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In [1] L. Fuchs and I. Halperin have proved that a regular ring R is iso-

morphic to a two-sided ideal of a regular ring with identity. ([1] Theorem 1).

Their methed is to imbed the regular ring R in the ring of all pairs (a, p) with

αe/? and p from a suitable commutative regular ring S with identity such that

R is an algebra over S. Thus S may be seen as the ring of R — R endomor-

phisms of the additive group of R, The following question is naturally raised •*

Is it true that the ring of all R— R endomorphisms of a rugular ring is a

commutative regular ring? The main purpose of this paper is to answer this

question affirmatively. (Theorem 1). After established this theorem we can

follow the method in [1] to solve the problem in the title.

1. Endorphisms of R+.

Let Λ* be the additive group of a given ring R with R as left and right

operator domains, and let R be the ring of all endomorphisms of R+, that is

the ring of all R — R endomorphisms of the additive group R. R has the identity

ϊ which is the identity mapping of i?+. Also let us denote by 0, n and c re-

spectively the zero endomorphism, n: a -* na, where a is an element in R and

n is an integer, c ' a-* ac, where c is an element in the center C of R.

LEMMA 1. If R has the identity 1, then R is isomorphic to the center C of

R.

Proof. Let p be an element of R. Then for any element a in R we have

aμ= (al)p = ad p) and ap = (la)p= (lp)a. T h u s c = lp is in the center C of

R and ap = ac = ca. Conversely let c be an element in C, then c - a -» ac is an

endomorphism of R+. p -> 1 p sets up a ring isomorphism between /? and C.

LEMMA 2. If R2~Ry then R is commutative.
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Proof. Let ρf τ be a pair of elements in R. We will show that a(pτ) =

β(rp) for any element # in R. As R2 = R it is sufficient to show that (bc){pτ)

=• (bc)(τp) for any pair of elements b, c in R, and this is easily shown using

the fact that py τ are R—R endomorphisms.

LEMMA 3. If R is a regular ring, then R is commutative.

Proof is clear by Lemma 2.

For an element p in R denote the kernel and the image of p by

R? = p-1(0) = {a<=R\ap = 0),

RP = {ap\ae R).

R? and R9 are ideals in R. If p is idempotent then R= R?@ R?.

The converse is not always true, that is R= RP(& Rp does not imply that p

is idempotent, and so, for the later use, we seek for the condition for p which

implies R= RPΘ R?.

LEMMA 4. R= RP®RP if and only if the following conditions are satisfied:

xp2 = 0 implies xρ = 0. (1)

For any x e R there exists an element y'&R such that

xp=yp2. (2)

Moreover the y in (2) is uniquely determined in RP.

Proof. Condition (1) is equivalent to the condition RPΓ\ Rp= (0) as is easily

shown. Condition (2) is equivalent to the condition R = RP + RP. Indeed if

R = RP+ RP, then any x e R may be written as x = Xi -h XίP, where Xip — 0 and

then xp = Xip. Conversely if the condition (2) is satisfied, any x^R may be

written as x = (x — yp) -hyp, where y satisfies xp = yp2. Then {x — yp)p — xp — yp2

= 0, which proves that R = R9 + £ p . The proof of the last part is as follows:

First the y in (2) may be chosen from RP as xp=yp2 and yp = yp2 imply that

xp = (zp)p2. Secondly the uniqueness of y If xp=yp2 = zp2, where y and z are

in RP, then (y-z)p2 = 0, which implies {y-z)p = 0 by (1). As y and z are in

# P y-y'ρ> z = z'p for some y', zf e R. Then (/ -z')p2 = 0, and so again by (1)

(y - z')p = 0, that is y = z.

LEMMA 5. If p^R satisfies R= RPΘRpy then for some σ^R,

pap = p (3)
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pa = ap (4)

apa = a (5)

Proof. In Lemma 4 it is shown that R^R9$BR9 implies that, for any x (= R

there exists uniquely determined y^R9 with xp—yp2. Define a as xσ=y. As

is easily seen a is an endomorphism of the additive group of R. For any

elements x, r in R we have

(xr)p = U<o)r= (yp*)r= {yr)p2.

As i?p is an ideal of /? we have yr^R?i showing that (xr)σ = (xσ)r. Similarly

(rx)a- r(xa). Thus a^R.

As the proofs of (3), (4) and (5) are similar we show only (5). To prove

(5) it is sufficient to show that x(σρa) = xa for any x e R. Put xσ=y and xiσpσ)

= z. Then, by the definition of a, we have xp = yp2

f y e Rp, and (yp)σ = z, that

is jyp2 = 2p2, where jy and z axe in ^ p . Then (y - z)p2 = 0, which implies jy = z as

^ and 2 are in R9. Thus we have xα =

THEOREM 1. T/zβ ring R, ring of all endomorphisms of R+, of a regular

ring R is a commutative regular ring with identity.

Proof. Commutativity was already shown in Lemma 3. To prove the re-

gularity of R it is sufficient to prove R= R?ΘRP for any p e R, or equivalently,

by Lemma 4, (1) and (2) in Lemma 4. Suppose that xp*Q. Then by the re-

gularity of R there exists y e R such that xp= (xp)yixp). This implies xp =

(xp2)yx and as xp^O we have that xp2*0 showing (1). Also xp= (xp)y(xp) =

(xyx)p2 showing (2).

2. Imbedding a regular ring into a regular ring with identity.

Let R be an arbitrary ring.

Let S be a commutative subring of R, the ring of all R- R endomorphisms

of R+, and let Rs be the set of all ordered pairs (a, p) where a e R and p e S.

In Rs define the equality, addition, and multiplication by

(a, p) = {by τ) if and only if a = b and p = r,

(Λ, p) + (6, r) = (α + ̂ , p + r ) ,

^, r) = (flH^p + flr, pr).

Then # s is a ring. Commutativity of S is used for the proof of associativity

of R8. If S has the identity then Rs has the identity (0, ΐ) . The examples of
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S are as follows: (a) Z = { w : a -> na, n is an integer}, (b) C={c\c: a~+ac

( = ca), c is in the center C of R}9 (c) Z + C, (d) ^ when R is commutative.

Remark 1. /?* does not coincide with the classical imbedding R*. Indeed

when R is of bounded order Rz is of bounded order but R* is not of bounded

order.

R is imbedded in Rs as an ideal by the mapping a -> (at 0). Our idea is to

give some properties to Rs selecting a suitable S. This idea is essentially in-

cluded in [1], and the proof of the following theorem follows that in [1].

LEMMA 6. If R and S are regular, then R8 is regular.

Proof. Let (a, p) be any element in R8. We will seek for (b, a) such that

(a, p){b, σ)(a, p) = (β, p), that is

pop = p,

abaΛ- (ba)p+ {ab)p + a2σ + bp2 + a(σp) +a{pσ) = a. (6)

As S is regular there exists a a such that pap = p. For the second equality:

Let e be an idempotent in R such that a = ae = ea. (The existence such an e

has been proved in [1] Lemma 2).

By the regularity of R there exists an element x such that

{a + ep)x(a + ep) =* # -f £/o. (7)

Put jy = έ?#£, then, as is easily calculated, y satisfies (7) replacing x by y. Put

b~y — eβ> then & satisfies (6).

THEOREM 2. # * ι's α regular ring with identity if R is regular. R is im-

bedded in RR as an ideal.

Proof is clear from Theorem 1 and Lemma 6.
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