IMBEDDING A REGULAR RING IN A REGULAR RING WITH IDENTITY

NENOSUKE FUNAYAMA

Dedicated to the memory of Professor TADASI NAKAYAMA

In [1] L. Fuchs and I. Halperin have proved that a regular ring R is isomorphic to a two-sided ideal of a regular ring with identity. ([1] Theorem 1). Their method is to imbed the regular ring R in the ring of all pairs (a, ρ) with $a \in R$ and ρ from a suitable commutative regular ring S with identity such that R is an algebra over S. Thus S may be seen as the ring of R - R endomorphisms of the additive group of R. The following question is naturally raised: Is it true that the ring of all R - R endomorphisms of a rugular ring? The main purpose of this paper is to answer this question affirmatively. (Theorem 1). After established this theorem we can follow the method in [1] to solve the problem in the title.

1. Endorphisms of R^+ .

Let R^+ be the additive group of a given ring R with R as left and right operator domains, and let \tilde{R} be the ring of all endomorphisms of R^+ , that is the ring of all R - R endomorphisms of the additive group R. \tilde{R} has the identity $\bar{1}$ which is the identity mapping of R^+ . Also let us denote by $\bar{0}$, \bar{n} and \bar{c} respectively the zero endomorphism, $\bar{n}: a \to na$, where a is an element in R and n is an integer, $\bar{c}: a \to ac$, where c is an element in the center C of R.

LEMMA 1. If R has the identity 1, then \tilde{R} is isomorphic to the center C of R.

Proof. Let ρ be an element of \tilde{R} . Then for any element a in R we have $a\rho = (a \ 1)\rho = a(1 \ \rho)$ and $a\rho = (1 \ a)\rho = (1 \ \rho)a$. Thus $c = 1 \ \rho$ is in the center C of R and $a\rho = ac = ca$. Conversely let c be an element in C, then $\bar{c}: a \to ac$ is an endomorphism of R^+ . $\rho \to 1 \ \rho$ sets up a ring isomorphism between \tilde{R} and C.

LEMMA 2. If $R^2 = R$, then \tilde{R} is commutative.

Received March 22, 1965.

Proof. Let ρ , τ be a pair of elements in \tilde{R} . We will show that $a(\rho\tau) = a(\tau\rho)$ for any element a in R. As $R^2 = R$ it is sufficient to show that $(bc)(\rho\tau) = (bc)(\tau\rho)$ for any pair of elements b, c in R, and this is easily shown using the fact that ρ , τ are R - R endomorphisms.

LEMMA 3. If R is a regular ring, then \tilde{R} is commutative.

Proof is clear by Lemma 2.

For an element ρ in \widetilde{R} denote the kernel and the image of ρ by

$$R_{\rho} = \rho^{-1}(0) = \langle a \in R \mid a\rho = 0 \rangle,$$

$$\overline{R}_{\rho} = \langle a\rho \mid a \in R \rangle.$$

 $R_{\rm p}$ and $\overline{R}_{\rm p}$ are ideals in R. If ρ is idempotent then $R = R_{\rm p} \oplus \overline{R}_{\rm p}$.

The converse is not always true, that is $R = R_{\rho} \oplus \overline{R}_{\rho}$ does not imply that ρ is idempotent, and so, for the later use, we seek for the condition for ρ which implies $R = R_{\rho} \oplus \overline{R}_{\rho}$.

LEMMA 4. $R = R_{\rho} \oplus \overline{R}_{\rho}$ if and only if the following conditions are satisfied:

$$\boldsymbol{x}\rho^2 = 0 \quad implies \quad \boldsymbol{x}\rho = 0. \tag{1}$$

For any $x \in R$ there exists an element $y \in R$ such that

$$x\rho = y\rho^2. \tag{2}$$

Moreover the y in (2) is uniquely determined in \overline{R}_{ρ} .

Proof. Condition (1) is equivalent to the condition $R_{p} \cap \overline{R}_{p} = (0)$ as is easily shown. Condition (2) is equivalent to the condition $R = R_{p} + \overline{R}_{p}$. Indeed if $R = R_{p} + \overline{R}_{p}$, then any $x \in R$ may be written as $x = x_{1} + x_{2}\rho$, where $x_{1}\rho = 0$ and then $x\rho = x_{2}\rho^{2}$. Conversely if the condition (2) is satisfied, any $x \in R$ may be written as $x = (x - y\rho) + y\rho$, where y satisfies $x\rho = y\rho^{2}$. Then $(x - y\rho)\rho = x\rho - y\rho^{2}$ = 0, which proves that $R = R_{p} + \overline{R}_{p}$. The proof of the last part is as follows: First the y in (2) may be chosen from \overline{R}_{p} as $x\rho = y\rho^{2}$ and $y\rho = y\rho^{2}$ imply that $x\rho = (z\rho)\rho^{2}$. Secondly the uniqueness of y: If $x\rho = y\rho^{2} = z\rho^{2}$, where y and z are in \overline{R}_{p} , then $(y - z)\rho^{2} = 0$, which implies $(y - z)\rho = 0$ by (1). As y and z are in $\overline{R}_{p} = y'\rho$, $z = z'\rho$ for some y', $z' \in R$. Then $(y' - z')\rho^{2} = 0$, and so again by (1) $(y' - z')\rho = 0$, that is y = z.

LEMMA 5. If $\rho \in \widetilde{R}$ satisfies $R = R_{\rho} \oplus \overline{R}_{\rho}$, then for some $\sigma \in \widetilde{R}$,

$$\rho\sigma\rho = \rho \tag{3}$$

62

$$\rho\sigma = \sigma\rho \tag{4}$$

$$\sigma \rho \sigma = \sigma \tag{5}$$

Proof. In Lemma 4 it is shown that $R = R_{\rho} \oplus \overline{R}_{\rho}$ implies that, for any $x \in R$ there exists uniquely determined $y \in \overline{R}_{\rho}$ with $x\rho = y\rho^2$. Define σ as $x\sigma = y$. As is easily seen σ is an endomorphism of the additive group of R. For any elements x, r in R we have

$$(xr)\rho = (x\rho)r = (y\rho^{2})r = (yr)\rho^{2}.$$

As \overline{R}_{p} is an ideal of R we have $yr \in \overline{R}_{p}$, showing that $(xr)_{\sigma} = (x_{\sigma})r$. Similarly $(rx)_{\sigma} = r(x_{\sigma})$. Thus $\sigma \in \widetilde{R}$.

As the proofs of (3), (4) and (5) are similar we show only (5). To prove (5) it is sufficient to show that $x(\sigma\rho\sigma) = x\sigma$ for any $x \in R$. Put $x\sigma = y$ and $x(\sigma\rho\sigma)$ = z. Then, by the definition of σ , we have $x\rho = y\rho^2$, $y \in \overline{R_{\rho}}$, and $(y\rho)\sigma = z$, that is $y\rho^2 = z\rho^2$, where y and z are in $\overline{R_{\rho}}$. Then $(y-z)\rho^2 = 0$, which implies y = z as y and z are in $\overline{R_{\rho}}$. Thus we have $x\sigma = x(\sigma\rho\sigma)$.

THEOREM 1. The ring \tilde{R} , ring of all endomorphisms of R^+ , of a regular ring R is a commutative regular ring with identity.

Proof. Commutativity was already shown in Lemma 3. To prove the regularity of R it is sufficient to prove $R = R_{\rho} \oplus \overline{R}_{\rho}$ for any $\rho \in \widetilde{R}$, or equivalently, by Lemma 4, (1) and (2) in Lemma 4. Suppose that $x\rho \neq 0$. Then by the regularity of R there exists $y \in R$ such that $x\rho = (x\rho)y(x\rho)$. This implies $x\rho = (x\rho^2)yx$ and as $x\rho \neq 0$ we have that $x\rho^2 \neq 0$ showing (1). Also $x\rho = (x\rho)y(x\rho) = (xyx)\rho^2$ showing (2).

2. Imbedding a regular ring into a regular ring with identity.

Let R be an arbitrary ring.

Let S be a commutative subring of \tilde{R} , the ring of all R - R endomorphisms of R^+ , and let R^s be the set of all ordered pairs (a, ρ) where $a \in R$ and $\rho \in S$. In R^s define the equality, addition, and multiplication by

> $(a, \rho) = (b, \tau)$ if and only if a = b and $\rho = \tau$, $(a, \rho) + (b, \tau) = (a + b, \rho + \tau)$, $(a, \rho)(b, \tau) = (ab + b\rho + a\tau, \rho\tau)$.

Then R^s is a ring. Commutativity of S is used for the proof of associativity of R^s . If S has the identity then R^s has the identity $(0, \overline{1})$. The examples of

NENOSUKE FUNAYAMA

S are as follows: (a) $Z = \{\overline{n}: a \to na, n \text{ is an integer}\}$, (b) $\overline{C} = \{\overline{c} | \overline{c}: a \to ac (= ca), c \text{ is in the center } C \text{ of } R\}$, (c) $\overline{Z} + \overline{C}$, (d) \widetilde{R} when \widetilde{R} is commutative.

Remark 1. $R^{\overline{z}}$ does not coincide with the classical imbedding R^{\ddagger} . Indeed when R is of bounded order $R^{\overline{z}}$ is of bounded order but R^{\ddagger} is not of bounded order.

R is imbedded in \mathbb{R}^s as an ideal by the mapping $a \to (a, 0)$. Our idea is to give some properties to \mathbb{R}^s selecting a suitable *S*. This idea is essentially included in [1], and the proof of the following theorem follows that in [1].

LEMMA 6. If R and S are regular, then R^{s} is regular.

Proof. Let (a, ρ) be any element in \mathbb{R}^s . We will seek for (b, σ) such that $(a, \rho)(b, \sigma)(a, \rho) = (a, \rho)$, that is

$$\rho \sigma \rho = \rho,$$

$$aba + (ba)\rho + (ab)\rho + a^{2}\sigma + b\rho^{2} + a(\sigma\rho) + a(\rho\sigma) = a.$$
(6)

As S is regular there exists a σ such that $\rho\sigma\rho = \rho$. For the second equality: Let *e* be an idempotent in *R* such that a = ae = ea. (The existence such an *e* has been proved in [1] Lemma 2).

By the regularity of R there exists an element x such that

$$(a+e\rho)x(a+e\rho) = a+e\rho.$$
(7)

Put y = exe, then, as is easily calculated, y satisfies (7) replacing x by y. Put $b = y - e_0$, then b satisfies (6).

THEOREM 2. $R^{\tilde{R}}$ is a regular ring with identity if R is regular. R is imbedded in $R^{\tilde{R}}$ as an ideal.

Proof is clear from Theorem 1 and Lemma 6.

REFERENCE

[1] L. Fuchs and I. Halparin, On the embedding of a regular ring in a regular ring with identity, Fundamenta Mathematicae LIV (1964), pp. 287-290.

Yamagata University