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Abstract

Let E/k be a function field over an infinite field of constants. Assume that E/k(x) is a separable
extension of degree greater than one such that there exists a place of degree one of k(x) ramified in
E . Let K/k be a function field. We prove that there exist infinitely many nonisomorphic separable
extensions L/K such that [L : K ] = [E : k(x)] and Autk L = AutK L ∼= Autk(x) E .
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1. Introduction

Let K be an algebraic function field over a field k and let Autk K be its full group
of automorphisms. For k = C, Greenberg [4] proved in 1974 that given a nontrivial
finite group G, there exist infinitely many Galois extensions L/K such that Gal(L/K )
is isomorphic to G and that Gal(L/K )= AutC L . This result of Greenberg gives a
positive answer to the inverse problem in Galois theory for function fields K/C.

In several other cases Greenberg’s result can be extended to function fields K/k
with k an algebraically closed field.

Madden and Valentini [6] proved that every finite group can be realized as the full
automorphism group of an algebraic function field K/k. D’Mello and Madan [3]
established the theorem of Greenberg in the case where G is a solvable group G and
K = k(x) is a rational function field.

The main result of Stichtenoth in [8] is that if E/k(x) a finite separable extension
of degree greater than one, then, for every function field K/k of genus greater than
one, there exist infinitely many nonisomorphic separable extensions L/K such that

[E : k(x)] = [L : K ] and Autk(x) E ∼= AutK L = Autk L .

c© 2010 Australian Mathematical Publishing Association Inc. 1446-7887/2010 $16.00

301

https://doi.org/10.1017/S1446788710000108 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788710000108
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The results of Stichtenoth and of D’Mello and Madan can be combined to obtain
the analogous of Greenberg’s theorem provided that the group G is solvable and the
genus of K is larger than one.

Madan and Rosen [5] proved that Greenberg’s result remains valid for an arbitrary
function field K/k with k an algebraically closed field of arbitrary characteristic. This
result gives a positive answer to the inverse problem of Galois theory for any field K
over an algebraically closed field of constants.

Rzedowski and Villa [7] proved an analogue of Stichtenoth’s result for congruence
function fields without restriction on the genus, provided that in the extension E/k(x)
there exist prime divisors of degree one, one ramified and another unramified. In [1]
we remove the ramification restrictions given in [7].

A natural question is what happens when the field of constants k of a function field
is an arbitrary field. Some of the results are straightforward for separably generated
function field extensions K/k, for instance, when k is a perfect field. If K/k is not a
separably generated extension, some of the tools we have in the case where k is perfect
are no longer available; for instance the Castelnuovo–Severi inequality, the difference
of the extension, and so on. We also have to deal with the special behavior of new
constants and so on.

The main goal of this paper is to establish an analogue of the main result of [7]
for an infinite field of constants k now under one ramification restriction. We prove
that given any infinite field k, if E/k(x) is any separable extension, where k is the
full field of constants of E , such that a place of k(x) of degree one is ramified in E ,
then for any function field K/k, there exist infinitely many nonisomorphic function
fields over k such that L/K is a separable extension of the same degree as E/k(x) and
AutK L = Autk L ∼= Autk(x) E . This is Theorem 4.3.

Given a function field K/k, we first choose a suitable y ∈ K and construct a
suitable C-improvement E1/k(y) of E/k(x) (see [7]) such that the field of constants
of L = E1K is k, while [L : K ] = [K : k(y)] and the intermediate fields of L other than
K have large enough genus (Proposition 3.5). With this condition, it follows that any
element of the group of automorphisms of L over k restricts to an automorphism of K
(Proposition 3.6). The next step is to find a ramification of the places in the support
of (y)K in such a way that any automorphism of L over k fixes K elementwise. If the
constant field is finite or algebraically closed then the extension K/k(y) is separable.
We use the C-improvements constructed in Proposition 4.1 to deal with the inseparable
case.

The paper is organized as follows. In Section 2 we give several general results
that will be used to find field extensions with suitable properties to be used in our
construction. In Section 3 we find a bound for the genus of the compositum of fields.
When K/k is separably generated, we have the Castelnuovo–Severi inequality. We
find an analogue of this bound of the genus for general k. This is Proposition 3.5.
As a consequence of this variant of the Castelnuovo–Severi inequality, we have the
analogue of a result of Madden and Valentini [6] that establishes that if L/K is an
extension such that every proper intermediate field has large enough genus, then for
any automorphism σ of L , we have σ(K )= K .
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Section 4 deals with function field extensions with a prime divisor of degree one
ramified. Under this ramification restriction it is possible to prove our main result.

We use the following notation. The field k is an infinite field and K/k denotes
a function field with full field of constants k. In a rational function field k(x),
P f denotes the place defined by the irreducible polynomial f . For a field extension
F/K , the group of automorphisms of L that fix K pointwise is denoted by AutK F .
For a function field E/k, let (x)E denote the principal divisor of x in E and deg P
denote the degree of a place P of E . For an extension F/E , ConF/E is the conorm
map with respect to F/E . If F/E is a separable extension we write DF/E for the
different of the extension.

2. Function fields over infinite field of constants

In this section we give some general results that will be needed to prove the main
result of the paper.

LEMMA 2.1. Let F/k(x) be a Galois extension and let k(y) be a rational function
field such that ([F : k(x)], [k(y) : k(x)])= 1. If E/ l is an intermediate field of
F/k(x), then the field of constants of E(y) is l.

PROOF. Let N be the field of constants of E(y). Since N/ l is a separable we have
that [E : l(x)] = [E N : N (x)]. Since [k(y) : k(x)] = [N (y) : N (x)], it follows that
([E N : N (x)], [N (y) : N (x)])= 1. Hence [E(y) : N (y)] = [E N : N (x)].

l(y) E(y) F(y)

l(x) E F

N (y) E(y) F N (y)

N (x) E N F N

Similarly [E(y) : l(y)] = [E : l(x)], and so we obtain [E(y) : N (y)] = [E(y) : l(y)].
Therefore N (y)= l(y) and N = l. 2

The proof of Lemma 2.2 is similar to the proof in the case where the constant field
is perfect [9].

LEMMA 2.2. Suppose that F ′/F is a finite separable extension of function fields. Let
F1, F2 be intermediate fields of F ′/F such that F ′ = F1 F2. Then, for a place P ∈ PF :

(1) if P is completely decomposed in F1/F and F2/F, then P is completely
decomposed in F ′/F;

(2) if P is unramified and separable in F1/F and F2/F, then P is unramified and
separable in F ′/F. 2

As a consequence of (2) of Lemma 2.2 we have the following lemma.

LEMMA 2.3. Let K/k be a function field and let E/K be a finite separable extension
with normal closure Ẽ. Assume that P ∈ PK is ramified or inseparable in Ẽ. Then P
is ramified or inseparable in E. 2
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LEMMA 2.4. Suppose that E/K is a finite separable extension of function fields. Let
P be a place of K ramified or inseparable in E. Then for a purely inseparable finite
extension F/K the place B of F lying over P is ramified or inseparable in E F.

PROOF. Let Ẽ be the normal closure of E/K . Since Ẽ ∩ F = K , the normal closure
of E F/F is Ẽ F . Now we consider a place P1 of Ẽ lying over P and let B1 be the
extension of P1 in Ẽ F . Since B1 ∩ F is over P we have that B1 ∩ F = B.

B F E F Ẽ F B1

P K E Ẽ P1

Denote by D(P1|P) the decomposition group of P1 and by I (P1|P) the inertia
group. The restriction of an element in D(B1|B) to Ẽ belongs to D(P1|P), so there is
an embedding ϕ : D(B1|B)→ D(P1|P) such that ϕ(I (B1|B))⊆ I (P1|P). Since the
place B1 is the only extension of P1 in Ẽ F , ϕ is an isomorphism.

O P1/P1 O B1/B1

O P/P O B/B

On the other hand, [O B1/B1 :O B/B]s = [O P1/P1 :O P/P]s since the extensions
(O B/B)/(O P/P), (O B1/B1)/(O P1/P1) are purely inseparable. Hence

[D(P1|P) : I (P1|P)] = [O P1/P1 :O P/P]s = [O B1/B1 :O B/B]s
= [D(B1|B) : I (B1|B)].

Therefore ϕ(I (B1|B))= I (P1|P), so B is ramified or inseparable in Ẽ F/F . Finally,
from Lemma 2.3 we obtain that B is ramified or inseparable in E F/F . 2

LEMMA 2.5. Let E/K be a Galois extension of algebraic functions fields with field
of constants k. Let σ ∈ Gal(E/K ). Then if σ 6= Id the set Aσ = {B ∈ PE | σ(B) 6= B}
is infinite.

PROOF. Suppose that Aσ is finite for some σ 6= Id. Let K1 be the fixed field of
σ and Aσ = {B1, . . . , Bm}. Now σ(B)= B for each place B ∈ PE with B 6= Bi .
Let y1 ∈ E\K1 and y2 ∈ K1 be such that vBi (y2) > 0. Then there exists j such that
vBi (y1 y j

2 ) > 0 and y1 y j
2 6∈ K1. Let c be a constant distinct from 1 and let y = y1 y j

2 + c,
y 6∈ K1. Hence vBi (y)= vBi (y + 1)= 0. It follows that σ(y)= y, which implies that
σ(y)= ay with a ∈ k. Similarly, there exists b ∈ k such that σ(1+ y)= b(1+ y),
then 1+ ay = b + by. Since y 6∈ k we obtain that σ(y)= y. Thus y ∈ K1. This
contradiction shows the result. 2
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3. Bound for the genus of a compositum of fields

The Castelnuovo–Severi inequality is valid for separably generated extensions
K/k. This inequality plays an important role in [7, 8]. In Proposition 3.5 we give
an analogous inequality for K/k not necessarily separable generated. Then we deduce
Proposition 3.6 which is the main result of this section. This is the analogue of the
Madden–Valentini result in [6].

For a function field K/k of genus gK , let g′K =max{gK , 1}.

LEMMA 3.1. Let F/k be a function field with separably closed field of constants.
Given a separable geometric finite extension E/F, there exist infinitely many places
in F that are completely decomposed in E/F. If d =min{deg P | P ∈ PF } we can
choose the places of degree less than or equal to 2g′F d.

PROOF. Let P be a place of F such that d = deg P . There exists x ∈ F with pole
divisor P2g′F . Denote by F0 the separable closure of k(x) in F and by E0 the
separable closure of k(x) in E . Since E0 and F are linearly disjoint over F0 and
[E : k(x)]i = [F : k(x)]i , then E = E0 F .

E0 E

k(x) F0 F

In the extension E0/k(x) there are a finite number of places which are either ramified
or inseparable. Hence almost all places of degree one of k(x) are unramified
and separable in E0/k(x), so these places are completely decomposed in E0/k(x).
Therefore there exist infinitely many places of degree one in F0 which are completely
decomposed in E0.

Let Q be a place of degree one in F0 completely decomposed in E0 and let R be the
place of F lying over Q. Let Ẽ0 be a normal closure of E0/F0. Lemma 2.2 implies
that Q is completely decomposed in Ẽ0/F0.

S ∩ Ẽ0 Ẽ0 Ẽ0 F S

Q F0 F R

Since, given a place S of Ẽ0 F lying over R, the decomposition group D(S|R)
embeds in the group D(S ∩ Ẽ0|Q), then R is completely decomposed in E0 F/F . The
relative degree f (R|Q)= deg R is less than or equal to [F : k(x)] = 2g′F d . 2

LEMMA 3.2. Assume that k is separably closed, and consider a function field F/k
such that F1/k is a subfield of F such that F/F1 is a separable extension of degree
n > 1. Let y ∈ F be an element such that F = F1(y) and d1 =min{deg P | P ∈ PF1}.
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Then there exist infinitely many places P ∈ PF1 of degree at most 2g′F1
d1 having the

following properties.

(1) P has n distinct extensions P1, . . . , Pn in F/F1.
(2) The restrictions P1 ∩ k(y), . . . , Pn ∩ k(y) are pairwise distinct places of k(y).

PROOF. Let ϕ(z)= zn
+ an−1zn−1

+ · · · + z0 ∈ F1[z] be the minimal polynomial of
y over F1. By Lemma 3.1 there are infinitely many places P ∈ PF1 completely
decomposed in F/F1 and such that {1, . . . , yn−1

} is an integral basis of F/F1 for
almost all such places P . Since by Kummer’s theorem the decomposition of the
polynomial ϕ̄(z) ∈ (O P/P)[z] corresponds to the decomposition of P in F , we must
have that ϕ̄(z)=

∏n
i=1(z − ci ) with pairwise distinct elements ci ∈O P/P .

Let bi be such that ci = bi + P . Again by Kummer’s theorem we have that for
i = 1, . . . , n there exists a unique place Pi ∈ PF such that Pi |P and vPi (y − bi ) > 0.

There exist βi ∈ k and an integer m ≥ 0 such that bpm

i + P = βi + P . Hence

vPi (y
pm
− βi )≥min{vPi (y

pm
− bpm

i ), vPi (b
pm

i − βi )}> 0.

Since βi = β j implies cpm

i = cpm

j , it follows that the elements βi are pairwise distinct,

so the restrictions Pi ∩ k(y pm
) are distinct. 2

The following result can be found in [9].

LEMMA 3.3. Let F1/k be a subfield of F/k and let [F : F1] = n. Assume that
{z1, . . . , zn} is a basis of F/F1 such that all zi ∈ L(C−1) for some divisor C ∈ DF .
Then gF ≤ 1+ n(gF1 − 1)+ deg C.

LEMMA 3.4. Let F/k be a function field with separably closed field of constants.
Suppose that F1/k and F2/k are subfields of F/k satisfying the following conditions.

(1) F = F1 F2 and F/F1 is separable.
(2) [F : Fi ] = ni and Fi/k has genus gi (i = 1, 2).

Then the genus g of F/k is bounded above by 1+ n1(g1 − 1)+ 4n1n2g′1g′2d1, where
d1 =min{deg P | P ∈ PF1}.

PROOF. Since F = F1 F2 there are y1, . . . , ys ∈ F2 with F = F1(y1, . . . , ys). The
extension F/F1 is separable, hence we can find a1, . . . , as ∈ k such that the element
y =

∑
a j y j ∈ F2 is a primitive element of F/F1. Let P ∈ PF1 be such that it has n1

distinct extensions P1, . . . , Pn1 in F and such that the restrictions Qi = Pi ∩ F2 ∈ PF2

are pairwise distinct (Lemma 3.1). We have that deg Qi = 2g′1d1. There exists ui ∈ F2

with pole divisor Q
2g′2
i . The elements u1, . . . , un1 form a basis of F/F1.

Suppose that
∑

xi ui = 0 with xi ∈ F1 is a nontrivial linear combination. Let
j ∈ {1, . . . , n1} be such that vP(x j )≤ vP(xi ) for i = 1, . . . , n1. Then

vPj (x j u j )= vPj (x j )+ vPj (u j )≤ vP(x j )− 2g′2.
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For i 6= j ,
vPj (xi ui )= vPj (xi )+ vPj (ui )≥ vP(xi ),

hence vPj (
∑

xi ui )= vPj (x j u j ) <∞, which is not possible. Now we consider the

divisor C = ConF/F2(
∑

Q
2g′2
i ). Its degree is 2n2g′2

∑
deg Qi ≤ 4n1n2g′1g′2d1. Since

the elements u1, . . . , un1 are in L(C−1), we have g ≤ 1+ n1(g1 − 1)+ 4n1n2g′1g′2d1
from Lemma 3.3. 2

PROPOSITION 3.5. Let F, F1, F2 be function fields with field of constants k such that
F = F1 F2 and F/F1 is a separable extension. Then

gF ≤ 1+ [F : F1](gF1 − 1)+ 4[F : F1][F : F2]g
′

F1
g′F2

d,

where d =min{deg P | P ∈ PF1}.

PROOF. Consider a separable closure k1 of k and let F̃ = Fk1, F̃i = Fi k1, i = 1, 2.
Since k1/k is separable, gF̃ = gF , gF̃i

= gFi and ni = [F̃ : F̃i ] = [F : Fi ], i = 1, 2.
Let d1 =min{deg R | R ∈ PF̃1

}. By Lemma 3.4,

gF = gF̃ ≤ 1+ n1(gF̃1
− 1)+ 4n1n2g′

F̃1
g′

F̃2
d1

= 1+ [F : F1](gF1 − 1)+ 4[F : F1][F : F2]g
′

F1
g′F2

d1.

We choose P ∈ PF1 such that deg P = d , and let R be a place in F̃1 lying over P .
Now d = [O P/P : k] ≥ [O R/R : k1] ≥ d1 since O R/R is the composition of O P/P
and k1 [2, p. 128], and the result follows. 2

The following result is a consequence of Proposition 3.5 with F1 = K , F2 = σ(K ).

PROPOSITION 3.6. If L/K is a finite separable extension of function fields with field
of constants k such that, for each intermediate field M, K ⊂ M ⊆ L,

gM > 1+ [M : K ](gK − 1)+ 4[M : K ]2g′K
2d,

then for each σ ∈ Autk L we obtain that σ(K )= K .

4. Separable extensions with a prime divisor of degree one ramified

The next result is analogous to [8, Lemma 2] and [7, Lemma 2] and we will use it
to find suitable C-improvements of a given finite separable extension E/k(x).

PROPOSITION 4.1. Assume that k is infinite and let E/k(x) be a finite separable
extension of function fields over k such that Px−1 is ramified in E and the zero Q1
and the pole Q2 of x in k(x) are unramified and separable in E. Let Ẽ/ l be a
normal closure of E/k(x). Let C, C1, C2 ∈ R+ be arbitrary. Then there exists a
finite extension F/k(y) satisfying the following properties.
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(1) There exists a subfield E1/k of F/ l such that

[E : k(x)] = [E1 : k(y)], [Ẽ : k(x)] = [F : k(y)],

Gal(E/k(x))∼= Gal(E1/k(y))

and F is a normal closure of E1/k(y). Moreover, Py−1 is ramified in F and the
pole of y in k(y) is unramified and separable in F.

(2) Let E2 be an intermediate field, k(y)⊂ E2 ⊆ E1. Then either there is a place in
k(y) of degree greater than C2 ramified or inseparable in E2/k(y) or there are
more than C1 places of k(y) ramified or inseparable in E2/k(y).

(3) For each intermediate field k ⊆ k1 ⊆ l, the genus gM of any field k1(y)⊂ M ⊆ F
with constant field k1 is greater than C.

(4) Let N/k be a finite separable extension. If M/N is any intermediate field,
N (y)⊂ M ⊆ F N, then gM > C.

PROOF. First we prove (1) and (2). Choose an integer m > 0 such that m >

max{C1C2, 2C + 3} and (m, p[Ẽ : k(x)])= 1. Let ym
= x . Then k(y)/k(x) is a

separable extension of degree m. By the genus formula the only places of k(x)
which ramify in k(y)/k(x) are Q1 and Q2, and there are no inseparable places. Let
F = Ẽ(y). Then F is the normal closure of E1 = E(y), [E1 : k(y)] = [E : k(x)], the
constant field of E1 is k and Autk(y) E1 ∼= Autk(x) E (Lemma 2.1).

Consider an intermediate field E0, k(x)⊂ E0 ⊆ E . By the genus formula there is
a place Q f of k(x) ramified or inseparable in E0. Let Ẽ0 be the normal closure of
E0/k(x) contained in Ẽ . Since Q f is different from Q1 and Q2 it follows that Q f
is unramified in k(y)/k(x); this implies that the polynomial f (x)= f (ym) splits into
irreducible distinct factors f1(y), . . . , fh(y) in k(y).

k(y)

P fi |Q f

E0(y) Ẽ0(y)

Hi |Ji

Ẽ(y)

k(x) E0 Ẽ0 Ẽ

Let Hi be an extension of P fi in Ẽ0(y). Since Ji = Hi ∩ Ẽ0 lies over Q f , then Ji

is ramified or inseparable in Ẽ0/k(x), so e(Hi |Qi ) fi (Hi |Qi ) > 1. Since P fi ∩ k(x)
is different from Q1 and Q2, the place P fi is unramified and separable in k(y)/k(x),
hence e(Hi |P fi ) fi (Hi |P fi ) > 1. Then P fi is ramified or inseparable in E0(y)/k(y)
(Lemma 2.3). Since Py−1|Qx−1, it follows that Py−1 is ramified in F . Since Q2 is
unramified and separable in Ẽ/k(x) (Lemma 2.2), the pole of y is unramified and
separable in F/k(y) by the correspondence between the inertia groups. If deg fi ≤ C2
for all i , the number h of factors is minimum when deg fi = C2. In this case
hC2 = m deg f > C1C2, and it follows that h > C1.

To prove (3), let k1 be an intermediate field of l/k. Denote by R1 the zero of x in
k1(x) and by R2 the pole of x in k1(x). The extension k1(x)/k(x) has degree equal
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to f (R1|Q1)= f (R2|Q2). Therefore if a place Di ∈ Pk1(y) lies over Ri we obtain
e(Di |Ri )= [k(y) : k(x)] = m. Then in k1(y), Ri = Dm

i with i = 1, 2.

k(y)

P0|Q1 P∞|Q2

k1(y)

Di |Ri

k(x) k1(x) Ẽ

k1(y) M Ẽ(y)

k1(x) M0 Ẽ

Let M/k1 be such that k1(y)⊂ M ⊆ Ẽ(y). If M0 = M ∩ Ẽ , then k1(x)⊂ M0 ⊆ Ẽ .
Let T ∈ PM be such that T |Di . Since (m, [Ẽ : k(x)])= 1, then e(T |T ∩ M0)≥ m.
Since [M : M0] = m, it also follows that e(T |T ∩ M0)= m and f (T |T ∩ M0)= 1.
Since Q1 is unramified in Ẽ we have that in M0, R1 = T1 · · · Th , where h ≥ 2 or
f (T1|R1)≥ 2.

Di k1(y) M T

Ri k1(x) M0 T ∩ M0

Then at least three places of M are fully ramified in M/M0 or at least two places are
fully ramified and one of them is of degree greater than or equal to two. From the
genus formula we obtain that

gM = 1+ m(gM0 − 1)+ 1
2 deg(DM/M0)

≥ 1− m + 3
2 (m − 1)= 1+ 1

2 (m − 3).

Finally we prove (4). Let k1 = N ∩ l. Then k1(y)⊆ N (y) ∩ F . If M/N is any
intermediate field, N (y)⊂ M ⊆ F N and M1 = M ∩ F , then N (y) ∩ F ⊂ M1 ⊆ F .

N (y) M F N

k(y) k1(y) N (y) ∩ F M1 F

The constant field of M1 is k1 and M = M1 N . This implies that gM = gM1 , and by (3)
it follows that gM1 > C . 2

PROPOSITION 4.2. Suppose that K/k is a function field such that K/k(y) is a finite
extension, where K0 is the separable closure of k(y) in K . Let C0 ∈ R+ and let ns
be the number of places P of k(y) which are ramified or inseparable in K0/k(y).
Assume that the degree of these places is less than ds . Let F/k(y) be an extension with
the properties stated in Proposition 4.1 such that C > gK0 and C1 > ns + 2(m + C0),
C2 > ds, 2(m + C0), where m = [E : k(x)]. Then the following hold.

(1) The constant field of E1K is k.
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(2) [E1 : k(y)] = [E1K : K ], whence Autk(y) E1 ∼= AutK E1K and F K is the normal
closure of E1K .

(3) Each field H such that K ⊂ H ⊆ E1K has genus greater than C0.

PROOF. First we prove (1) and (2). The constant field of K ∩ F is k and K ∩ F/k(y)
is a separable extension, hence gK∩F ≤ gK0 < C . From Proposition 4.1 we obtain
K ∩ F = k(y). Given that F is the normal closure of E1/k(y), assertion (2) follows
from the Galois correspondence. Let N be the constant field of E1K . Since E1K/K
is a separable extension, N/k is separable.

K F K

k(y) F ∩ K F

N (y) K0 N K N

k(y) K0 K

The separable closure of N (y) in K N is K0 N , hence F N ∩ K N ⊆ K0 N , so
gF N∩K N ≤ gK0 N = gK0 . From Proposition 4.1, the genus of each intermediate
field M/N , N (y)⊂ M ⊆ F N , is greater than C . Since N is the constant field of
F N ∩ K N , this implies that F N ∩ K N = N (y).

K N F K

N (y) F N ∩ K N F N

K N E1K F K

N (y) E1 N F N

It follows that [E1K : K N ] = [E1 N K N : K N ] = [E1 N : N (y)]. From (2), we deduce
that [E1K : K N ] = [E1K : K ], as [E1 : k(y)] = [E1 N : N (y)]. Therefore K N = K .

Finally we prove (3). From Proposition 4.1, for every field E2 such that k(y)⊂
E2 ⊆ E1, either a place of k(y) of degree greater than C2 is ramified or inseparable
in E2/k(y), or there are more than C1 places of k(y) ramified or inseparable in
E2/k(y). Since C1 > ns and C2 > ds , there exists a place of K0 of degree greater
than C2 ramified or inseparable in E2K0/K0, or K0 has more than C1 − ns ramified
or inseparable places in E2K0/K0.

K0 E2K0 F K0

k(y) E2 F

K E2K F K

K0 E2K0 F K0

Since K/K0 is purely inseparable, by Lemma 2.4 it follows that in E2K/K there
exist more than C1 − ns ramified or inseparable places, or a place of degree greater
than C2 is ramified or inseparable. Therefore

gE2 K = 1+ [E2K : K ](gK − 1)+ 1
2 deg(DE2 K/K )

>−m + 1
2 2(m + C0)= C0. 2
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We are now in a position to prove the main result of this paper. This is analogous
to [8, Satz 1] and [7, Theorem 3].

THEOREM 4.3. Let E/k be a function field with an infinite field of constants and
let E/k(x) be a separable extension of degree m such that a place of degree one
of k(x) is ramified in E. Let K/k be a function field. Then there exist infinitely
many nonisomorphic fields L such that L/K is a separable extension of degree m and
AutK L = Autk L ∼= Autk(x) E.

PROOF. Let σ1, . . . , σn−1 ∈ Autk K , σi 6= Id and |Autk K | = n. There exist pairwise
distinct places B1, . . . , Bn−1 of K such that σ1(B1), . . . , σn−1(Bn−1) are pairwise
distinct and Bi 6= σ j (B j ) with 1≤ i, j ≤ n − 1. By the approximation theorem, there
exists w ∈ K such that vσi (Bi )(w) > 0 and vBi (w)=−1. Denote by K0 the separable
closure of k(w) in K and by ns the number of places R of k(w) ramified or inseparable
in K0/k(w). Choose ds ∈ R such that deg R ≤ ds .

Let C0 = 1+ m(gK − 1)+ 4m2g2
K d , where d =min{deg B | B ∈ PK }. We may

assume that the place Qx−1 of k(x) is ramified in E/k(x) and that the zero and the
pole of x in k(x) are unramified and separable in E/k(x). Consider the function field
F/ l of Proposition 4.1 with C > gK0 , C1 > ns + 2(m + C0), C2 > ds, 2(m + C0).
From (1) of Proposition 4.1 it follows that for z = 1/y − 1 the pole R∞ of z is
ramified in F/k(z) and its zero R0 is unramified and separable. The isomorphism
ϕ : k(w)→ k(z), given by ϕ( f (w))= f (z), can be extended to a homomorphism ϕ̄

of K into an algebraic closure k(z) of k(z). Therefore we may assume that K is an
extension of k(z), and that K0 is the separable closure of k(z) in K such that ns is
the number of ramified or inseparable places R of k(z) in K0/k(z) and deg R ≤ ds .
Also may replace ϕ̄(Bi ) by Bi and ϕ̄σi ϕ̄

−1 by σi in such a way that vσi (Bi )(z) > 0 and
vBi (z)=−1.

Define L = E1K . From Proposition 4.2, the field of constants of L is k, the degree
of L/K is m and Autk(z) E1 ∼= AutK L . Consider an extension Hi ∈ PF K of σi (Bi )

and the restriction Ji = Hi ∩ F .

K1 K

σi (Bi )|R0

E1K F K

Hi |Ji

k(z) E1 F

Let σ ∈ Autk L . From Propositions 3.6 and 4.2, σ(K )= K . Now, since R∞
is ramified in F/k(z) and the Bi are unramified in K/k(z), it follows that each
Bi is ramified in F K/K . Hence, from Lemma 2.3, each Bi is ramified or
inseparable in E1K/K . Since the inertia group I (Hi |σi (Bi )) embeds into the
inertia group I (Ji |R0) and R0 is unramified and separable in F/k(z), the places
σ(B1), . . . , σ (Bn−1) are unramified and separable in F K/K . Then σ 6= σi . Thus
Autk L = AutK L .

Note that since gL can be chosen arbitrarily large, there are infinitely many fields L
satisfying the result. If n = 1 the extension L is obtained as before. 2
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