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Abstract
We generalize Bloch’s map on torsion cycles from algebraically closed fields to arbitrary fields. While Bloch’s map
over algebraically closed fields is injective for zero-cycles and for cycles of codimension at most two, we show that
the generalization to arbitrary fields is only injective for cycles of codimension at most two but, in general, not for
zero-cycles. Our result implies that Jannsen’s cycle class map in integral ℓ-adic continuous étale cohomology is, in
general, not injective on torsion zero-cycles over finitely generated fields. This answers a question of Scavia and
Suzuki.

1. Introduction

Let X be a smooth variety over a field k and let ℓ be a prime invertible in k. In this paper, we study
the ℓ-power torsion subgroup CH𝑖 (𝑋) [ℓ∞] of the Chow group CH𝑖 (𝑋) of codimension-i cycles on X.
Following some constructions in [Blo79, Sch21b], we define a cycle map

𝜆𝑖𝑋 : CH𝑖 (𝑋) [ℓ∞] ��
𝐻2𝑖−1(𝑋ét,Qℓ/Zℓ (𝑖))

𝑀2𝑖−1(𝑋)
, (1.1)

where 𝑀2𝑖−1 (𝑋) ⊂ 𝐻2𝑖−1(𝑋ét,Qℓ/Zℓ (𝑖)) is defined as follows: we pick a finitely generated subfield
𝑘0 ⊂ 𝑘 such that there is a 𝑘0-variety 𝑋0 with 𝑋 = 𝑋0 ×𝑘0 𝑘 and let

𝑀2𝑖−1(𝑋) = im

(
lim ��

𝑘′/𝑘0

𝑁 𝑖−1𝐻2𝑖−1
𝑐𝑜𝑛𝑡 ((𝑋0 ×𝑘0 𝑘 ′)ét,Qℓ (𝑖)) �� 𝐻2𝑖−1(𝑋ét,Qℓ/Zℓ (𝑖))

)
,

where 𝑘 ′ runs through all finitely generated subfields of k that contain 𝑘0, and 𝑁∗ denotes the coniveau
filtration (cf. (2.2) below).

If k is algebraically closed and X is projective, then 𝑀2𝑖−1(𝑋) = 0 by weight reasons (see Lemma 4.1
below) and the above map coincides with Bloch’s map [Blo79]; see Lemma 4.5 below. If, moreover,
𝑘 = C, the map agrees on the subgroup of homologically trivial ℓ-power torsion cycles with Griffiths’
Abel–Jacobi map [Gri69]; see [Blo79, Proposition 3.7].

Bloch’s map over algebraically closed fields is injective on torsion cycles of codimension ≤ 2; the
non-trivial case 𝑖 = 2 is a theorem of Bloch and Merkurjev–Suslin; see [MS83, §18]. Moreover, for
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any ground field k, Colliot-Thélène–Sansuc–Soulé showed in [CTSS83, Corollaire 3] that CH2(𝑋) [ℓ∞]
is isomorphic to a subquotient of 𝐻3(𝑋ét,Qℓ/Zℓ (2)). The following result generalizes the injectivity
theorem of Bloch and Merkurjev–Suslin over algebraically closed fields by making the aforementioned
result in [CTSS83] more precise; the argument relies on some results from [Sch21b].

Theorem 1.1. Let X be a smooth variety over a field k and let ℓ be a prime invertible in k. Then 𝜆𝑖𝑋 from
(1.1) is injective for 𝑖 = 1, 2 and induces the following isomorphisms:

CH1(𝑋) [ℓ∞] � 𝐻1(𝑋ét,Qℓ/Zℓ (1))/𝑀1(𝑋) and CH2(𝑋) [ℓ∞] � 𝑁1𝐻3(𝑋ét,Qℓ/Zℓ (2))/𝑀3(𝑋).

In the body of this paper, we prove a version of the above theorem that works for arbitrary algebraic
schemes; see Theorem 4.2 and Corollary 4.4. To this end, one has to replace in the above discussion
ordinary cohomology by Borel–Moore cohomology; cf. [Sch21b, §4].

Using some Lefschetz hyperplane argument, Bloch shows that the injectivity of 𝜆2
𝑋 implies the

injectivity of 𝜆dim𝑋
𝑋 over algebraically closed fields (see [Blo79]), hence Roitman’s theorem [Roi80]

away from the characteristic. Similarly, 𝜆dim𝑋
𝑋 is known to be injective over finite fields; see, for example,

[KS83, CTSS83]. However, even over algebraically closed fields, the map 𝜆𝑖𝑋 is for 2 < 𝑖 < dim 𝑋 , in
general, not injective (e.g., [Schoe00, Tot97, SV05, RS10, Tot16, Sch21c, SS23]).

Roitman’s theorem on the injectivity of 𝜆dim𝑋
𝑋 over algebraically closed fields turned out to be a

very robust statement, with generalizations to non-proper and even singular spaces (e.g., [Lev85, KS02,
Gei10]). As mentioned above, there is also a generalization to finite fields [KS83, CTSS83]. In light
of the injectivity of 𝜆2

𝑋 over arbitrary fields, it is natural to wonder if Roitman’s theorem admits also a
generalization to arbitrary fields (i.e., is 𝜆dim𝑋

𝑋 always injective?) The main result of this paper answers
this question negatively.

Theorem 1.2. Let ℓ be a prime and let k be a field of characteristic different from ℓ. Then there is a
finitely generated field extension 𝐾/𝑘 and a smooth projective threefold X over K such that 𝜆3

𝑋 from
(1.1) is not injective.

The proof of the above result will rely on an adaptation of Schoen’s argument in [Schoe00], together
with some results on the integral Hodge and Tate conjecture due to Kollár, Hassett–Tschinkel and Totaro.
Taking products with projective spaces, we get the following.

Corollary 1.3. Let 𝑖 ≤ 𝑛 be positive integers, let k be a field and let ℓ be a prime invertible in k. Then
the map 𝜆𝑖𝑋 from (1.1) is injective for all smooth projective varieties X of dimension n over all finitely
generated field extension of k if and only if 𝑖 ≤ 2.

We will see in Lemma 4.7 below that over any field, the restriction of Jannsen’s cycle class map in
continuous étale cohomology [Jan88] to ℓ-power torsion cycles,

cl𝑖𝑋 : CH𝑖 (𝑋) [ℓ∞] �� 𝐻2𝑖
𝑐𝑜𝑛𝑡 (𝑋ét,Zℓ (𝑖)), (1.2)

factors through 𝜆𝑖𝑋 . In particular, (1.1) refines Jannsen’s cycle class map on torsion cycles. As a
consequence of Theorem 1.2, we immediately get the following, which answers [SS23, Question 1.7(a)].

Corollary 1.4. For any 𝑛 ≥ 3 and any prime ℓ, there is a smooth projective n-fold X over a finitely
generated field of characteristic different from ℓ such that Jannsen’s cycle class map

cl𝑛𝑋 : CH𝑛 (𝑋) [ℓ∞] �� 𝐻2𝑛
𝑐𝑜𝑛𝑡 (𝑋ét,Zℓ (𝑛))

is not injective on the subgroup of ℓ-power torsion classes.

Jannsen showed that in the case of divisors (i.e., codimension one cycles) his cycle class map for
smooth projective varieties over finitely generated fields is injective integrally; see [Jan88, Remark
6.15(a)] and [Sch21b, (P7.2) in Proposition 6.6]. He further conjectured that after tensoring with Q,
his cycle class map is injective for cycles of arbitrary codimension over finitely generated fields. Scavia
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and Suzuki exhibited in [SS23] several interesting examples that show that tensoring with Q is really
necessary (i.e., the integral Jannsen conjecture fails in general). The main case left open by [SS23] is
that of zero-cycles, that we deal with in this paper. The case of zero-cycles is of particular importance
because injectivity of 𝜆dim𝑋

𝑋 on ℓ-power torsion zero-cycles for all smooth projective varieties X over
finitely generated fields would imply the Rost nilpotence conjecture in characteristic zero by [Dia22]
and the arguments in [Sch21b, §9.4] and [Sch22, §B.2] (see also [RS18]).

For the aforementioned application to the Rost nilpotence conjecture, it would be enough to prove
injectivity of 𝜆dim𝑋

𝑋 for varieties with a k-rational point (essentially because the argument in [Dia22]
proceeds via base change to the function field, where a rational point is automatic). The examples in
Theorem 1.2 have no rational point. However, a variant of our construction gives (at least for the prime
ℓ = 2) examples with rational points as well, which puts an end to the hope that the Rost nilpotence
conjecture may be a consequence of the injectivity of 𝜆dim𝑋 on smooth projective varieties with a
rational point.

Theorem 1.5. There is a finitely generated field k of characteristic zero and a smooth projective threefold
X over k such that X has a k-rational point and 𝜆3

𝑋 from (1.1) is not injective for the prime ℓ = 2.

The examples in Theorem 1.2 have Kodaira dimension 2, while those in Theorem 1.5 have negative
Kodaira dimension, as they are conic bundles over surfaces of positive Kodaira dimension. The question
whether 𝜆dim𝑋

𝑋 is injective for smooth projective varieties X that are geometrically rationally connected
remains open (this question is interesting for the base change 𝑋𝑘 (𝑋 ) of any rationally connected variety
X over an algebraically closed field k which does not admit an integral decomposition of the diagonal;
for examples of the latter, see the survey [Sch21a] and the references therein).

2. Preliminaries

We recall some of the notation and conventions from [Sch21b] that we will use. An algebraic scheme is
a separated scheme of finite type over a field. A variety is an integral algebraic scheme. A field is finitely
generated if it is finitely generated over its prime field. The n-torsion subgroup of an abelian group G
is denoted by 𝐺 [𝑛]; the subgroup of elements annihilated by some power of n is denoted by 𝐺 [𝑛∞]. If
𝜑 : 𝐻 → 𝐺 is a morphism of abelian groups, we denote by slight abuse of notation 𝐺/𝐻 := coker(𝜑).

We fix a field k and a prime ℓ invertible in k. For an algebraic scheme X of dimension 𝑑𝑋 over
k, we denote by CH𝑖 (𝑋) := CH𝑑𝑋−𝑖 (𝑋) the Chow group of cycles of dimension 𝑑𝑋 − 𝑖 on X. For
𝐴 ∈ {Z/ℓ𝑟 ,Zℓ ,Qℓ ,Qℓ/Zℓ }, we let

𝐻𝑖 (𝑋, 𝐴(𝑛)) := 𝐻𝑖
𝐵𝑀 (𝑋, 𝐴(𝑛))

be twisted Borel–Moore pro-étale cohomology; see [Sch21b, (6.13)-(6.15)] and [Sch21b, Proposition
6.6]. Some of the most important properties of this functor are collected in [Sch21b, Section 4]. If X is
smooth and equi-dimensional, then we have canonical identifications

𝐻𝑖 (𝑋,Z/ℓ𝑟 (𝑛)) � 𝐻𝑖 (𝑋ét, 𝜇
⊗𝑛
ℓ𝑟 ), 𝐻𝑖 (𝑋,Qℓ/Zℓ (𝑛)) = lim ��

𝑟

𝐻𝑖 (𝑋ét, 𝜇
⊗𝑛
ℓ𝑟 ), (2.1)

𝐻𝑖 (𝑋,Zℓ (𝑛)) �𝐻𝑖
𝑐𝑜𝑛𝑡 (𝑋ét,Zℓ (𝑛)) and 𝐻𝑖 (𝑋,Qℓ (𝑛)) �𝐻𝑖

𝑐𝑜𝑛𝑡 (𝑋ét,Qℓ (𝑛)) =𝐻𝑖
𝑐𝑜𝑛𝑡 (𝑋ét,Zℓ (𝑛)) ⊗ZℓQℓ ;

see [Sch21b, Lemma 6.5].
For 𝑗 ≥ 0, we denote by 𝐹𝑗𝑋 the pro-scheme given by the inverse limit of all open subsets 𝑈 ⊂ 𝑋

with dim(𝑋 \𝑈) < dim 𝑋 − 𝑗 . If 𝑈 ↩→ 𝑋 is an open immersion with dim𝑈 = dim 𝑋 , then there are
restriction maps 𝐻𝑖 (𝑋, 𝐴(𝑛)) → 𝐻𝑖 (𝑈, 𝐴(𝑛)). As in [Sch21b, Section 5], we define

𝐻𝑖 (𝐹𝑗𝑋, 𝐴(𝑛)) := lim ��

𝑈 ⊂𝑋

𝐻𝑖 (𝑈, 𝐴(𝑛)),
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where U runs through all open subsets of X that make up the pro-scheme 𝐹𝑗𝑋 above. The coniveau
filtration 𝑁∗ on 𝐻𝑖 (𝑋, 𝐴(𝑛)) is then given by

𝑁 𝑗𝐻𝑖 (𝑋, 𝐴(𝑛)) := ker(𝐻𝑖 (𝑋, 𝐴(𝑛)) → 𝐻𝑖 (𝐹𝑗−1𝑋, 𝐴(𝑛))); (2.2)

see [Sch21b, (5.1)].
For 𝑚 ≥ 𝑗 , there are natural restriction maps 𝐻𝑖 (𝐹𝑚𝑋, 𝐴(𝑛)) → 𝐻𝑖 (𝐹𝑗𝑋, 𝐴(𝑛)), and we denote the

image of this map by 𝐹𝑚𝐻𝑖 (𝐹𝑗𝑋, 𝐴(𝑛)); see [Sch21b, Definition 5.3]. For a scheme point 𝑥 ∈ 𝑋 , we
let 𝐻𝑖 (𝑥, 𝐴(𝑛)) := 𝐻𝑖 (𝐹0{𝑥}, 𝐴(𝑛)), where {𝑥} ⊂ 𝑋 denotes the closure of x; note that 𝐻0(𝑥, 𝐴(0)) =
𝐴 · [𝑥], where [𝑥] ∈ 𝐻0(𝑥, 𝐴(0)) denotes the fundamental class of x; cf. [Sch21b, (P3) in Definition 4.2
and Proposition 6.6].

The Gysin sequence induces the following important long exact sequence (see [Sch21b, Lemma 5.8]):

�� 𝐻𝑖 (𝐹𝑗𝑋, 𝐴(𝑛)) �� 𝐻𝑖 (𝐹𝑗−1𝑋, 𝐴(𝑛)) 𝜕 ��
⊕
𝑥∈𝑋 ( 𝑗)

𝐻𝑖+1−2 𝑗 (𝑥, 𝐴(𝑛 − 𝑗)) 𝜄∗ �� 𝐻𝑖+1(𝐹𝑗𝑋, 𝐴(𝑛)).

(2.3)

Since 𝐻𝑖 (𝑥, 𝐴(𝑛)) = 0 for 𝑖 < 0, we deduce 𝐻𝑖 (𝑋, 𝐴(𝑛)) = 𝐻𝑖 (𝐹𝑗𝑋, 𝐴(𝑛)) for 𝑗 ≥ �𝑖/2
; see [Sch21b,
Corollary 5.10].

Let CH𝑖 (𝑋)Zℓ := CH𝑖 (𝑋) ⊗Z Zℓ . Then there is a cycle class map

cl𝑖𝑋 : CH𝑖 (𝑋)Zℓ
�� 𝐻2𝑖 (𝑋,Zℓ (𝑖));

see [Sch21b, (7.1)]. This map is induced by the following pushforward map that appears in the above
long exact sequence (2.3):⊕

𝑥∈𝑋 (𝑖)

𝐻0 (𝑥,Zℓ (0)) =
⊕
𝑥∈𝑋 (𝑖)

Zℓ [𝑥]
𝜄∗ �� 𝐻2𝑖 (𝐹𝑖𝑋,Zℓ (𝑖)) = 𝐻2𝑖 (𝑋,Zℓ (𝑖)).

If X is smooth and equi-dimensional, then the above cycle class map agrees with Jannsen’s cycle class
map in continuous étale cohomology from [Jan88]; see [Sch21b, Lemma 9.1].

There is a natural coniveau filtration 𝑁∗ on CH𝑖 (𝑋)Zℓ , given by the condition that a cycle [𝑧] lies in
𝑁 𝑗 if and only if there is a closed subset 𝑍 ⊂ 𝑋 of codimension j such that z is rationally equivalent to
a homologously trivial cycle on Z; that is,

[𝑧] ∈ im(ker(cl𝑖− 𝑗𝑍 ) �� CH𝑖 (𝑋)Zℓ );

see [Sch21b, Definition 7.3]. In view of [Sch21b, Definition 7.2 and Lemma 7.4], we define

𝐴𝑖 (𝑋)Zℓ := CH𝑖 (𝑋)Zℓ/𝑁
𝑖−1 CH𝑖 (𝑋)Zℓ and 𝐴𝑖 (𝑋) [ℓ∞] := 𝐴𝑖 (𝑋)Zℓ [ℓ

∞] .

If the field k is finitely generated, then 𝐴𝑖 (𝑋)Zℓ = CH𝑖 (𝑋)Zℓ by [Sch21b, Lemma 7.5].

Remark 2.1. Let X be an algebraic k-scheme of dimension 𝑑𝑋 . Assume that there is a closed embedding
𝜄 : 𝑋 ↩→ 𝑌 into a smooth equi-dimensional algebraic k-scheme Y of dimension 𝑑𝑌 . Then the Borel–
Moore cohomology groups 𝐻𝑖 (𝑋, 𝐴(𝑛)) = 𝐻𝑖

𝐵𝑀 (𝑋, 𝐴(𝑛)) above may be identified with ordinary
cohomology groups with support as follows:

𝐻𝑖
𝐵𝑀 (𝑋, 𝐴(𝑛)) = 𝐻𝑖+2𝑐

𝑋 (𝑌proét, 𝐴(𝑛 + 𝑐)),

where 𝑐 = 𝑑𝑌 − 𝑑𝑋 ; see also [Sch22, Appendix A]. We explain the above identification in the case
where 𝐴 = Zℓ ; the general case is similar. To this end, let 𝜋𝑋 : 𝑋 → Spec 𝑘 be the structure map and
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note that by definition in [Sch21b, (6.13)-(6.15)], we have

𝐻𝑖
𝐵𝑀 (𝑋,Zℓ (𝑛)) = R𝑖−2𝑑𝑋 Γ(𝑋proét, 𝜋

!
𝑋 Ẑℓ (𝑛 − 𝑑𝑋 )).

If 𝜋𝑌 : 𝑌 → Spec 𝑘 denotes the structure morphism, then 𝜋𝑋 = 𝜋𝑌 ◦ 𝜄 and so

𝜋!
𝑋 = (𝜋𝑌 ◦ 𝜄)! = 𝜄! ◦ 𝜋!

𝑌 = 𝜄! ◦ 𝜋∗𝑌 (𝑑𝑌 ) [2𝑑𝑌 ],

where we used that 𝜋!
𝑌 = 𝜋∗𝑌 (𝑑𝑌 ) [2𝑑𝑌 ] by Poincaré duality; see, for example, [Sch21b, Lemma 6.1(4)].

Hence,

𝐻𝑖
𝐵𝑀 (𝑋,Zℓ (𝑛)) = R𝑖−2𝑑𝑋+2𝑑𝑌 Γ(𝑌proét, 𝜄

!Ẑℓ (𝑛 − 𝑑𝑋 + 𝑑𝑌 )) = 𝐻𝑖+2𝑐
𝑋 (𝑌proét,Zℓ (𝑛 + 𝑐)),

where 𝑐 := 𝑑𝑌 − 𝑑𝑋 , and where the above right-hand side denotes ordinary pro-étale cohomology with
support; see [Sch22, (A.6)] and [BS15].

3. An auxiliary cycle map

3.1. Construction of 𝜆̃𝑖𝑡𝑟
In this subsection, we construct a map 𝜆̃𝑖𝑡𝑟 which is closely related to the transcendental Abel–Jacobi
map in [Sch21b] and which will be used in Section 4.1 below to construct 𝜆𝑖𝑋 from (1.1).

To begin, we will need the following simple lemma.

Lemma 3.1. Let X be an algebraic scheme over a field k and let 𝐴 ∈ {Z/ℓ𝑟 ,Zℓ ,Qℓ ,Qℓ/Zℓ }, where ℓ
is a prime invertible in k. Then the natural restriction map 𝐻2𝑖−1(𝑋, 𝐴(𝑖)) → 𝐻2𝑖−1(𝐹𝑖−1𝑋, 𝐴(𝑖)) is
injective. Using this to identify each 𝑁 𝑗𝐻2𝑖−1(𝑋, 𝐴(𝑖)) with a subgroup of 𝐻2𝑖−1(𝐹𝑖−1𝑋, 𝐴(𝑖)), we get
a natural isomorphism

𝜄∗

(
ker

(
𝜕 ◦ 𝜄∗ :

⊕
𝑥∈𝑋 (𝑖−1)

𝐻1(𝑥, 𝐴(1)) →
⊕
𝑥∈𝑋 (𝑖)

[𝑥]𝐴

))
� 𝑁 𝑖−1𝐻2𝑖−1(𝑋, 𝐴(𝑖)). (3.1)

Proof. By (2.3), 𝐻2𝑖−1(𝐹𝑗𝑋, 𝐴(𝑖)) → 𝐻2𝑖−1(𝐹𝑗−1𝑋, 𝐴(𝑖)) is injective for all 𝑗 ≥ 𝑖, as 𝐻𝑙 (𝑥, 𝐴(𝑛)) = 0
for 𝑙 < 0 and 𝑥 ∈ 𝑋 . Since 𝐹𝑗𝑋 = 𝑋 for 𝑗 > dim 𝑋 , we deduce that 𝐻2𝑖−1(𝑋, 𝐴(𝑖)) →

𝐻2𝑖−1(𝐹𝑖−1𝑋, 𝐴(𝑖)) is injective, which proves the injectivity claim in the lemma.
Note next that the following sequence is exact by (2.3):⊕

𝑥∈𝑋 (𝑖−1)

𝐻1(𝑥, 𝐴(1)) 𝜄∗ �� 𝐻2𝑖−1(𝐹𝑖−1𝑋, 𝐴(𝑖)) �� 𝐻2𝑖−1(𝐹𝑖−2𝑋, 𝐴(𝑖)).

By the compatibility of the Gysin long exact sequence with proper pushforwards (see [Sch21b, (P2)]),
we find that

𝜄∗

(
ker

(
𝜕 ◦ 𝜄∗ :

⊕
𝑥∈𝑋 (𝑖−1)

𝐻1 (𝑥, 𝐴(1)) →
⊕
𝑥∈𝑋 (𝑖)

[𝑥]𝐴

))
⊂ 𝐻2𝑖−1(𝐹𝑖−1𝑋, 𝐴(𝑖))

agrees with the image of the map 𝑁 𝑖−1𝐻2𝑖−1(𝑋, 𝐴(𝑖)) → 𝐻2𝑖−1(𝐹𝑖−1𝑋, 𝐴(𝑖)). This concludes the proof
of the lemma. �

Let X be an algebraic k-scheme and let ℓ be a prime invertible in k. By [Sch21b, Lemma 8.1], there
is a canonical isomorphism
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𝜓𝑟 : 𝐴𝑖 (𝑋) [ℓ𝑟 ] � ��
ker

(
𝜕 ◦ 𝜄∗ :

⊕
𝑥∈𝑋 (𝑖−1) 𝐻1 (𝑥, 𝜇⊗1

ℓ𝑟 )
��
⊕

𝑥∈𝑋 (𝑖) [𝑥]Z/ℓ𝑟
)

ker
(
𝜕 ◦ 𝜄∗ :

⊕
𝑥∈𝑋 (𝑖−1) 𝐻1 (𝑥,Zℓ (1)) ��

⊕
𝑥∈𝑋 (𝑖) [𝑥]Zℓ

) , (3.2)

which we describe in what follows explicitly. To this end, note that an ℓ𝑟 -torsion class in 𝐴𝑖 (𝑋)Zℓ
corresponds to a cycle [𝑧] ∈ CH𝑖 (𝑋)Zℓ such that ℓ𝑟 [𝑧] ∈ 𝑁 𝑖−1 CH𝑖 (𝑋)Zℓ . By [Sch21b, Definition 7.2
and Lemma 7.4], this means that there is a class

𝜉 ∈
⊕

𝑥∈𝑋 (𝑖−1)

𝐻1(𝑥,Zℓ (1))

with 𝜕 (𝜄∗𝜉) = ℓ𝑟 · 𝑧. It follows that the reduction 𝜉 of 𝜉 modulo ℓ𝑟 has trivial residues and we have
𝜓𝑟 ([𝑧]) = [𝜉].

Since 𝜉 has trivial residues modulo ℓ𝑟 , there is a class 𝛾 ∈ 𝐻2𝑖−1(𝑋, 𝜇⊗𝑖
ℓ𝑟 ) with

𝛾 = 𝜄∗𝜉 ∈ 𝐹𝑖𝐻2𝑖−1(𝐹𝑖−1𝑋, 𝜇⊗𝑖
ℓ𝑟 ).

Note that 𝛾 is uniquely determined by 𝜉 because the map

𝐻2𝑖−1(𝑋, 𝜇⊗𝑖
ℓ𝑟 )

�� 𝐻2𝑖−1(𝐹𝑖−1𝑋, 𝜇⊗𝑖
ℓ𝑟 )

is injective by Lemma 3.1. Using this, we will, in what follows, implicitly identify 𝜄∗𝜉 and 𝛾 with each
other.

The image of 𝛾 = 𝜄∗𝜉 in 𝐻2𝑖−1(𝑋,Qℓ/Zℓ (𝑖)) is well-defined (i.e., depends only on the class [𝑧]) up
to elements of the form 𝜄∗𝜁 for

𝜁 ∈ ker

(
𝜕 ◦ 𝜄∗ :

⊕
𝑥∈𝑋 (𝑖−1)

𝐻1 (𝑥,Zℓ (1)) ��
⊕
𝑥∈𝑋 (𝑖)

[𝑥]Zℓ

)
. (3.3)

By Lemma 3.1, the subgroup of 𝐻2𝑖−1(𝑋,Qℓ/Zℓ (𝑖)) generated by classes of the form 𝜄∗𝜁 with 𝜁 as in
(3.3) agrees with the image of 𝑁 𝑖−1𝐻2𝑖−1(𝑋,Qℓ (𝑖)), and so we find that the class

𝜆̃𝑖𝑡𝑟 ([𝑧]) := −[𝜄∗𝜉] ∈ 𝐻2𝑖−1(𝑋,Qℓ/Zℓ (𝑖))/𝑁
𝑖−1𝐻2𝑖−1(𝑋,Qℓ (𝑖))

is well-defined, giving rise to a map

𝜆̃𝑖𝑡𝑟 : 𝐴𝑖 (𝑋) [ℓ∞] �� 𝐻2𝑖−1(𝑋,Qℓ/Zℓ (𝑖))/𝑁
𝑖−1𝐻2𝑖−1(𝑋,Qℓ (𝑖)). (3.4)

(The minus sign is necessary to make our map compatible with Bloch’s map; cf. [Blo79, p. 112] and
[Sch21b, Proposition 8.3].)

3.2. Basic properties of 𝜆̃𝑖𝑡𝑟
Lemma 3.2. The restriction of 𝜆̃𝑖𝑡𝑟 to the subgroup of classes [𝑧] ∈ 𝐴𝑖 (𝑋) [ℓ∞] with cl𝑖𝑋 (𝑧) = 0 coincides
with the transcendental Abel–Jacobi map 𝜆𝑖𝑡𝑟 from [Sch21b, §7.5].

Proof. Assume that cl𝑖𝑋 (𝑧) = 0. Following the construction in [Sch21b, §7.5], there is a class 𝛼 ∈

𝐻2𝑖−1(𝐹𝑖−1𝑋,Zℓ (𝑖)) with 𝜕𝛼 = 𝑧 and a class 𝛽 ∈ 𝐻2𝑖−1(𝑋,Zℓ (𝑖)) with

𝛽 = ℓ𝑟𝛼 − 𝜄∗𝜉 ∈ 𝐹𝑖𝐻2𝑖−1(𝐹𝑖−1𝑋,Zℓ (𝑖)) (3.5)

for some 𝜉 ∈
⊕

𝑥∈𝑋 (𝑖−1) 𝐻1 (𝑥,Zℓ (1)). We then think about 𝛽/ℓ𝑟 as a class in 𝐻2𝑖−1(𝑋,Qℓ (𝑖)) and
project this further to a class [𝛽/ℓ𝑟 ] ∈ 𝐻2𝑖−1(𝑋,Qℓ/Zℓ (𝑖)). By definition in loc. cit., this class represents
𝜆𝑖𝑡𝑟 ([𝑧]):
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𝜆𝑖𝑡𝑟 ([𝑧]) = [𝛽/ℓ𝑟 ] ∈
𝐻2𝑖−1(𝑋,Qℓ/Zℓ (𝑖))

𝑁 𝑖−1𝐻2𝑖−1(𝑋,Qℓ (𝑖))
.

We aim to see that this coincides with 𝜆̃𝑖𝑡𝑟 ([𝑧]) defined above. To this end, note that (3.5) implies
𝜕𝜄∗𝜉 = ℓ𝑟𝜕𝛼 = ℓ𝑟 · 𝑧 and so

𝜆̃𝑖𝑡𝑟 ([𝑧]) = −[𝜄∗𝜉],

where 𝜉 is the reduction modulo ℓ𝑟 of 𝜉 ∈
⊕

𝑥∈𝑋 (𝑖−1) 𝐻1 (𝑥,Zℓ (1)). By (3.5), we have 𝛽 = −𝜄∗𝜉 and so
the claim in the lemma reduces to the simple observation that the following diagram is commutative:

𝐻2𝑖−1(𝐹𝑖−1𝑋,Zℓ (𝑖))
·(1/ℓ𝑟 )

��

mod ℓ𝑟

��

𝐻2𝑖−1(𝐹𝑖−1𝑋,Qℓ (𝑖)) �� 𝐻2𝑖−1(𝐹𝑖−1𝑋,Qℓ/Zℓ (𝑖))

=

��

𝐻2𝑖−1(𝐹𝑖−1𝑋, 𝜇⊗𝑖
ℓ𝑟 )

�� colim𝑠 𝐻
2𝑖−1(𝐹𝑖−1𝑋, 𝜇⊗𝑖

ℓ𝑠 )

.

This concludes the proof of the lemma. �

It is shown in [Sch21b] that 𝜆𝑖𝑡𝑟 is injective for 𝑖 ≤ 2; cf. [Sch21b, Theorem 9.4 and Corollary 9.5]
or [Sch21b, Theorem 1.8(2)]. The following result extends this to 𝜆̃𝑖𝑡𝑟 as follows.

Proposition 3.3. Let X be an algebraic scheme over a finitely generated field k and let ℓ be a prime
invertible in k. Then

𝜆̃𝑖𝑡𝑟 : 𝐴𝑖 (𝑋) [ℓ∞] �� 𝐻2𝑖−1(𝑋,Qℓ/Zℓ (𝑖))/𝑁
𝑖−1𝐻2𝑖−1(𝑋,Qℓ (𝑖))

is injective for 𝑖 ≤ 2.

Proof. Let [𝑧0] ∈ ker(𝜆̃𝑖𝑡𝑟 ). We first show that [𝑧0] lies in the kernel of the cycle class map. By
(3.2), we find that there is a class 𝜉 ∈

⊕
𝑥∈𝑋 (𝑖−1) 𝐻1(𝑥,Zℓ (1)) such that ℓ𝑟 𝑧0 = 𝜕 (𝜄∗𝜉) and such that

𝜆̃𝑖𝑡𝑟 ([𝑧0]) = −[𝜄∗𝜉] = 0. Especially, we may assume 𝜄∗𝜉 ∈ im(𝑁 𝑖−1𝐻2𝑖−1(𝑋,Zℓ (𝑖)) �� 𝐻2𝑖−1(𝑋, 𝜇⊗𝑖
ℓ𝑟 ))

and so by (3.1), we obtain 𝜄∗𝜉 = 𝜄∗𝜁 for some

𝜁 ∈ ker

(
𝜕 ◦ 𝜄∗ :

⊕
𝑥∈𝑋 (𝑖−1)

𝐻1(𝑥,Zℓ (1)) ��
⊕
𝑥∈𝑋 (𝑖)

[𝑥]Zℓ

)
.

Exactness of the Bockstein sequence then gives 𝜄∗𝜉 = 𝜄∗𝜁 + ℓ𝑟𝛼 for some 𝛼 ∈ 𝐻2𝑖−1(𝐹𝑖−1𝑋,Zℓ (𝑖)).
Since 𝜕𝜄∗𝜁 = 0, we get that 𝑧0 = 𝜕𝛼 and so cl𝑖𝑋 ([𝑧0]) = 𝜄∗ [𝑧0] = 0 by exactness of (2.3). Hence, 𝑧0
has trivial cycle class on X, as claimed. By Lemma 3.2, it then follows that 𝑧0 lies in the kernel of
the transcendental Abel–Jacobi map from [Sch21b]: 𝜆𝑖𝑡𝑟 ([𝑧0]) = 0. In other words, we have proved
that ker(𝜆̃𝑖𝑡𝑟 ) = ker(𝜆𝑖𝑡𝑟 ) (but note that the two maps are defined on different domains: 𝜆𝑖𝑡𝑟 is defined
on homologically trivial ℓ∞-torsion cycles, while 𝜆̃𝑖𝑡𝑟 is defined on arbitrary ℓ∞-torsion cycles). Since
ker(𝜆̃𝑖𝑡𝑟 ) = ker(𝜆𝑖𝑡𝑟 ), [Sch21b, Theorem 1.8(2)] yields

ker(𝜆̃𝑖𝑡𝑟 ) = 𝐻2𝑖−2
𝑖−3,𝑛𝑟 (𝑋,Qℓ/Zℓ (𝑖))/𝐺

𝑖𝐻2𝑖−2
𝑖−3,𝑛𝑟 (𝑋,Qℓ/Zℓ (𝑖)),

where 𝐻𝑖
𝑗 ,𝑛𝑟 (𝑋, 𝐴(𝑛)) = im(𝐻𝑖 (𝐹𝑗+1𝑋, 𝐴(𝑛)) → 𝐻𝑖 (𝐹𝑗𝑋, 𝐴(𝑛))) denotes the j-th refined unramified

cohomology; cf. [Sch21b]. Since 𝐹𝑗𝑋 = ∅ for 𝑗 < 0, we get that 𝐻𝑖
𝑗 ,𝑛𝑟 (𝑋, 𝐴(𝑛)) = 0 for 𝑗 < 0 and so

ker(𝜆̃𝑖𝑡𝑟 ) = 0 for 𝑖 < 3. This proves the proposition. �

The following result is motivated by the description of the image of 𝜆𝑖𝑡𝑟 in [Sch21b, Proposition 7.16].
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Proposition 3.4. Let X be an algebraic k-scheme and let ℓ be a prime invertible in k. Then the map 𝜆̃𝑖𝑡𝑟
from (3.4) satisfies

im(𝜆̃𝑖𝑡𝑟 ) =
𝑁 𝑖−1𝐻2𝑖−1(𝑋,Qℓ/Zℓ (𝑖))

𝑁 𝑖−1𝐻2𝑖−1(𝑋,Qℓ (𝑖))
.

Proof. Recall from Section 3.1 that 𝜆̃𝑖𝑡𝑟 was constructed as the direct limit of maps

𝜆̃𝑖𝑟 : 𝐴𝑖 (𝑋) [ℓ𝑟 ] ��
𝐻2𝑖−1(𝑋, 𝜇⊗𝑖

ℓ𝑟 )

𝑁 𝑖−1𝐻2𝑖−1(𝑋,Zℓ (𝑖))

over all positive integers 𝑟 ≥ 1. As taking direct limits is an exact functor, it suffices to show that

im(𝜆̃𝑖𝑟 ) =
𝑁 𝑖−1𝐻2𝑖−1(𝑋, 𝜇⊗𝑖

ℓ𝑟 )

𝑁 𝑖−1𝐻2𝑖−1(𝑋,Zℓ (𝑖))
for all 𝑟 ≥ 1. (3.6)

Let [𝑧0] ∈ 𝐴𝑖 (𝑋) [ℓ𝑟 ]. Then by (3.2) and the construction in Section 3.1, there is a class

𝜉 ∈
⊕

𝑥∈𝑋 (𝑖−1)

𝐻1(𝑥,Zℓ (1))

such that 𝜕 (𝜄∗𝜉) = ℓ𝑟 𝑧0 and such that 𝜆̃𝑖𝑟 ([𝑧0]) = −[𝜄∗𝜉]. Since the following sequence⊕
𝑥∈𝑋 (𝑖−1)

𝐻1(𝑥, 𝜇⊗1
ℓ𝑟 )

𝜄∗ �� 𝐻2𝑖−1(𝐹𝑖−1𝑋, 𝜇⊗𝑖
ℓ𝑟 )

�� 𝐻2𝑖−1(𝐹𝑖−2𝑋, 𝜇⊗𝑖
ℓ𝑟 )

is exact by (2.3), we find 𝜄∗𝜉 ∈ 𝑁 𝑖−1𝐻2𝑖−1(𝑋, 𝜇⊗𝑖
ℓ𝑟 ). This proves the inclusion “⊆” for (3.6).

However, if 𝛽 ∈ 𝑁 𝑖−1𝐻2𝑖−1(𝑋, 𝜇⊗𝑖
ℓ𝑟 ) then, by (3.1), we can pick

𝜉 ∈ ker

(
𝜕 ◦ 𝜄∗ :

⊕
𝑥∈𝑋 (𝑖−1)

𝐻1(𝑥, 𝜇⊗1
ℓ𝑟 )

��
⊕
𝑥∈𝑋 (𝑖)

[𝑥]Z/ℓ𝑟

)

such that 𝜄∗𝜉 = 𝛽. Hilbert 90 implies that 𝐻1 (𝑥,Zℓ (1)) → 𝐻1(𝑥, 𝜇⊗𝑖
ℓ𝑟 ) is surjective for all 𝑥 ∈ 𝑋; see

[Sch21b, (P6) in Definition 4.4 and Proposition 6.6]. Hence, there is a class 𝜉 ∈
⊕

𝑥∈𝑋 (𝑖−1) 𝐻1(𝑥,Zℓ (1))
whose reduction modulo ℓ𝑟 is 𝜉 ∈

⊕
𝑥∈𝑋 (𝑖−1) 𝐻1(𝑥, 𝜇⊗𝑖

ℓ𝑟 ). In particular, 0 = 𝜕𝛽 = 𝜕 (𝜄∗𝜉) yields
𝜕 (𝜄∗𝜉) = ℓ𝑟 𝑧0 for some 𝑧0 ∈

⊕
𝑥∈𝑋 (𝑖) [𝑥]Zℓ and thus, 𝜆̃𝑖𝑟 (−[𝑧0]) = [𝜄∗𝜉] = [𝛽]. This finishes the proof

of the proposition. �

By Lemma 3.2, 𝜆̃𝑖𝑡𝑟 and 𝜆𝑖𝑡𝑟 agree on ℓ-power torsion classes with trivial cycle class. Moreover, in
the proof of Proposition 3.3, we showed that 𝜆̃𝑖𝑡𝑟 and 𝜆𝑖𝑡𝑟 have the same kernel. The following lemma
shows more generally that 𝜆̃𝑖𝑡𝑟 factors through the cycle class map.

Lemma 3.5. Let X be an algebraic k-scheme which admits a closed embedding into a smooth equi-
dimensional algebraic k-scheme (e.g., X is quasi-projective). Then the composition of 𝜆̃𝑖𝑡𝑟 from (3.4)
with the negative of the Bockstein map

𝛿 : 𝐻2𝑖−1(𝑋,Qℓ/Zℓ (𝑖)) �� 𝐻2𝑖 (𝑋,Zℓ (𝑖))

agrees with the cycle class map cl𝑖𝑋 : 𝐴𝑖 (𝑋) [ℓ∞] �� 𝐻2𝑖 (𝑋,Zℓ (𝑖)).

Proof. We follow the proof of [CTSS83, Proposition 1]. By topological invariance of the pro-étale site,
we may up to replacing k by its perfect closure assume that k is perfect (cf. [BS15, Lemma 5.4.2]).
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Let [𝑧0] ∈ 𝐴𝑖 (𝑋) [ℓ∞]. Then there is a closed subset 𝑊 ⊂ 𝑋 of pure codimension 𝑖 − 1 and a class
𝜉 ∈ 𝐻1(𝐹0𝑊,Zℓ (1)) such that 𝜕𝜉 = ℓ𝑟 𝑧0 for some integer 𝑟 ≥ 0. In particular, 𝜆̃𝑖𝑡𝑟 ([𝑧0]) = −[𝜄∗𝜉],

where 𝜉 ∈ 𝐻1(𝑊, 𝜇ℓ𝑟 ) is the reduction of 𝜉 modulo ℓ𝑟 and 𝜄 : 𝑊 ↩→ 𝑋 the obvious closed embedding.
Since the Bockstein map is compatible with proper pushforwards (cf. [Sch21b, (P5) in Definition 4.4
and Proposition 6.6]), the lemma follows if we can show that

−𝛿(𝜉) = cl1𝑊 (𝑧0) ∈ 𝐻2(𝑊,Zℓ (1)). (3.7)

The above statement does not depend on the ambient space X. Since X can be embedded into a smooth
equi-dimensional k-scheme by assumption, we may thus from now on assume without loss of generality
that X is smooth and equi-dimensional.

In what follows, for a closed subset 𝑍 ⊂ 𝑋 and 𝐴 ∈ {Z/ℓ𝑟 ,Zℓ ,Qℓ ,Qℓ/Zℓ }, the group 𝐻𝑖
𝑍 (𝑋, 𝐴(𝑛))

stands for ordinary pro-étale cohomology with support; if 𝑐 = dim 𝑋 − dim 𝑍 , then

𝐻𝑖−2𝑐
𝐵𝑀 (𝑍, 𝐴(𝑛)) = 𝐻𝑖

𝑍 (𝑋, 𝐴(𝑛))

by Remark 2.1. The equation (3.7) then translates into the claim that

𝛼1 := −𝛿(𝜉) ∈ 𝐻2𝑖
𝑊 (𝑋,Zℓ (𝑖)) and 𝛼2 := cl1𝑊 (𝑧0) ∈ 𝐻2𝑖

𝑊 (𝑋,Zℓ (𝑖)) coincide. (3.8)

We aim to describe the class 𝛼2 = cl1𝑊 (𝑧0). Since 𝜉 ∈ 𝐻1(𝐹0𝑊,Zℓ (1)), we may pick a closed subset
𝑊 ′ ⊂ 𝑊 of pure codimension one such that 𝜉 admits a lift to 𝐻1(𝑊\𝑊 ′,Zℓ (1)) = 𝐻2𝑖−1

𝑊 \𝑊 ′ (𝑋\𝑊
′,Zℓ (𝑖)).

Then 𝜕𝜉 = ℓ𝑟 𝑧0 ∈ 𝐻2𝑖
𝑊 ′ (𝑋,Zℓ (𝑖)) =

⊕
𝑥∈𝑊 ′(0) [𝑥]Zℓ , and 𝛼2 is the image of 𝑧0 in 𝐻2𝑖

𝑊 (𝑋,Zℓ (𝑖)).
In order to show 𝛼1 = 𝛼2, we take a Cartan-Eilenberg injective resolution

0 �� 𝐼• �� 𝐽•
𝑝 �� 𝐾• �� 0

for the following short exact sequence of sheaves on 𝑋proét

0 �� Ẑℓ (𝑖)
×ℓ𝑟 �� Ẑℓ (𝑖) �� 𝜇⊗𝑖

ℓ𝑟
�� 0

and we consider the following commutative diagram of complexes of abelian groups.

1 1 1

1 𝐻0
𝑊 ′ (𝑋, 𝐼•) 𝐻0

𝑊 (𝑋, 𝐼•) 𝐻0
𝑊 \𝑊 ′ (𝑋 \𝑊 ′, 𝐼•) 1

1 𝐻0
𝑊 ′ (𝑋, 𝐽•) 𝐻0

𝑊 (𝑋, 𝐽•) 𝐻0
𝑊 \𝑊 ′ (𝑋 \𝑊 ′, 𝐽•) 1

1 𝐻0
𝑊 ′ (𝑋, 𝐾•) 𝐻0

𝑊 (𝑋, 𝐾•) 𝐻0
𝑊 \𝑊 ′ (𝑋 \𝑊 ′, 𝐾•) 1

1 1 1

𝑝 𝑝 𝑝

As higher cohomology (with support) of injective objects vanishes, we find that both the rows and
columns of the above diagram are exact. We shall denote the differential of these complexes by the letter d.

Let 𝜂 ∈ 𝐻0
𝑊 (𝑋, 𝐾2𝑖−1) be a lift of 𝜉 ∈ 𝐻2𝑖−1

𝑊 (𝑋, 𝜇⊗𝑖
ℓ𝑟 ). We claim that there exists a lift

𝜔 ∈ 𝐻0
𝑊 (𝑋, 𝐽2𝑖−1) of 𝜂 such that the image 𝜔′ of 𝜔 in 𝐻0

𝑊 \𝑊 ′ (𝑋 \𝑊 ′, 𝐽2𝑖−1) satisfies 𝑑𝜔′ = 0. Indeed,
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let 𝜂′ denote the image of 𝜂 in 𝐻0
𝑊 \𝑊 ′ (𝑋 \𝑊 ′, 𝐾2𝑖−1). Since 𝜉 is the reduction modulo ℓ𝑟 of a class

𝜉 ∈ 𝐻2𝑖−1
𝑊 \𝑊 ′ (𝑋 \𝑊 ′,Zℓ (𝑖)) and the reduction map

𝐻2𝑖−1
𝑊 \𝑊 ′ (𝑋 \𝑊 ′,Zℓ (𝑖)) �� 𝐻2𝑖−1

𝑊 \𝑊 ′ (𝑋 \𝑊 ′, 𝜇⊗𝑖
ℓ𝑟 )

is induced by

𝑝 : 𝐻0
𝑊 \𝑊 ′ (𝑋 \𝑊 ′, 𝐽•) �� 𝐻0

𝑊 \𝑊 ′ (𝑋 \𝑊 ′, 𝐾•),

we can find a class 𝜏′1 ∈ 𝐻0
𝑊 \𝑊 ′ (𝑋 \𝑊 ′, 𝐽2𝑖−1) with 𝑑𝜏′1 = 0 such that 𝑝(𝜏′1) = 𝜂′ + 𝑑 (𝜅′) for some 𝜅 ∈

𝐻0
𝑊 (𝑋, 𝐾2𝑖−2) with image 𝜅′ ∈ 𝐻0

𝑊 \𝑊 ′ (𝑋\𝑊 ′, 𝐾2𝑖−2). Replacing 𝜂 with 𝜂+𝑑𝜅, we may assume 𝑝(𝜏′1) =

𝜂′. Let 𝜏1 ∈ 𝐻0
𝑊 (𝑋, 𝐽2𝑖−1) be a lift of 𝜏′1. Exactness of the above diagram yields 𝜂 − 𝑝(𝜏1) = 𝑝(𝜄∗𝜏2) for

some 𝜏2 ∈ 𝐻0
𝑊 ′ (𝑋, 𝐽2𝑖−1) and we take𝜔 := 𝜏1+𝜄∗𝜏2, where 𝜄∗𝜏2 denotes the image of 𝜏2 in 𝐻0

𝑊 (𝑋, 𝐽2𝑖−1).
Then 𝑝(𝜔) = 𝜂 and the image𝜔′ of𝜔 in 𝐻0

𝑊 \𝑊 ′ (𝑋\𝑊
′, 𝐽2𝑖−1) satisfies 𝑑𝜔′ = 𝑑𝜏′1 = 0, as claimed above.

Using that the Bockstein map 𝛿 : 𝐻2𝑖−1
𝑊 (𝑋, 𝜇⊗𝑖

ℓ𝑟 )
�� 𝐻2𝑖

𝑊 (𝑋,Zℓ (𝑖)) is the coboundary map of the
middle vertical short exact sequence in the diagram above, we deduce 𝛼1 = [𝑑𝜔], where we regard 𝑑𝜔
as an element in 𝐻0

𝑊 (𝑋, 𝐼2𝑖).
Finally, we recall the construction of the class 𝛼2, so as to verify our claim (i.e., 𝛼1 = 𝛼2). Indeed,

the class 𝜔′ corresponds to a lift 𝜉 of 𝜉 ∈ 𝐻2𝑖−1
𝑊 \𝑊 ′ (𝑋 \ 𝑊 ′, 𝜇⊗𝑖

ℓ𝑟 ) in 𝐻2𝑖−1
𝑊 \𝑊 ′ (𝑋 \ 𝑊 ′,Zℓ (𝑖)), and an

easy diagram chase gives that 𝜕𝜉 ∈ 𝐻2𝑖
𝑊 ′ (𝑋,Zℓ (𝑖)) is the cohomology class of 𝑑𝜔 ∈ 𝐻0

𝑊 ′ (𝑋, 𝐽2𝑖).
Since 𝑝(𝑑𝜔) = 𝑑𝜂 = 0, we deduce 𝑑𝜔 ∈ 𝐻0

𝑊 ′ (𝑋, 𝐼2𝑖) and the corresponding class in 𝐻2𝑖
𝑊 ′ (𝑋,Zℓ (𝑖))

agrees with 𝑧0. Hence, the image of 𝑧0 in 𝐻2𝑖
𝑊 (𝑋,Zℓ (𝑖)) is the cohomology class of 𝑑𝜔 ∈ 𝐻0

𝑊 (𝑋, 𝐼2𝑖),
showing 𝛼1 = 𝛼2, as we want. This concludes the proof of the lemma. �

Lemma 3.6. Let 𝑋 𝑗 for 𝑗 = 1, 2 be smooth projective k-varieties and let ℓ be a prime invertible in k. Let
𝑧 𝑗 ∈ CH𝑖 𝑗 (𝑋 𝑗 ) be classes such that 𝑧2 is ℓ𝑟 -torsion. Then

𝜆̃𝑖1+𝑖2𝑡𝑟 (𝑧1 × 𝑧2) = pr∗1
(
cl𝑖1𝑋1

(𝑧1)
)
∪ pr∗2

(
𝜆̃𝑖2𝑡𝑟 ([𝑧2])

)
,

where cl𝑖1𝑋1
(𝑧1) ∈ 𝐻2𝑖1 (𝑋1,Qℓ/Zℓ (𝑖1)) denotes the reduction modulo ℓ𝑟 of cl𝑖1𝑋1

(𝑧1), that is, the image
of cl𝑖1𝑋1

(𝑧1) via the composition

𝐻2𝑖1 (𝑋1,Zℓ (𝑖1)) �� 𝐻2𝑖1 (𝑋1, 𝜇
⊗𝑖1
ℓ𝑟 ) �� colim𝑠 𝐻

2𝑖1 (𝑋1, 𝜇
⊗𝑖1
ℓ𝑠 ) = 𝐻2𝑖1 (𝑋1,Qℓ/Zℓ (𝑖1)).

Proof. By topological invariance of the étale, resp. pro-étale site, we may up to replacing k by its perfect
closure assume that k is perfect (cf. [BS15, Lemma 5.4.2]).

We will frequently cite properties of cohomology with support from [Sch22, Appendix A], which
applies to our setting by Remark 2.1 above.

There is a closed subset 𝑊2 ⊂ 𝑋 of pure codimension 𝑖2 − 1 and a class 𝜉 ∈ 𝐻1 (𝐹0𝑊2,Zℓ (1)) such
that 𝜕𝜉 = ℓ𝑟 𝑧2. We then have 𝜆̃𝑖2𝑡𝑟 ([𝑧2]) = −[(𝜄2)∗𝜉], where 𝜉 denotes the reduction of 𝜉 modulo ℓ𝑟

and (𝜄2)∗ denotes the pushforward induced by the closed embedding 𝜄2 : 𝑊2 ↩→ 𝑋2. If 𝜄1 : 𝑊1 ↩→ 𝑋1
denotes the inclusion of the support of 𝑧1, then 𝑐 := cl0𝑊1

(𝑧1) ∈ 𝐻0(𝑊1,Zℓ (0)) = 𝐻0 (𝐹0𝑊1,Zℓ (0))
satisfies cl𝑖1𝑋1

([𝑧1]) = (𝜄1)∗𝑐. We may then consider the class

𝑝∗1𝑐 ∪ 𝑝∗2𝜉 ∈ 𝐻1(𝐹0 (𝑊1 ×𝑊2),Zℓ (1)),

where 𝑝∗𝑖 denotes the pullback induced by the projection map 𝑝𝑖 : 𝑊1 ×𝑊2 → 𝑊𝑖 . Note that we use
here the reduction step that k is perfect as it implies that for each i, 𝑊𝑖 is generically smooth and equi-
dimensional, in which case Borel–Moore cohomology agrees with ordinary cohomology. In particular,
the cup product used above exists.
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The residue of the above class is given by

𝜕
(
𝑝∗1𝑐 ∪ 𝑝∗2𝜉

)
= 𝑝∗1𝑐 ∪ 𝜕

(
𝑝∗2𝜉

)
= ℓ𝑟 · (𝑧1 × 𝑧2);

cf. [Sch21a, Lemma 2.4]. Hence,

𝜆̃𝑖1+𝑖2𝑡𝑟 (𝑧1 × 𝑧2) = −(𝜄1 × 𝜄2)∗(𝑝
∗
1𝑐 ∪ 𝑝∗2𝜉).

In particular, the lemma follows once we have proven the following claim:

−(𝜄1 × 𝜄2)∗(𝑝
∗
1𝑐 ∪ 𝑝∗2𝜉) = pr∗1((𝜄1)∗𝑐) ∪ pr∗2

(
−(𝜄2)∗𝜉

)
= pr∗1

(
cl𝑖1𝑋1

(𝑧1)
)
∪ pr∗2

(
𝜆̃𝑖2𝑡𝑟 ([𝑧2])

)
, (3.9)

where pr∗𝑖 denotes the pullback induced by the projection pr𝑖 : 𝑋1 × 𝑋2 → 𝑋𝑖 . The second equality in
(3.9) is clear and so it suffices to prove the first. By linearity, it suffices to prove this in the case where
𝑊1 is irreducible and 𝑐 = 1 · [𝑊1] ∈ 𝐻0 (𝑊1,Zℓ (0)) is the fundamental class. It then suffices to prove

(𝜄1 × 𝜄2)∗(𝑝
∗
2𝜉) = pr∗1

(
cl𝑖1𝑋1

(𝑊1)
)
∪ pr∗2

(
(𝜄2)∗𝜉

)
. (3.10)

We consider the closed embeddings

𝑓 : 𝑊1 ×𝑊2 → 𝑋1 ×𝑊2 and 𝑔 : 𝑋1 ×𝑊2 → 𝑋1 × 𝑋2.

Note that 𝜄1 × 𝜄2 = 𝑔 ◦ 𝑓 . Let further 𝑞1 : 𝑋1 ×𝑊2 → 𝑋1 and 𝑞2 : 𝑋1 ×𝑊2 → 𝑊2 denote the projections.
Then 𝑝2 = 𝑞2 ◦ 𝑓 and so

(𝜄1 × 𝜄2)∗(𝑝
∗
2𝜉) = 𝑔∗ 𝑓∗( 𝑓

∗𝑞∗2𝜉).

By the projection formula (see, for example, [Sch22, Lemma A.19]), applied to f, we thus get

(𝜄1 × 𝜄2)∗(𝑝
∗
2𝜉) = 𝑔∗( 𝑓∗1 ∪ 𝑞∗2𝜉).

Note that in the above equation,

𝑓∗1 = 𝑔∗ cl𝑖1𝑋1×𝑋2
(𝑊1 × 𝑋2) ∈ 𝐻2𝑖1 (𝑋1 ×𝑊2, 𝜇

⊗𝑖1
ℓ𝑟 ).

Hence,

(𝜄1 × 𝜄2)∗(𝑝
∗
2𝜉) = 𝑔∗(𝑔

∗ cl𝑖1𝑋1×𝑋2
(𝑊1 × 𝑋2) ∪ 𝑞∗2𝜉).

Applying the projection formula with respect to g thus yields

(𝜄1 × 𝜄2)∗(𝑝
∗
2𝜉) = cl𝑖1𝑋1×𝑋2

(𝑊1 × 𝑋2) ∪ 𝑔∗𝑞
∗
2𝜉.

To prove (3.10), it thus suffices to show that

cl𝑖1𝑋1×𝑋2
(𝑊1 × 𝑋2) = pr∗1

(
cl𝑖1𝑋1

(𝑊1)
)

and 𝑔∗𝑞
∗
2𝜉 = pr∗2

(
(𝜄2)∗𝜉

)
. (3.11)

The first identity follows directly by the compatibility of pullbacks in cohomology and Chow groups
via the cycle class map (see, for example, [Sch22, Lemma A.21]). The second identity follows from
the compatibility of pullbacks and pushforwards as outlined, for example, in [Sch22, Lemma A.12(2)],
applied to the commutative diagram
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𝑋1 × (𝑊2 \ 𝑍2) ��

��

𝑋1 × (𝑋2 \ 𝑍2)

��

𝑊2 \ 𝑍2 �� 𝑋2 \ 𝑍2,

where 𝑍2 ⊂ 𝑊2 is a closed subset that is nowhere dense and which contains the singular locus of 𝑊2.
This concludes the proof of the lemma. �

Corollary 3.7. Let 𝑋 𝑗 for 𝑗 = 1, 2 be smooth projective k-varieties and let ℓ be a prime invertible in k.
Let 𝑧 𝑗 ∈ CH𝑖 𝑗 (𝑋 𝑗 ) be classes such that 𝑧2 is ℓ𝑟 -torsion for some positive integer r. Assume that cl𝑖1𝑋1

(𝑧1)
is zero modulo ℓ𝑟 . Then the ℓ𝑟 -torsion cycle

𝑧 := 𝑧1 × 𝑧2 ∈ CH𝑖1+𝑖2 (𝑋1 × 𝑋2)

lies in the kernel of 𝜆̃𝑖1+𝑖2𝑡𝑟 .

Proof. This is an immediate consequence of Lemma 3.6. �

4. Passing to the limit over finitely generated subfields

4.1. Construction of 𝜆𝑖𝑋
Let X be an algebraic scheme over a field k and let 𝑘0 ⊂ 𝑘 be a finitely generated subfield such that there
is a variety 𝑋0 over 𝑘0 with 𝑋 = 𝑋0 ×𝑘0 𝑘 . For any finitely generated subfield 𝑘 ′ ⊂ 𝑘 with 𝑘0 ⊂ 𝑘 ′, we
consider 𝑋𝑘′ := 𝑋0 ×𝑘0 𝑘 ′. We then have

CH𝑖 (𝑋) = lim ��

𝑘′/𝑘0

CH𝑖 (𝑋𝑘′ ) and CH𝑖 (𝑋) [ℓ∞] = lim ��

𝑘′/𝑘0

𝐴𝑖 (𝑋𝑘′ ) [ℓ
∞],

where the limit runs through all finitely generated subfields 𝑘 ′ ⊂ 𝑘 with 𝑘0 ⊂ 𝑘 ′ and where we used
CH𝑖 (𝑋𝑘′ ) Zℓ = 𝐴𝑖 (𝑋𝑘′ ) Zℓ for 𝑘 ′ finitely generated; cf. [Sch21b, Lemma 7.5]. Using this, we define 𝜆𝑖𝑋
as the direct limit of 𝜆̃𝑖𝑡𝑟 (see Section 3.1), applied to 𝑋𝑘′ for all finitely generated fields 𝑘 ′ as above:

𝜆𝑖𝑋 := lim ��

𝑘′/𝑘0

𝜆̃𝑖𝑡𝑟 : CH𝑖 (𝑋) [ℓ∞] = lim ��

𝑘′/𝑘0

𝐴𝑖 (𝑋𝑘′ ) [ℓ
∞] �� lim ��

𝑘′/𝑘0

𝐻2𝑖−1 (𝑋𝑘′ ,Qℓ/Zℓ (𝑖))

𝑁 𝑖−1𝐻2𝑖−1 (𝑋𝑘′ ,Qℓ (𝑖))
=

𝐻2𝑖−1 (𝑋,Qℓ/Zℓ (𝑖))

𝑀2𝑖−1 (𝑋)
,

where we use that

𝐻2𝑖−1(𝑋,Qℓ/Zℓ (𝑛)) � lim ��

𝑘′/𝑘0

𝐻2𝑖−1(𝑋𝑘′ ,Qℓ/Zℓ (𝑛)),

and where

𝑀2𝑖−1(𝑋) := im

(
lim ��

𝑘′/𝑘0

𝑁 𝑖−1𝐻2𝑖−1(𝑋𝑘′ ,Qℓ (𝑖)) �� 𝐻2𝑖−1(𝑋,Qℓ/Zℓ (𝑖))

)
.

If X is smooth and equi-dimensional (e.g., a smooth variety), then Borel–Moore cohomology agrees
with ordinary cohomology (see (2.1)) and the above map yields a cycle map as in (1.1).

Lemma 4.1. Assume that X is a smooth projective k-variety. In the following special cases, the group
𝑀2𝑖−1 (𝑋) can be computed explicitly as follows:

(1) If k is algebraically closed, then 𝑀2𝑖−1 (𝑋) = 0 for all i;
(2) If k is a finite field, then 𝑀2𝑖−1(𝑋) = 0 for all i;
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(3) If 𝑖 = 1, k is arbitrary and X is geometrically integral, then

𝑀1 (𝑋) = im(𝐻1 (Spec 𝑘,Qℓ/Zℓ (1)) → 𝐻1(𝑋,Qℓ/Zℓ (1))).

Proof. Assume first that k is algebraically closed. By the Weil conjectures proven by Deligne, the group
𝐻2𝑖−1(𝑋,Qℓ (𝑖)) does not contain any nontrivial element that is fixed by the absolute Galois group of
a finitely generated subfield 𝑘 ′ ⊂ 𝑘 . Hence, the natural map 𝐻2𝑖−1(𝑋𝑘′ ,Qℓ (𝑖)) → 𝐻2𝑖−1(𝑋,Qℓ (𝑖)) is
zero for any finitely generated field 𝑘 ′ ⊂ 𝑘 . This implies 𝑀2𝑖−1(𝑋) = 0 as we want in (1).

Assume now that k is a finite field. The Weil conjectures imply that 𝐻2𝑖−1(𝑋,Qℓ/Zℓ (𝑖)) is a finite
group (see [CTSS83, Théorème 2]) and so the map 𝐻2𝑖−1(𝑋,Qℓ (𝑖)) → 𝐻2𝑖−1(𝑋,Qℓ/Zℓ (𝑖)) is zero.
This implies 𝑀2𝑖−1(𝑋) = 0, as claimed.

It suffices by a limit argument to prove the last claim in the case where k is an arbitrary finitely
generated field. Let 𝐺 = Gal𝑘 be the absolute Galois group of k and let 𝑘̄ be an algebraic (or separable)
closure of k. Then the Hochschild–Serre spectral sequence from [Jan88] yields an exact sequence

𝐻1(Spec 𝑘,Qℓ (1)) �� 𝐻1 (𝑋,Qℓ (1)) �� 𝐻1(𝑋𝑘̄ ,Qℓ (1))
𝐺 ,

where we use that 𝐻0 (𝑋𝑘̄ ,Qℓ (1)) = Qℓ (1) because X is geometrically integral. The Weil conjectures
proven by Deligne [Del74] imply that 𝐻1(𝑋𝑘̄ ,Qℓ (1))𝐺 = 0 and so the first map in the above sequence
is surjective. Moreover, Kummer theory implies that 𝐻1 (Spec 𝑘,Qℓ (1)) → 𝐻1(Spec 𝑘,Qℓ/Zℓ (1)) is
surjective. Since 𝑁0𝐻1 (𝑋,Qℓ (1)) = 𝐻1(𝑋,Qℓ (1)), we finally conclude

𝑀1 (𝑋) = im(𝐻1 (𝑋,Qℓ (1)) → 𝐻1 (𝑋,Qℓ/Zℓ (1))) = im(𝐻1 (Spec 𝑘,Qℓ/Zℓ (1)) → 𝐻1 (𝑋,Qℓ/Zℓ (1))),

as we want. This finishes the proof of the lemma. �

4.2. Basic properties of 𝜆𝑖𝑋
Theorem 4.2. Let X be an algebraic scheme over a field k and let ℓ be a prime invertible in k. Then the
cycle map

𝜆𝑖𝑋 : CH𝑖 (𝑋) [ℓ∞] ��
𝐻2𝑖−1
𝐵𝑀 (𝑋,Qℓ/Zℓ (𝑖))

𝑀2𝑖−1(𝑋)

is injective for 𝑖 ≤ 2.
Proof. This follows from Proposition 3.3, where we recall our convention that 𝐻∗(𝑋, 𝐴(𝑛)) =
𝐻∗
𝐵𝑀 (𝑋, 𝐴(𝑛)) denotes Borel–Moore cohomology. �

The following result generalizes [MS83, (18.4)].
Lemma 4.3. Let X be an algebraic scheme over a field k and let ℓ be a prime invertible in k. Then the
image of 𝜆𝑖𝑋 is given by

im(𝜆𝑖𝑋 ) =
𝑁 𝑖−1𝐻2𝑖−1

𝐵𝑀 (𝑋,Qℓ/Zℓ (𝑖))

𝑀2𝑖−1 (𝑋)
.

Proof. This follows from Proposition 3.4, together with the construction of 𝜆𝑖𝑋 via direct limit in
Section 4.1. �

Corollary 4.4. Let X be an algebraic scheme over a field k and let ℓ be a prime invertible in k. Then 𝜆𝑖𝑋
induces for 𝑖 ∈ {1, 2} isomorphisms

CH1(𝑋) [ℓ∞] �
𝐻1
𝐵𝑀 (𝑋,Qℓ/Zℓ (1))

𝑀1 (𝑋)
and CH2(𝑋) [ℓ∞] �

𝑁1𝐻3
𝐵𝑀 (𝑋,Qℓ/Zℓ (2))

𝑀3 (𝑋)
.
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Proof. By Lemma 4.3, im(𝜆𝑖𝑋 ) = 𝑁 𝑖−1𝐻2𝑖−1
𝐵𝑀 (𝑋,Qℓ/Zℓ (𝑖))/𝑀

2𝑖−1(𝑋). Hence, the result is an
immediate consequence of Theorem 4.2. �

Comparing the above construction with Bloch’s map from [Blo79], we get the following.
Lemma 4.5. If k is algebraically closed and X is a smooth projective variety over k, then 𝑀2𝑖−1(𝑋) = 0
for all i and the map

𝜆𝑖𝑋 : CH𝑖 (𝑋) [ℓ∞] �� 𝐻2𝑖−1(𝑋,Qℓ/Zℓ (𝑖))

agrees with Bloch’s map from [Blo79]. In particular, if 𝑘 = C, then 𝜆𝑖𝑋 restricted to the subgroup of
homologically trivial cycles can be identified with Griffiths Abel–Jacobi map from [Gri69].
Proof. The vanishing of 𝑀2𝑖−1(𝑋) follows from Lemma 4.1. Using this, it is straightforward to check
that our map 𝜆𝑖𝑋 coincides over algebraically closed fields with Bloch’s map from [Blo79]. The com-
parison with Griffiths’ map thus follows from [Blo79, Proposition 3.7]. This concludes the proof of the
lemma. �

Lemma 4.6. Let X be an algebraic scheme over a field k and let 𝑘0 ⊂ 𝑘 be a finitely generated subfield
such that there is a variety 𝑋0 over 𝑘0 with 𝑋 = 𝑋0 ×𝑘0 𝑘 . Let ℓ be a prime invertible in k. Assume that
𝜆𝑖𝑋 is not injective. Let 𝐿 ⊂ 𝑘 be any subfield with 𝑘0 ⊂ 𝐿. Then there is a subfield 𝑘 ′ ⊂ 𝑘 with 𝐿 ⊂ 𝑘 ′,
such that 𝑘 ′/𝐿 is finitely generated and

𝜆𝑖𝑋 ′ : CH𝑖 (𝑋 ′) [ℓ∞] ��
𝐻2𝑖−1(𝑋 ′,Qℓ/Zℓ (𝑖))

𝑀2𝑖−1(𝑋 ′)

is not injective, where 𝑋 ′ := 𝑋0 ×𝑘0 𝑘 ′.
Proof. By assumption, there is a nontrivial element [𝑧] ∈ CH𝑖 (𝑋) [ℓ∞] with 𝜆𝑖𝑋 ([𝑧]) = 0. We can
choose a finitely generated extension 𝑘 ′/𝐿 such that z is defined over 𝑘 ′ and so we get a class

[𝑧′] ∈ CH𝑖 (𝑋 ′) with [𝑧′𝑘 ] = [𝑧] ∈ CH𝑖 (𝑋) [ℓ∞],

where 𝑋 ′ = 𝑋0 ×𝑘0 𝑘 ′. Up to possibly replacing 𝑘 ′ by a larger finitely generated extension of L, we can
assume that [𝑧′] is ℓ∞-torsion and so there is a class

𝜆𝑖𝑋 ′ ( [𝑧′]) ∈
𝐻2𝑖−1(𝑋 ′,Qℓ/Zℓ (𝑖))

𝑀2𝑖−1(𝑋 ′)
.

Note that [𝑧′𝑘 ] = [𝑧] lies in the kernel of 𝜆𝑖𝑋 . Since 𝜆𝑖𝑋 and 𝜆𝑖𝑋 ′ are defined via direct limits over all
finitely generated subfields of k and 𝑘 ′, respectively, we see that up to possibly replacing 𝑘 ′ by a larger
finitely generated extension of L, we may assume that 𝜆𝑖𝑋 ′ ( [𝑧′]) = 0 while [𝑧′] ∈ CH𝑖 (𝑋 ′) is still
nontrivial because its base change to k is nontrivial. This proves the lemma. �

Next, we have the following.
Lemma 4.7. Let X be an algebraic k-scheme which admits a closed embedding into a smooth equi-
dimensional algebraic k-scheme (e.g., X is quasi-projective) and let ℓ be a prime invertible in k. The
composition of 𝜆𝑖𝑋 with the projection

𝐻2𝑖−1(𝑋,Qℓ/Zℓ (𝑖))

𝑀2𝑖−1(𝑋)
�� ��
𝐻2𝑖−1(𝑋,Qℓ/Zℓ (𝑖))

𝐻2𝑖−1(𝑋,Qℓ (𝑖))
,

followed by the injection

−𝛿 :
𝐻2𝑖−1(𝑋,Qℓ/Zℓ (𝑖))

𝐻2𝑖−1(𝑋,Qℓ (𝑖))
↩→ 𝐻2𝑖 (𝑋,Zℓ (𝑖))

induced by the Bockstein map 𝛿, agrees with the cycle class map cl𝑖𝑋 : CH𝑖 (𝑋) [ℓ∞] �� 𝐻2𝑖 (𝑋,Zℓ (𝑖)).
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Proof. This is a direct consequence of Lemma 3.5. �

Lemma 4.8. Let 𝑋 𝑗 for 𝑗 = 1, 2 be smooth projective k-varieties and let ℓ be a prime invertible in k. Let
𝑧 𝑗 ∈ CH𝑖 𝑗 (𝑋 𝑗 ) be classes such that 𝑧2 is ℓ𝑟 -torsion for some positive integer r. Assume that cl𝑖1𝑋1

(𝑧1) is
zero modulo ℓ𝑟 . Then the ℓ𝑟 -torsion cycle

𝑧 := 𝑧1 × 𝑧2 ∈ CH𝑖1+𝑖2 (𝑋1 × 𝑋2)

lies in the kernel of the cycle map 𝜆𝑖1+𝑖2𝑋 from (1.1).

Proof. Let 𝑘0 be a finitely generated subfield over which 𝑋 𝑗 and the cycle 𝑧 𝑗 are both defined for
𝑗 = 1, 2. Since 𝑧2 is ℓ𝑟 -torsion, we may assume that it is already ℓ𝑟 -torsion on 𝑋0 (i.e., when viewed as
a cycle over 𝑘0). Note, moreover, that

𝐻2𝑖1 (𝑋1, 𝜇
⊗𝑖1
ℓ𝑟 ) = lim ��

𝑘′/𝑘0

𝐻2𝑖1 (𝑋1𝑘′ , 𝜇
⊗𝑖1
ℓ𝑟 ),

where 𝑘 ′ runs through all finitely generated subfields of k that contain 𝑘0, and 𝑋1𝑘′ denotes the base
change to 𝑘 ′ of a fixed form of 𝑋1 over 𝑘0. We can therefore also assume that the cycle class of 𝑧1 over
𝑘0 is zero modulo ℓ𝑟 . The claim in the lemma follows then from Corollary 3.7. �

5. Schoen’s argument over non-closed fields

The following proposition extends (some version of) the main result from [Schoe00] to non-closed fields.

Proposition 5.1. Let k be an algebraically closed field and let C be a smooth irreducible curve over k.
Let ℓ be a prime and let r be a positive integer. Let E be an elliptic curve over 𝑘 (𝐶) whose j-invariant is
transcendental over k. Up to replacing C by a (possibly ramified) finite cover, the following holds for any
k-variety B, where we denote by 𝐾 = 𝑘 (𝐵×𝐶) the function field of 𝐵×𝐶: There is a class 𝜏 ∈ CH0(𝐸𝐾 )

of order ℓ𝑟 such that for any smooth projective variety Y over 𝑘 (𝐵), the kernel of the exterior product map

CH𝑖 (𝑌 ) ⊗ Z/ℓ𝑟 �� CH𝑖+1(𝑌𝐾 ×𝐾 𝐸𝐾 ) [ℓ
𝑟 ], 𝑧

� �� [𝑧𝐾 × 𝜏]

is contained in the image of

CH𝑖 (𝑌 )tors ⊗ Z/ℓ
𝑟 �� CH𝑖 (𝑌 ) ⊗ Z/ℓ𝑟 .

Proof. Replacing C by the normalization of a projective closure, we may assume that C is smooth and
projective. Note that k is algebraically closed and that the j-invariant of E is transcendental over k. Using
this, the same argument as in [Schoe00, Lemma 2.7] shows that up to replacing C by a finite cover, we
may assume that the curve 𝐸𝐾 admits a regular projective model E over 𝐶𝑘 (𝐵) := 𝐶 ×𝑘 𝑘 (𝐵), with the
following properties:

(i) E → 𝐶𝑘 (𝐵) is a minimal elliptic surface over 𝑘 (𝐵);
(ii) there is a k-rational point on C with induced point 0 ∈ 𝐶𝑘 (𝐵) , such that the fibre F of E → 𝐶𝑘 (𝐵)

above 0 is of type 𝐼ℓ𝑟𝑁 for some 𝑁 ≥ 1;
(iii) if we denote by 𝐹𝑖 , 𝑖 = 0, 1, . . . , ℓ𝑟𝑁−1 the components of F, then 𝐹2

𝑖 = −2 for all i and 𝐹𝑖 ·𝐹𝑖−1 = 1
for all i if ℓ𝑟𝑁 ≠ 2 and 𝐹0𝐹1 = 2 if ℓ𝑟𝑁 = 2, where the index has to be read modulo ℓ𝑟𝑁;

(iv) the model E → 𝐶𝑘 (𝐵) admits two sections 𝑠0, 𝑠1 such that 𝑠1 − 𝑠0 restricts to a zero-cycle 𝜏 ∈

CH0(𝐸𝐾 ) of order ℓ𝑟 and such that 𝑠0 meets 𝐹0, while the (unique) component of F that meets 𝑠1
is of the form 𝐹𝑚𝑁 with m coprime to ℓ.

The same argument as in [Schoe00, Lemma 2.8] then shows that there is a divisor D on E which is
supported on the special fibre F and such that the following holds.
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(v) if 𝐷 ′ is another divisor on E that is supported on some fibres of E → 𝐶𝑘 (𝐵) , then 𝐷 ′ · 𝐷 ≡ 0
mod ℓ𝑟𝑁;

(vi) (𝑠1 − 𝑠0) · 𝐷 = 𝑚𝑁 · 𝜒 for some integer m that is coprime to ℓ𝑟 and some zero-cycle 𝜒 ∈ CH0(𝐹)
of degree 1.

To conclude the argument, we consider the model

X := 𝑌 ×𝑘 (𝐵) E = (𝑌 ×𝑘 (𝐵) 𝐶𝑘 (𝐵) ) ×𝐶𝑘 (𝐵)
E ��𝐶𝑘 (𝐵)

with special fibre 𝑋0 = 𝑌 ×𝑘 (𝐵) 𝐹 and generic fibre 𝑋𝜂 = 𝑌𝐾 ×𝐾 𝐸𝐾 . Since Y is smooth over 𝑘 (𝐵) and
E is regular, the model X is regular as well. Let 𝑧 ∈ CH𝑖 (𝑌 ). Since 𝑠1 − 𝑠0 is a divisor class on E , we
can consider the exterior product cycle

𝜉 := 𝑧 × (𝑠1 − 𝑠0) ∈ CH𝑖+1(X ).

The restriction 𝜉𝜂 ∈ CH𝑖+1(𝑌𝐾 ×𝐾 𝐸𝐾 ) of this cycle to the generic fibre of X → 𝐶𝑘 (𝐵) agrees with

[𝑧𝐾 × 𝜏] ∈ CH𝑖+1(𝑌𝐾 ×𝐾 𝐸𝐾 ),

where 𝑧𝐾 ∈ CH𝑖 (𝑌𝐾 ) denotes the base change of z and 𝜏 ∈ CH0 (𝐸𝐾 ) is the class of order ℓ𝑟 from (iv).
To prove the proposition, we assume that 𝜉𝜂 = 0, and we then aim to show that z is the sum of a torsion

class and a class that is ℓ𝑟 -divisible. To this end, note that the localization formula together with the
assumption 𝜉𝜂 = 0 implies that there are closed points 𝑐1, . . . , 𝑐𝑛 ∈ 𝐶𝑘 (𝐵) with 𝑐 𝑗 ≠ 0 for all j such that

𝜉 ∈ im

(
CH𝑖 (𝑋0) ⊕

⊕
𝑗

CH𝑖 (𝑋𝑐 𝑗 )
�� CH𝑖+1(X )

)
.

Hence,

𝜉 = 𝜉 ′ + 𝜉 ′′ where 𝜉 ′ ∈ im
(
CH𝑖 (𝑋0) �� CH𝑖+1(X )

)
and 𝜉 ′′ ∈ im

(⊕
𝑗

CH𝑖 (𝑋𝑐 𝑗 )
�� CH𝑖+1(X )

)
.

Note that 𝑋0 = 𝑌 ×𝑘 (𝐵) 𝐹. Since F is a cycle of smooth rational curves, the natural map

(CH𝑖 (𝑌 ) ⊗ CH0(𝐹)) ⊕ (CH𝑖−1(𝑌 ) ⊗ CH1 (𝐹)) �� CH𝑖 (𝑋0)

is surjective. It follows that we can write

𝜉 ′ =
∑
𝑗

𝜉1 𝑗 × 𝐷 ′
𝑗 + 𝜉2 × 𝜁

for some 𝜉1 𝑗 ∈ CH𝑖 (𝑌 ), 𝐷 ′
𝑗 ∈ CH0(𝐹), 𝜉2 ∈ CH𝑖−1(𝑌 ), and 𝜁 ∈ CH1(𝐹). Let 𝑌 × 𝐷 denote the

pullback of the divisor D via the natural projection pr2 : X → E . Since X is regular, we may consider
the intersection product 𝜉 · (𝑌 ×𝐷) ∈ CH𝑖+2(X ). Since D is supported on the special fibre F, the support
of 𝜉 ′′ is disjoint from the support of 𝑌 × 𝐷 and so 𝜉 ′′ · (𝑌 × 𝐷) = 0. Hence,

𝜉 · (𝑌 × 𝐷) =

(∑
𝑗

𝜉1 𝑗 × 𝐷 ′
𝑗 + 𝜉2 × 𝜁

)
· (𝑌 × 𝐷) ∈ CH𝑖+2(X ).

By item (v), (𝜉1 𝑗 × 𝐷 ′
𝑗 ) · (𝑌 × 𝐷) ≡ 0mod ℓ𝑟𝑁 for all j and so

𝜉 · (𝑌 × 𝐷) = 𝜉2 × (𝜁 · 𝐷) = 0 ∈ CH𝑖+2(X )/ℓ𝑟𝑁
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because 𝜁 · 𝐷 = 0 for degree reasons. Hence,

𝜉 · (𝑌 × 𝐷) ∈ ℓ𝑟𝑁 · CH𝑖+2(X ).

However, 𝜉 = 𝑧 × (𝑠1 − 𝑠0) and so item (vi) implies

𝜉 · (𝑌 × 𝐷) = 𝑧 × 𝑚𝑁𝜒.

Consider the natural proper map

𝜋 : X = 𝑌 ×𝑘 (𝐵) E ��𝑌

of 𝑘 (𝐵)-varieties. Then the above computations show that

𝜋∗(𝜉 · (𝑌 × 𝐷)) = 𝑚𝑁 · 𝑧 = ℓ𝑟𝑁 · 𝑧′ ∈ CH𝑖 (𝑌 )

for some 𝑧′ ∈ CH𝑖 (𝑌 ). Hence,

𝑡 := 𝑚 · 𝑧 − ℓ𝑟 · 𝑧′ ∈ CH𝑖 (𝑌 ) (5.1)

is N-torsion. Since m is coprime to ℓ, we find that the class of z in CH𝑖 (𝑌 )/ℓ𝑟 may be represented by a
torsion class, as we want. This concludes the proof of the proposition. �

For later use, we record here the following variant of the above argument.

Proposition 5.2. Let k be an arbitrary field. Let Y be a smooth projective k-variety. Then there is an
elliptic curve E over 𝐾 = 𝑘 (P1) (in fact, the Legendre elliptic curve 𝑦2 = 𝑥(𝑥 − 1) (𝑥 − 𝑡)) and a class
𝜏 ∈ CH0 (𝐸) of order 2 such that the exterior product map

CH𝑖 (𝑌 ) ⊗ Z/2 �� CH𝑖+1(𝑌𝐾 ×𝐾 𝐸) [2], 𝑧
� �� [𝑧𝐾 × 𝜏]

is injective.

Proof. We let E be the generic fibre of the Legendre family 𝑦2 = 𝑥(𝑥 − 1) (𝑥 − 𝑡), where t denotes an
affine coordinate on P1. Let E → P1 be a minimal elliptic surface whose generic fibre is E. The special
fibre F above 𝑡 = 0 is then of type 𝐼2: 𝐹 = 𝐹0 ∪ 𝐹1 with 𝐹2

𝑗 = −2 and 𝐹0 · 𝐹1 = 2. Note further that
each 2-torsion point of E is K-rational (see [IG59]) and it extends to a section of E → P1. It follows, in
particular, that there are sections 𝑠0, 𝑠1 of E → P1 such that 𝑠 𝑗 meets 𝐹𝑗 and such that 𝑠1 − 𝑠0 restricts to
a zero-cycle 𝜏 ∈ CH0(𝐸) of order 2. Let 𝑧 ∈ CH𝑖 (𝑌 ) be nonzero modulo 2. Let 𝑧𝐾 ∈ CH𝑖 (𝑌𝐾 ) denote
the base change of z. To prove the proposition, it is then enough to show that the 2-torsion class

𝑧𝐾 × 𝜏 ∈ CH𝑖+1(𝑌𝐾 ×𝐾 𝐸)

is nonzero. This follows by exactly the same argument as in the proof of Proposition 5.1 above. The
main difference is that in the current situation, the special fibre F is of type 𝐼2 and so the integer N in
the proof of Proposition 5.1 equals 1, so that the class t in (5.1) is not only torsion, but in fact zero. �

Remark 5.3. Let C be a smooth irreducible projective curve over a field k and let ℓ be a prime. The
proof of Proposition 5.2 shows more generally that if E is an elliptic curve over 𝐾 = 𝑘 (𝐶) whose ℓ-
torsion points are all K-rational and, in addition, there is a K-rational point 0 ∈ 𝐶 so that the fibre F of
the minimal model E → 𝐶 above 𝑡 = 0 is of type 𝐼ℓ , then there is a class 𝜏 ∈ CH0 (𝐸) of order ℓ such
that for any smooth projective k-variety Y, the exterior product map

CH𝑖 (𝑌 ) ⊗ Z/ℓ �� CH𝑖+1(𝑌𝐾 ×𝐾 𝐸) [ℓ], 𝑧
� �� [𝑧𝐾 × 𝜏]

is injective.
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A concrete example for the prime ℓ = 3 is given by the elliptic curve E overQ(𝜔) (P1) (𝜔3 = 1, 𝜔 ≠ 1)
defined by the degree 3 equation

𝑥3
0 + 𝑥3

1 + 𝑥3
2 = 3𝜆𝑥0𝑥1𝑥2

in P2; see [IG59].

6. A construction of Kollár, Hassett–Tschinkel and Totaro

In this section, we use some arguments of Kollár [Ko92], Hassett–Tschinkel (cf. [Tot13, Introduction])
and Totaro [Tot13] to prove the following.

Proposition 6.1. Let k be an algebraically closed field and let ℓ be a prime invertible in k. If the
characteristic of k is positive, assume that k has positive transcendence degree over its prime field.
There is smooth projective hypersurface 𝑆 ⊂ P3

𝑘 (P1)
such that the cycle class map

CH0(𝑆)/ℓ �� 𝐻4(𝑆, 𝜇⊗2
ℓ )

is not injective up to torsion. That is, there is a zero-cycle 𝑧 ∈ CH0 (𝑆) with trivial cycle class in
𝐻4 (𝑆, 𝜇⊗2

ℓ ) such that 𝑧 ∉ CH0(𝑆)tors + ℓ · CH0(𝑆).

Proof. Our examples arise due to the failure of the integral Hodge and Tate conjectures for certain
hypersurfaces in P1

𝑘 ×𝑘 P
3
𝑘 of bidegree (3, ℓ2). To this end, let 𝜆 ∈ 𝑘 be transcendental over the prime

field if k has positive characteristic and let 𝜆 := ℓ if k has characteristic zero. We then consider the
smooth hypersurface X ⊂ P1

𝑢,𝑡 × P
3
𝑥0 ,𝑥1 ,𝑥2 ,𝑥3 over k, defined by the equation

𝑢3𝑥ℓ
2

0 + 𝑡𝑢2𝑥ℓ
2

1 + 𝑡2𝑢𝑥ℓ
2

2 + 𝑡3𝑥ℓ
2

3 + 𝜆(𝑢3𝑥ℓ
2

3 − 𝑡3𝑥ℓ
2

0 + 𝑢3𝑥ℓ
2

2 − 𝑡3𝑥ℓ
2

1 ) = 0.

Let 𝑆 := X𝜂 be the generic fibre of the first projection pr1 : X → P1
𝑘 . We aim to show that the cycle

class map cl2𝑆 : CH0(𝑆)/ℓ �� 𝐻4(𝑆, 𝜇⊗2
ℓ ) is not injective up to torsion.

Step 1. Let 𝑛 := gcd{deg(𝑧) |𝑧 ∈ CH0 (𝑆)} be the index of S. If Z4 (X ) denotes the cokernel of the cycle
class map cl2X : CH2 (X )Zℓ → 𝐻4(X ,Zℓ (2)), then Z4 (X ) � Zℓ/𝑛Zℓ .

Proof. We have the following commutative diagram

CH3(P1 ×𝑘 P
3)Zℓ 𝐻6 (P1 ×𝑘 P

3,Zℓ (3))

CH2(X )Zℓ 𝐻4 (X ,Zℓ (2)),

cl3

cl2X

𝑖∗ 𝑖∗

where 𝑖∗ : 𝐻4(X ,Zℓ (2)) → 𝐻6 (P1 ×𝑘 P
3,Zℓ (3)) is an isomorphism by the Weak Lefschetz theorem

[Mil80, Theorem VI.7.1]. Recall that 𝐻6(P1 ×𝑘 P
3,Zℓ (3)) is the free Zℓ-module of rank 2 generated

by ℓ1 := cl3(P1
𝑘 × 𝑝𝑡) and ℓ2 := cl3 (𝑝𝑡 × 𝐿), where 𝐿 ⊂ P3

𝑘 is any one-dimensional linear subspace. Let
𝐿 ⊂ P3

𝑘 be the subspace defined by the equations 𝑥0 = 0 and 𝑥3 = 𝜁𝑥2, where 𝜁 ∈ 𝑘 with 𝜁ℓ
2
= −1. An

easy check shows (1 : 0) × 𝐿 ⊂ X . The 1-cycle ℓ̃2 := [(1 : 0) × 𝐿] ∈ CH2(X ) clearly then satisfies
𝑖∗ cl2X (ℓ̃2) = ℓ2. Pick 𝑧 ∈ CH2 (X ) such that deg(𝑧 |𝑆) = 𝑛. By replacing z with 𝑧′ := 𝑧 − 𝑚ℓ̃2, where the
integer m is determined by pr2∗(𝑧) = 𝑚 [𝐿] with pr2 : X → P3, we may assume that pr2∗(𝑧) = 0. It
follows that 𝑖∗ cl2X (𝑧) = 𝑛ℓ1. To conclude, we notice that the image of the composite

CH2(X )Zℓ
�� 𝐻4 (X ,Zℓ (2))

pr1∗ �� 𝐻0(P1
𝑘 ,Zℓ (0)) = Zℓ

is 𝑛Zℓ , where n is the index of S. �
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Step 2. We have 𝑛 ∈ ℓZℓ .

Proof. The proof is essentially the same as in [Tot13, Theorem 2.1], where the case ℓ = 2 and 𝑘 = Q̄ is
treated. We briefly recall the argument for the reader’s convenience.

Note that X degenerates via 𝜆 → 0 to the hypersurface

𝑢3𝑥ℓ
2

0 + 𝑡𝑢2𝑥ℓ
2

1 + 𝑡2𝑢𝑥ℓ
2

2 + 𝑡3𝑥ℓ
2

3 = 0

in P1 × P3 over some algebraically closed field extension 𝐹/F̄𝑞 , where 𝑞 = ℓ if char(𝑘) = 0 and
𝑞 = char(𝑘), otherwise. A straightforward specialization argument enables us to reduce our task to
proving that the hypersurface

𝑌 := {𝑥ℓ
2

0 + 𝑡𝑥ℓ
2

1 + 𝑡2𝑥ℓ
2

2 + 𝑡3𝑥ℓ
2

3 = 0}

in P3 over 𝐹 ((𝑡)) has no rational point over any extension 𝐹 ((𝑠)) of 𝐹 ((𝑡)) whose degree is not
divisible by ℓ. For a contradiction, we assume that there is an extension 𝐹 ((𝑠))/𝐹 ((𝑡)) of degree d with
gcd(𝑑, ℓ) = 1 and Laurent series 𝑡 (𝑠), 𝑥𝑖 (𝑠) ∈ 𝐹 ((𝑠)) satisfying the equation of Y. Then the valuations
of the 4 terms in the equation, given by ord𝑠 (𝑡𝑖𝑥ℓ

2

𝑖 ) ≡ 𝑖𝑑mod ℓ2, are all different, forcing all the 𝑥𝑖 (𝑠) to
be zero. This certainly cannot be a point of the projective space, contradicting our hypothesis. �

Finally, we are in the position to conclude the proof of Proposition 6.1. By Step 1, we can pick a 1-cycle
𝛼 ∈ CH2 (X ) such that cl2X (𝛼) = 𝑛ℓ1. We set 𝑧 := 𝛼 |𝑆 ∈ CH2(𝑆) and note that cl2𝑆 (𝑧) = 0 ∈ 𝐻4 (𝑆, 𝜇⊗2

ℓ )

because 𝑛 ∈ ℓZℓ by Step 2. We claim that 𝑧 ∉ CH2(𝑆)tors + ℓ CH2 (𝑆). Indeed, if we write 𝑧 = 𝑧1 + ℓ𝑧2
for some 𝑧1 ∈ CH2 (𝑆)tors and 𝑧2 ∈ CH2(𝑆), then 𝑛 = deg(𝑧) = ℓ deg(𝑧2). This yields a contradiction, as
the integer n is the index of S. �

7. Proof of the main results

Proof of Theorem 1.1. The injectivity of 𝜆𝑖𝑋 for 𝑖 = 1, 2 follows from Theorem 4.2. The isomorphisms
in question then follow from the description of the image of 𝜆𝑖𝑋 in Corollary 4.4. In the case 𝑖 = 1, we
note in addition that 𝑁0𝐻𝑖 (𝑋, 𝐴(𝑛)) = 𝐻𝑖 (𝑋, 𝐴(𝑛)). �

Proof of Theorem 1.2. Let ℓ be a prime and let k be a field of characteristic different from ℓ. We aim to
construct a finitely generated field extension 𝐾/𝑘 and a smooth projective threefold X over K such that

𝜆3
𝑋 : CH3 (𝑋) [ℓ∞] �� 𝐻5 (𝑋,Qℓ/Zℓ (2))/𝑀5(𝑋)

is not injective. To prove this, we are free to replace k by a finitely generated field extension and so we
can assume that k has positive transcendence degree over its prime field. Lemma 4.6 allows us to reduce
further to the case where k is algebraically closed and of positive transcendence degree over its prime
field. It then follows from Proposition 6.1 that there is a smooth projective hypersurface 𝑆 ⊂ P3

𝑘 (P1)

which carries a zero-cycle 𝑧1 ∈ CH0(𝑆) with trivial cycle class in 𝐻4 (𝑆, 𝜇⊗2
ℓ ) such that

𝑧1 ∉ CH0 (𝑆)tors + ℓ · CH0 (𝑆). (7.1)

Let C be any smooth curve over k and let E be an elliptic curve over 𝑘 (𝐶) whose j-invariant is
transcendental over k (e.g., we could take 𝐶 = P1 and let E be the Legendre elliptic curve). We then
apply Proposition 5.1 to C, E, 𝐵 := P1, and to the 𝑘 (𝐵)-variety 𝑌 := 𝑆. We let 𝐾 := 𝑘 (𝐵 × 𝐶) and find
that up to replacing C by a finite cover, there is a zero-cycle 𝜏 ∈ CH1 (𝐸𝐾 ) of order ℓ such that the kernel
of the exterior product map

CH2(𝑆) ⊗ Z/ℓ �� CH3(𝑆𝐾 ×𝐾 𝐸𝐾 ) [ℓ], 𝑧
� �� [𝑧𝐾 × 𝜏] (7.2)
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is contained in the image of

CH2 (𝑆)tors ⊗ Z/ℓ �� CH2(𝑆) ⊗ Z/ℓ.

We finally set 𝑋 := 𝑆𝐾 ×𝐾 𝐸𝐾 and consider the zero-cycle

𝑧 := [𝑧1𝐾 × 𝜏] ∈ CH3(𝑋).

Since 𝜏 has order ℓ, the zero-cycle z is ℓ-torsion. By (7.1) and the above description of the kernel of
the exterior product map in (7.2), we find that z is nontrivial. However, since the cycle class of 𝑧1 in
𝐻4 (𝑆, 𝜇⊗2

ℓ ) vanishes while 𝜏 is ℓ-torsion, Lemma 4.8 implies that

𝜆3
𝑋 (𝑧) = 0 ∈ 𝐻5(𝑋,Qℓ/Zℓ (2))/𝑀5(𝑋).

This concludes the proof of the theorem. �

Proof of Corollary 1.3. One direction is Theorem 1.1. The other direction follows from Theorem 1.2
by taking products with projective spaces. �

Proof of Corollary 1.4. This follows from Lemma 4.7 and Theorem 1.2. �

Proof of Theorem 1.5. By [PS96, Theorem 8.5], there is a smooth projective surface Y (given as a conic
fibration over a hyperelliptic curve) over a field k such that 𝑌 (𝑘) ≠ ∅ and such that the cycle class map
CH2(𝑌 )/2 → 𝐻4(𝑌, 𝜇⊗2

2 ) is not injective. In loc. cit., the example is defined over Q3; a straightforward
limit argument then allows us to assume that 𝑘 ⊂ Q3 is a finitely generated subfield. We pick a zero-cycle
𝑧 ∈ CH2(𝑌 ) that is nonzero modulo 2 but its cycle class cl2𝑌 (𝑧) is zero modulo 2. Let now 𝐾 = 𝑘 (P1).
Then Proposition 5.2 implies that there is an elliptic curve E over K (in fact, the Legendre elliptic curve)
and a class 𝜏 ∈ CH0 (𝐸) of order 2 such that the cycle 𝑧𝐾 × 𝜏 ∈ CH3(𝑋) [2] is nonzero, where X is
the smooth projective threefold 𝑌𝐾 ×𝐾 𝐸 . It follows from Lemma 4.8 that 𝜆3

𝑋 (𝑧𝐾 × 𝜏) = 0, proving the
noninjectivity of 𝜆3

𝑋 for the prime ℓ = 2. Since E is an elliptic curve, it has a rational point, and since Y
has a rational point as well, we find that 𝑋 (𝐾) ≠ ∅, as we want. �
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