A NOTE ON PERMUTATION GROUPS AND THEIR REGULAR SUBGROUPS
 MING-YAO XU

(Received 17 December 2007; accepted 6 May 2008)

Communicated by Martin W. Liebeck
Dedicated to Cheryl Praeger for her sixtieth birthday

Abstract

In this note we first prove that, for a positive integer $n>1$ with $n \neq p$ or p^{2} where p is a prime, there exists a transitive group of degree n without regular subgroups. Then we look at 2 -closed transitive groups without regular subgroups, and pose two questions and a problem for further study.

2000 Mathematics subject classification: 20B25, 05C25.
Keywords and phrases: transitive permutation group, regular subgroup, non-Cayley number.

We first define four subsets of positive integers:
$\mathcal{N} \mathcal{R}=\{n \in \mathbb{N} \mid$ there is a transitive group of degree n without a regular subgroup $\}$,
$\mathcal{N}_{2} \mathcal{R}=\{n \in \mathbb{N} \mid$ there is a 2-closed transitive group of degree n without a
regular subgroup\},
$\mathcal{N D}=\{n \in \mathbb{N} \mid$ there is a vertex-transitive digraph of order n that is non-Cayley $\}$,
$\mathcal{N C}=\{n \in \mathbb{N} \mid$ there is a vertex-transitive graph of order n that is non-Cayley $\}$.
In the literature there has been much work studying the set $\mathcal{N C}$; see [5-9] for example.
Obviously, $\mathcal{N} \mathcal{R} \supseteqq \mathcal{N}_{2} \mathcal{R} \supseteqq \mathcal{N} \mathcal{D} \supseteqq \mathcal{N C}$. It is known that $\mathcal{N} \mathcal{R} \supsetneqq \mathcal{N C}$. For example, $12 \notin \mathcal{N C}$ by [7, Theorem 3], but $12 \in \mathcal{N} \mathcal{R}$, since M_{11}, acting on 12 points, has no regular subgroup by [3]. Also it is easy to see that 6 is the smallest number in $\mathcal{N} \mathcal{R} \backslash \mathcal{N C}$ since A_{6} has no regular subgroups. In the first part of this note, we shall determine the set $\mathcal{N} \mathcal{R}$.

It is well known that any prime number p does not belong to any one of the four sets above. Moreover, Marušič [5] proved that $p^{2} \notin \mathcal{N C}$. In fact, we have $p^{2} \notin \mathcal{N} \mathcal{R}$.

Proposition 1. Any transitive group G of degree p^{2} on Ω has a regular subgroup. Hence $p^{2} \notin \mathcal{N} \mathcal{R}$.

Proof. Take a minimal transitive subgroup P of G. Then P is a p-group and every maximal subgroup M of P is intransitive. For any $\alpha \in \Omega$, we have $\left|P_{\alpha}\right|=|P| / p^{2}$ and $\left|M_{\alpha}\right|>|M| / p^{2}$, so $M_{\alpha}=P_{\alpha}$. It follows that $P_{\alpha} \leq M$ and hence $P_{\alpha} \leq \Phi(P)$. If $|P: \Phi(P)|=p$, then P is cyclic and is regular. If $|P: \Phi(P)|=p^{2}$, then $P_{\alpha}=\Phi(P)$. Since $\Phi(P)$ is normal in P and P_{α} is core-free, we have $P_{\alpha}=1$ and hence $P \cong \mathbb{Z}_{p}^{2}$ is regular.

The following example shows that $p^{3} \in \mathcal{N} \mathcal{R}$. However, it has been proved that $p^{3} \notin \mathcal{N C}$; see [5, 6]. Therefore $p^{3} \in \mathcal{N} \mathcal{R} \backslash \mathcal{N C}$.

Example 2. (1) Let p be an odd prime and let G be the group of order p^{4} presented by

$$
G=\left\langle a, b \mid a^{p^{2}}=b^{p}=c^{p}=1,[a, b]=c,[c, a]=a^{p},[c, b]=1\right\rangle .
$$

Let $H=\langle c\rangle$. Consider the transitive permutation representation φ of G acting on the coset space [$G: H$]. Then $\varphi(G)$ is a transitive group of degree p^{3}, and $\varphi(G)$ has no regular subgroups.
(2) Let

$$
\begin{array}{r}
G=\langle a, b, c, d| a^{2}=b^{2}=c^{2}=d^{4}=1,[a, b]=[b, c]=[c, a]=1 \\
\left.a^{d}=a b, b^{d}=b c, c^{d}=c\right\rangle
\end{array}
$$

Then $G \cong \mathbb{Z}_{2}^{3} \rtimes \mathbb{Z}_{4}$ has order 2^{5}. Let $H=\left\langle b, d^{2}\right\rangle$ and φ be the transitive permutation representation of G acting on the coset space $[G: H]$. Then $\varphi(G)$ is a transitive group of degree 2^{3} and has no regular subgroup.
Proof. (1) Since $[c, a]=a^{p},\langle c\rangle \nexists G$. Since $\operatorname{Ker} \varphi=\operatorname{core}_{G}(H)=1$, the action is faithful. So, $\varphi(G) \cong G$. Suppose that $\varphi(G)$ has a regular subgroup, say $\varphi(R)$. Then R is maximal in G, and $R H=G$ by the Frattini argument. But, $H \leq G^{\prime} \leq \Phi(G) \leq R$, a contradiction.
(2) Similar to (1), we can prove that H is core-free and contained in $\Phi(G)$. The details are omitted.

Now we are ready to determine the set $\mathcal{N} \mathcal{R}$. We first need the following proposition.
Proposition 3. Let $p<q$ be two primes. Then $p q \in \mathcal{N} \mathcal{R}$.
Proof. Let $W=\mathbb{Z}_{p} \imath \mathbb{Z}_{q}=\langle a\rangle \imath\langle b\rangle$, viewed as an imprimitive group of degree $p q$. Since the action of b on the base group \mathbb{Z}_{p}^{q} is nontrivial, we may take a $\langle b\rangle$-invariant subgroup H of the base group such that the action of b on H is also nontrivial and H is smallest subject to this property. Then b is irreducible on H. Let $G=H \rtimes\langle b\rangle$. Since $p<q,|H|=p^{k}>p$. Take $M \lessdot H$. Consider the transitive permutation representation φ of G acting on the coset space $[G: M]$. Since H is a minimal normal subgroup of $G, \operatorname{core}_{G}(M)=1$ and φ is faithful. Since $\langle b\rangle$ is a Sylow q-subgroup and maximal in G by the irreducibility of b on H, G has no subgroup of order $p q$. Hence $\varphi(G)$ has no regular subgroups. It follows that $p q \in \mathcal{N} \mathcal{R}$.

THEOREM 4. Let n be a positive integer greater than 1 . Then $n \in \mathcal{N} \mathcal{R}$ unless $n=p$ or p^{2} for a prime p.

Proof. This theorem follows from Proposition 1, Example 2, Proposition 3 and the fact that, if $m \in \mathcal{N} \mathcal{R}$, then $k m \in \mathcal{N} \mathcal{R}$ for any positive integer k.

In the second part of this note we look at the set $\mathcal{N}_{2} \mathcal{R}$. The next proposition shows that $p^{3} \notin \mathcal{N}_{2} \mathcal{R}$, while Marušič [5] proved that $p^{3} \notin \mathcal{N C}$.

Proposition 5. Any 2-closed transitive group G of degree p^{3} on Ω has a regular subgroup.

To prove the above proposition, we need the concept of 2-closures of permutation groups introduced by Wielandt [10].

Let G be a permutation group acting on Ω. Suppose that $\Delta_{0}, \Delta_{1}, \ldots, \Delta_{r-1}$ are orbits of G acting on $\Omega \times \Omega$. The 2 -closure $G^{(2)}$ of G is defined by

$$
G^{(2)}=\left\{x \in \operatorname{Sym}(\Omega) \mid \Delta_{i}^{x}=\Delta_{i}, i=0,1, \ldots, r-1\right\}
$$

Obviously, $G^{(2)} \geq G$; if $G^{(2)}=G$, we say that G is 2-closed. The following lemma is quoted from [10, Exercise 5.28].

Lemma A. Suppose that G is a 2-closed group and p a prime. Then the Sylow p-subgroup P of G is also 2-closed.

THEOREM B (Wielandt's dissection theorem). Let G be a permutation group acting on Ω, and H a subgroup of G. Suppose that $\Omega=\Delta \cup \Gamma, \Delta \cap \Gamma=\emptyset, \Delta \neq \emptyset, \Gamma \neq \emptyset$ and $\Delta^{H}=\Delta, \Gamma^{H}=\Gamma$. If, for any $\delta \in \Delta, H$ and H_{δ} have the same orbits on Γ, then $H^{\Delta} \times H^{\Gamma} \leq G^{(2)}$.

This theorem follows from [10, Theorem 6.5] and the following obvious fact: if $H \leq G$, then $H^{(2)} \leq G^{(2)}$.

Proof of Proposition 5. Let $P \in \operatorname{Syl}(G)$. Then P is also transitive on Ω. Take an element $z \in Z(P)$ with $o(z)=p$. Let $\mathcal{B}=\left\{B_{1}, \ldots, B_{p^{2}}\right\}$ be the set of orbits of $\langle z\rangle$. Then \mathcal{B} is a complete block system of P. Assume that $K=P_{\mathcal{B}}$ is the kernel of P acting on \mathcal{B}. Since $K^{B_{i}}=\mathbb{Z}_{p}, K$ is elementary abelian. Set $\bar{P}=P / K$. Then \bar{P} is a transitive group on \mathcal{B}.

Take $1 \neq x \in K$ such that the support $\operatorname{supp}(x)$ of x has the minimum size. We claim that $\operatorname{supp}(x)$ is a block of P. Since K is elementary abelian, x is of order p. If $\operatorname{supp}(x)$ were not a block of P, then we could find an $h \in P$ such that $\operatorname{supp}(x)^{h} \neq \operatorname{supp}(x)$ and $D=\operatorname{supp}(x) \cap \operatorname{supp}(x)^{h} \neq \emptyset$. Since every B_{i} is a block of size p and p a prime, $\operatorname{supp}(x), \operatorname{supp}(x)^{h}=\operatorname{supp}\left(x^{h}\right)$ and D are unions of several entire blocks of P in \mathcal{B}. Set $J=\left\langle x, x^{h}\right\rangle$. Then the nontrivial orbits of J are precisely the blocks contained in $\operatorname{supp}(x) \cup \operatorname{supp}\left(x^{h}\right)$. It is not difficult to check that, for any $g \in \Omega-D, J$ and J_{g} have the same orbits in D. So, by Theorem B, $J^{D} \times 1^{\Omega-D} \leq P^{(2)}$. In what follows, for brevity, we use J^{D} to denote $J^{D} \times 1^{\Omega-D}$. Since P is 2-closed, $P=P^{(2)}$. Then
$J_{D} \leq P$ and hence $J_{D} \leq K$. Thus there exists an element $y \in J_{D} \leq K$ of order p such that $|\operatorname{supp}(y)|<|\operatorname{supp}(x)|$, which contradicts the choice of x.

Now we distinguish three cases, namely: (1) $|\operatorname{supp}(x)|=p$; (2) $|\operatorname{supp}(x)|=p^{2}$ and (3) $|\operatorname{supp}(x)|=p^{3}$.

If $|\operatorname{supp}(x)|=p$, then $\operatorname{supp}(x)=B_{i}$ for some i. Hence $P=\mathbb{Z}_{p} \imath \bar{P}$. Since \bar{P} is a transitive group of degree p^{2}, it has a regular subgroup H isomorphic to \mathbb{Z}_{p}^{2} or $\mathbb{Z}_{p^{2}}$. Thus P has a subgroup isomorphic to \mathbb{Z}_{p} 亿 H, which has an abelian regular subgroup.

If $|\operatorname{supp}(x)|=p^{3}$, then $K=\langle z\rangle$ is semiregular. Assume that H / K is a regular subgroup of $\bar{P}=P / K$. Then H is a regular subgroup of P.

Finally we assume that $|\operatorname{supp}(x)|=p^{2}$. Then $\operatorname{supp}(x)$ is a block of P of length p^{2} which is a union of $p B_{i}$ s. Assume that $\mathcal{C}=\left\{C_{1}, \ldots, C_{p}\right\}$ is a block system of P with $\operatorname{supp}(x)=C_{1}$. Then $K=K^{C_{1}} \times \cdots \times K^{C_{p}} \cong \mathbb{Z}_{p}^{p}$.

If $\bar{P}=P / K$ has an element $a K$ of order p^{2}, then $\langle a, z\rangle$ is a regular subgroup of P. So we may assume that $\exp \bar{P}=p$. Take a regular subgroup $H / K=\langle u K, v K\rangle$ of \bar{P} such that $v \in P_{\mathcal{C}}-K$. (Since $P_{\mathcal{C}}$ has index p in P, this is possible.) We have $H_{\mathcal{C}}=\langle v, K\rangle$ and $u \notin H_{\mathcal{C}}$. Without loss of generality we assume that $C_{i}^{u}=C_{i+1}$, for all $i(\bmod p)$. Define a permutation w of Ω by

$$
w=v^{C_{1}}\left(v^{u}\right)^{C_{2}}\left(v^{u^{2}}\right)^{C_{3}} \cdots\left(v^{u^{p-1}}\right)^{C_{p}} .
$$

Since $[v, u]=k \in K, v^{u}=v k$. So

$$
\begin{aligned}
w & =v^{C_{1}}(v k)^{C_{2}}\left(v k k^{u}\right)^{C_{3}} \cdots\left(v k k^{u} \cdots k^{u^{p-2}}\right)^{C_{p}} \\
& =\left(v^{C_{1}} v^{C_{2}} v^{C_{3}} \cdots v^{C_{p}}\right)\left(1^{C_{1}} k^{C_{2}}\left(k k^{u}\right)^{C_{3}} \cdots\left(k k^{u} \cdots k^{u^{p-2}}\right)^{C_{p}}\right) \\
& =v \bar{k}
\end{aligned}
$$

where $\bar{k}=1^{C_{1}} k^{C_{2}}\left(k k^{u}\right)^{C_{3}} \cdots\left(k k^{u} \cdots k^{u^{p-2}}\right)^{C_{p}} \in K$, as $K=K^{C_{1}} \times \cdots \times K^{C_{p}}$. So $w \in H_{\mathcal{C}}$. Since $u^{p} \in K, v^{u^{p}}=v$. So u centralizes w, and then $R=\langle u, w\rangle$ is abelian and $R K / K$ is transitive on \mathcal{B}. If $|R|>p^{2}$, then R is regular; if $|R|=p^{2}$, then $R \times\langle z\rangle$ is regular. This completes the proof of this proposition.

It is known that not all 2-closed transitive groups are the full automorphism groups of a (di)graph. For example, the regular representation of a finite group that has no graphical regular representation (GRR) or digraphical regular representation (DRR) is such an example since regular groups are obviously 2-closed. (For GRRs and DRRs of finite groups, see [1, 2, 4].) Now we would like to pose the following questions.
Question 1. Determine $\mathcal{N}_{2} \mathcal{R} \backslash \mathcal{N C}$.
Question 2. Is $\mathcal{N D}=\mathcal{N C}$?
To study Question 1, we should first find nonregular 2-closed groups that are not the full automorphism groups of (di)graphs. We do not know such examples.

To end this note, we propose a problem. We first define one more subset of positive integers:
$\mathcal{P N} \mathcal{R}=\{n \in \mathbb{N} \mid$ there is a primitive group of degree n without a regular subgroup $\}$.

Problem 3. Determine the set $\mathcal{P N} \mathcal{R}$.
Different from the set $\mathcal{N} \mathcal{R}$, we know that $p^{n} \notin \mathcal{P} \mathcal{N} \mathcal{R}$ for any prime p and any positive integer n; see [11, Theorem]. Hence, determining the set $\mathcal{P N} \mathcal{R}$ should be much harder than $\mathcal{N} \mathcal{R}$.

Acknowledgements

The author is grateful to Dr Haipeng Qu and Dr Jing Xu for their valuable discussions on the work in this paper.

References

[1] László Babai, 'On the abstract group of automorphisms', in: Combinatorics, London Mathematical Society Lecture Note Series, 52 (ed. H. N. V. Temperley) (Cambridge University Press, Cambridge, New York, 1981), pp. 1-40.
[2] _- 'Finite digraphs with regular automorphism groups', Period. Math. Hungar. 11 (1980), 257-270.
[3] Michael Giudici, 'Factorisations of sporadic simple groups', J. Algebra 304 (2006), 311-323.
[4] Chris D. Godsil, 'GRR's for non-solvable groups', in: Algebraic Methods in Graph Theory, Vol. I and II (Szeged, 1978), Colloq. Math. Soc. Jannos Bolyai, 25 (North-Holland, Amsterdam, 1981), pp. 221-239.
[5] Dragan Marušič, 'Vertex-transitive graphs and digraphs of order p^{k}, Ann. Discrete Math. 27 (1985), 115-128.
[6] Brendan D. McKay and Cheryl E. Praeger, 'Vertex-transitive graphs which are not Cayley graphs, I', J. Aust. Math. Soc. (A) 56 (1994), 53-63.
[7] _, 'Vertex-transitive graphs which are not Cayley graphs, II', J. Graph Theory 22 (1996), 321-334.
[8] A. A. Miller and Cheryl E. Praeger, 'Non-Cayley, vertex transitive graphs of order twice the product of two distinct odd primes', J. Algebraic Combin. 3 (1994), 77-111.
[9] M. A. Iranmanesh and Cheryl E. Praeger, 'On non-Cayley vertex-transitive graphs of order a product of three primes', J. Combin. Theory Ser. B 81 (2001), 1-19.
[10] H. Wielandt, Permutation Groups Through Invariant Relations and Invariant Functions (Ohio State University, Columbus, OH, 1969).
[11] Ming-Yao Xu, 'Vertex-primitive digraphs of prime-power order are hamiltonian', Discrete Math. 128 (1994), 415-417.

MING-YAO XU, Department of Mathematics, Shanxi Normal University, Linfen, Shanxi 041004, People's Republic of China
e-mail: xumy@dns.sxnu.edu.cn
and
LMAM, Institute of Mathematics, Peking University, Beijing 100871,
People's Republic of China
e-mail: xumy@math.pku.edu.cn

