<td>0·04</td>
<td>0·95</td>
<td>0·10</td>
<td>0·98</td>
<td>0·08</td>
</tr>
<tr>
<td>Dlgap2</td>
<td>19</td>
<td>1·03</td>
<td>0·06</td>
<td>10</td>
<td>0·92</td>
<td>0·10</td>
<td>0·91</td>
<td>0·04</td>
<td>0·93</td>
<td>0·10</td>
<td>0·98</td>
<td>0·06</td>
<td>0·90</td>
<td>0·10</td>
<td>1·11</td>
<td>0·08</td>
</tr>
</tbody>
</table>

BDNF, brain-derived neurotrophic factor; TrkB, tyrosine kinase receptor B; NGF, nerve growth factor; TrkA, tyrosine kinase receptor A; SYP, synaptophysin; Dlgap2, discs, large (Drosophila) homolog-associated protein 2.

Diet effect, with reference to its control: *P < 0·05, **P < 0·01, ***P < 0·001.
Cinnamon effect, with reference to its control: †P < 0·05, ††P < 0·01, †††P < 0·001.
Stress effect, with reference to its control: §§P < 0·05, §§§P < 0·01, §§§§P < 0·001.
§ The relative expression level of the target gene (fold change) is expressed as 2^−ΔΔCt of the control group.
<table>
<thead>
<tr>
<th>Actors of plasticity</th>
<th>Control (C)</th>
<th>Control + Stress (C + Str)</th>
<th>Cinnamon (CN)</th>
<th>Cinnamon + Stress (CN + Str)</th>
<th>High-fat/high-fructose (HF/HFr)</th>
<th>HF/HFr + Stress (HF/HFr + Str)</th>
<th>HF/HFr + Cinnamon (HF/HFr + CN)</th>
<th>HF/HFr + Cinnamon + Stress (HF/HFr + CN + Str)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDNF</td>
<td>17 1.06 0.08</td>
<td>20 1.11 0.07</td>
<td>10 0.73†† 0.06</td>
<td>18 1.05 0.11</td>
<td>16 0.92 0.07</td>
<td>8 0.92 0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TrkB</td>
<td>20 1.10 0.09</td>
<td>10 0.94 0.07</td>
<td>20 1.08 0.10</td>
<td>20 1.14†† 0.11</td>
<td>20 1.10 0.08</td>
<td>10 1.10 0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGF</td>
<td>20 1.10 0.09</td>
<td>10 0.94 0.07</td>
<td>20 1.08 0.10</td>
<td>20 1.14†† 0.11</td>
<td>20 1.10 0.08</td>
<td>10 1.10 0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TrkA</td>
<td>20 0.94 0.07</td>
<td>10 0.94 0.07</td>
<td>20 1.08 0.10</td>
<td>20 1.14†† 0.11</td>
<td>20 1.10 0.08</td>
<td>10 1.10 0.12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BDNF, brain-derived neurotrophic factor; TrkB, tyrosine kinase receptor B; NGF, nerve growth factor; TrkA, tyrosine kinase receptor A.

Diet effect, with reference to its control: *P<0.05; ††P<0.01.

Cinnamon effect, with reference to its control: †P<0.05; ††P<0.01.

Stress effect, with reference to its control: ‡P<0.05; ‡‡P<0.01.

§ The relative expression level of the target gene (fold change) is expressed as $2^{-\Delta \Delta Ct}$, when compared with the mean ΔCt of the control group.
Effect of diet, stress and cinnamon in rats 1199

the composition of a diet could involve numerous factors of the cellular machinery and needs to be investigated further.

CN exerted different effects according to the diet. CN has been described to exert numerous beneficial effects under a standard diet. The active components of CN have been known to exert several pharmacological effects such as anti-inflammatory, antioxidant, anti-tumour, anti-obesity and anti-diabetic effects. We confirmed its anti-inflammatory actions in some cases. For instance, the plasma concentrations of IL-6 that were increased by the HF/HF diet were restored to basal levels by CN supplementation. In both the hypothalamus and hippocampus, under the C diet, CN supplementation increased the expression of IL-1 receptor antagonist, an antagonist of IL-1β, which could contribute to the beneficial anti-inflammatory and antioxidant effects of CN. On the other hand, this effect was not observed under the HF/HFr diet. Along this line of discussion, it is worth noting that the beneficial effects of CN under a control diet disappear under an unbalanced diet.

Under the C diet, CN supplementation decreased the response of plasma corticosterone to restraint Str. Under this diet, Str decreased the expression of numerous factors involved in immune system, HPA axis function or cerebral plasticity, and this effect was reversed by CN supplementation. Under the HF/HFr diet, the effect of CN supplementation on plasma corticosterone and central GR expression in response to Str disappeared. Perhaps, there exists an interaction between compounds of the HF/HFr diet and CN to blunt this effect. The HF/HFr diet either blunted or reversed the effects of both Str and CN supplementation. In the case of actors of cerebral plasticity, the effect of CN supplementation in reversing the Str-induced increase of the expression of SYP and DiGap2 under the HF/HFr diet could be seen as deleterious.

Co-activators and co-repressors are integral components of the signal transduction pathways of steroid hormones. GR enhances or represses the transcription of target genes by directly binding to the glucocorticoid responsive element, by interacting with other transcription factors apart from binding to DNA or, in a composite manner, by both directly binding to glucocorticoid responsive element and interacting with other transcription factors bound to neighbouring sites. The c-AMP response element-binding protein (CREB)-binding protein could be a good candidate for the effect of CN or diet on GR action, because it may function not only as a co-activator but also as a repressor, depending on the local concentration of other co-activators. Nevertheless, no interaction between CREB-binding protein and polyphenols has been described in the literature so far. On the other hand, recent data suggest that polyphenols can function as modifiers of signal transduction pathways to exert their beneficial effects, mainly by acting through NF-κB, activator protein 1 (AP-1) and mitogen-activated protein kinases signalling, which also interacts with GR. The explorations of the actions of CN on cellular machinery are still limited. CN extract has recently been shown to inhibit the activation of p38, c-Jun N-terminal kinase, extracellular-signal-regulated kinase 1/2 and signal transducer and activator of transcription 4 in vitro. CN extract induces tumour cell death through the inhibition of NF-κB, via three signal transduction pathways, NF-κB-inducing kinase/IKK kinase (NIK/IKK), extracellular-signal-regulated kinase and p38 mitogen-activated protein kinases, and through AP-1. Another means to change GR transactivation and signalling would be its phosphorylation state. CN has recently been found to inhibit PKA activity in vitro. Cinna-maldehyde, a major active component of CN, has also recently been shown to increase the phosphorylation levels of the insulin-like growth factor-1 receptor and its downstream signalling molecules.
Conclusions

In conclusion, we showed that in rats fed a HF/HFr diet there is an increase in the plasma concentrations of IL-6 and that the central structures of their immune system exhibit a high sensitisation to LPS. We also showed that the HF/HFr diet is sufficient to reverse the negative effects of Str on central gene expression. These data confirm the comfort food theory at the molecular level. CN exerted beneficial effects under the C diet (notably via an increase in the expression of IL-1 receptor antagonist and by counteracting the effects of Str), but its effects were blunted or even reversed under the HF/HFr diet. Numerous processes are candidate to these effects of inversion of Str responses by the diet or by CN, and need to be further investigated.

Supplementary material

To view supplementary material for this article, please visit http://dx.doi.org/10.1017/S0007114513003577

Acknowledgements

The authors thank Thierry Leste-Lassere and Guillaume Drutel for their useful advice on qPCR. They thank Nadine Fidier and Renaud Maury for their help during dissections. They also thank Martine Schuler for her careful reading of the manuscript and her corrections of the language of the article.

The present study was supported by the ANR (Agence Nationale de la Recherche) ‘CERVIRMIT’ project (ANR-07-PNRA-003-02). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

The authors’ contributions are as follows: N. M.-A. wrote the manuscript and was responsible for Bioplex and qPCR measurements; C. B., F. C. and L. P. took care of the animals, carried out the LPS challenge test and were responsible for animal killing and dissections; J. D. was involved in mRNA extraction and qPCR measurements; K. C. and I. H.-F. were responsible for animal killing and dissections in experiment 2; M.-P. M. was in charge of reading the manuscript; A.-M. R. and P. M. supervised this work.

None of the authors has any conflicts of interest to declare.

References

8. Bastard JP, Maachi M, Lagathu C, et al. (2006) Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur J Endocrinol Netw 17, 4–12.

