A NOTE ON PERMUTATION GROUPS AND THEIR REGULAR SUBGROUPS

MING-YAO XU

(Received 17 December 2007; accepted 6 May 2008)

Communicated by Martin W. Liebeck Dedicated to Cheryl Praeger for her sixtieth birthday

Abstract

In this note we first prove that, for a positive integer n > 1 with $n \neq p$ or p^2 where p is a prime, there exists a transitive group of degree n without regular subgroups. Then we look at 2-closed transitive groups without regular subgroups, and pose two questions and a problem for further study.

2000 *Mathematics subject classification*: 20B25, 05C25. *Keywords and phrases*: transitive permutation group, regular subgroup, non-Cayley number.

We first define four subsets of positive integers:

 $\mathcal{NR} = \{n \in \mathbb{N} \mid \text{there is a transitive group of degree } n \text{ without a regular subgroup}\},\$

 $\mathcal{N}_2\mathcal{R} = \{n \in \mathbb{N} \mid \text{there is a 2-closed transitive group of degree } n \text{ without a regular subgroup}\},$

 $\mathcal{ND} = \{n \in \mathbb{N} \mid \text{there is a vertex-transitive digraph of order } n \text{ that is non-Cayley}\},\$

 $\mathcal{NC} = \{n \in \mathbb{N} \mid \text{there is a vertex-transitive graph of order } n \text{ that is non-Cayley}\}.$

In the literature there has been much work studying the set \mathcal{NC} ; see [5–9] for example.

Obviously, $\mathcal{NR} \supseteq \mathcal{N}_2 \mathcal{R} \supseteq \mathcal{ND} \supseteq \mathcal{NC}$. It is known that $\mathcal{NR} \supseteq \mathcal{NC}$. For example, $12 \notin \mathcal{NC}$ by [7, Theorem 3], but $12 \in \mathcal{NR}$, since M_{11} , acting on 12 points, has no regular subgroup by [3]. Also it is easy to see that 6 is the smallest number in $\mathcal{NR} \setminus \mathcal{NC}$ since A_6 has no regular subgroups. In the first part of this note, we shall determine the set \mathcal{NR} .

It is well known that any prime number p does not belong to any one of the four sets above. Moreover, Marušič [5] proved that $p^2 \notin \mathcal{NC}$. In fact, we have $p^2 \notin \mathcal{NR}$.

PROPOSITION 1. Any transitive group G of degree p^2 on Ω has a regular subgroup. Hence $p^2 \notin \mathcal{NR}$.

This work was supported by NSFC (project number 10671114).

^{© 2008} Australian Mathematical Society 1446-7887/08 \$A2.00 + 0.00

M.-Y. Xu

[2]

PROOF. Take a minimal transitive subgroup *P* of *G*. Then *P* is a *p*-group and every maximal subgroup *M* of *P* is intransitive. For any $\alpha \in \Omega$, we have $|P_{\alpha}| = |P|/p^2$ and $|M_{\alpha}| > |M|/p^2$, so $M_{\alpha} = P_{\alpha}$. It follows that $P_{\alpha} \le M$ and hence $P_{\alpha} \le \Phi(P)$. If $|P:\Phi(P)| = p$, then *P* is cyclic and is regular. If $|P:\Phi(P)| = p^2$, then $P_{\alpha} = \Phi(P)$. Since $\Phi(P)$ is normal in *P* and P_{α} is core-free, we have $P_{\alpha} = 1$ and hence $P \cong \mathbb{Z}_p^2$ is regular.

The following example shows that $p^3 \in \mathcal{NR}$. However, it has been proved that $p^3 \notin \mathcal{NC}$; see [5, 6]. Therefore $p^3 \in \mathcal{NR} \setminus \mathcal{NC}$.

EXAMPLE 2. (1) Let p be an odd prime and let G be the group of order p^4 presented by

$$G = \langle a, b \mid a^{p^2} = b^p = c^p = 1, [a, b] = c, [c, a] = a^p, [c, b] = 1 \rangle.$$

Let $H = \langle c \rangle$. Consider the transitive permutation representation φ of G acting on the coset space [G : H]. Then $\varphi(G)$ is a transitive group of degree p^3 , and $\varphi(G)$ has no regular subgroups.

(2) Let

$$G = \langle a, b, c, d \mid a^2 = b^2 = c^2 = d^4 = 1, [a, b] = [b, c] = [c, a] = 1,$$
$$a^d = ab, b^d = bc, c^d = c \rangle.$$

Then $G \cong \mathbb{Z}_2^3 \rtimes \mathbb{Z}_4$ has order 2⁵. Let $H = \langle b, d^2 \rangle$ and φ be the transitive permutation representation of *G* acting on the coset space [*G* : *H*]. Then $\varphi(G)$ is a transitive group of degree 2³ and has no regular subgroup.

PROOF. (1) Since $[c, a] = a^p$, $\langle c \rangle \not \leq G$. Since Ker $\varphi = \operatorname{core}_G(H) = 1$, the action is faithful. So, $\varphi(G) \cong G$. Suppose that $\varphi(G)$ has a regular subgroup, say $\varphi(R)$. Then *R* is maximal in *G*, and RH = G by the Frattini argument. But, $H \leq G' \leq \Phi(G) \leq R$, a contradiction.

(2) Similar to (1), we can prove that *H* is core-free and contained in $\Phi(G)$. The details are omitted.

Now we are ready to determine the set \mathcal{NR} . We first need the following proposition.

PROPOSITION 3. Let p < q be two primes. Then $pq \in \mathcal{NR}$.

PROOF. Let $W = \mathbb{Z}_p \wr \mathbb{Z}_q = \langle a \rangle \wr \langle b \rangle$, viewed as an imprimitive group of degree pq. Since the action of b on the base group \mathbb{Z}_p^q is nontrivial, we may take a $\langle b \rangle$ -invariant subgroup H of the base group such that the action of b on H is also nontrivial and His smallest subject to this property. Then b is irreducible on H. Let $G = H \rtimes \langle b \rangle$. Since p < q, $|H| = p^k > p$. Take M < H. Consider the transitive permutation representation φ of G acting on the coset space [G : M]. Since H is a minimal normal subgroup of G, core $_G(M) = 1$ and φ is faithful. Since $\langle b \rangle$ is a Sylow q-subgroup and maximal in G by the irreducibility of b on H, G has no subgroup of order pq. Hence $\varphi(G)$ has no regular subgroups. It follows that $pq \in \mathcal{NR}$.

284

THEOREM 4. Let n be a positive integer greater than 1. Then $n \in N\mathcal{R}$ unless n = p or p^2 for a prime p.

PROOF. This theorem follows from Proposition 1, Example 2, Proposition 3 and the fact that, if $m \in N\mathcal{R}$, then $km \in N\mathcal{R}$ for any positive integer *k*.

In the second part of this note we look at the set $\mathcal{N}_2\mathcal{R}$. The next proposition shows that $p^3 \notin \mathcal{N}_2\mathcal{R}$, while Marušič [5] proved that $p^3 \notin \mathcal{N}\mathcal{C}$.

PROPOSITION 5. Any 2-closed transitive group G of degree p^3 on Ω has a regular subgroup.

To prove the above proposition, we need the concept of 2-closures of permutation groups introduced by Wielandt [10].

Let G be a permutation group acting on Ω . Suppose that $\Delta_0, \Delta_1, \ldots, \Delta_{r-1}$ are orbits of G acting on $\Omega \times \Omega$. The 2-closure $G^{(2)}$ of G is defined by

$$G^{(2)} = \{ x \in \text{Sym}(\Omega) \mid \Delta_i^x = \Delta_i, i = 0, 1, \dots, r-1 \}.$$

Obviously, $G^{(2)} \ge G$; if $G^{(2)} = G$, we say that G is 2-closed. The following lemma is quoted from [10, Exercise 5.28].

LEMMA A. Suppose that G is a 2-closed group and p a prime. Then the Sylow p-subgroup P of G is also 2-closed.

THEOREM B (Wielandt's dissection theorem). Let G be a permutation group acting on Ω , and H a subgroup of G. Suppose that $\Omega = \Delta \cup \Gamma$, $\Delta \cap \Gamma = \emptyset$, $\Delta \neq \emptyset$, $\Gamma \neq \emptyset$ and $\Delta^{H} = \Delta$, $\Gamma^{H} = \Gamma$. If, for any $\delta \in \Delta$, H and H_{δ} have the same orbits on Γ , then $H^{\Delta} \times H^{\Gamma} \leq G^{(2)}$.

This theorem follows from [10, Theorem 6.5] and the following obvious fact: if $H \le G$, then $H^{(2)} \le G^{(2)}$.

PROOF OF PROPOSITION 5. Let $P \in Syl(G)$. Then *P* is also transitive on Ω . Take an element $z \in Z(P)$ with o(z) = p. Let $\mathcal{B} = \{B_1, \ldots, B_{p^2}\}$ be the set of orbits of $\langle z \rangle$. Then \mathcal{B} is a complete block system of *P*. Assume that $K = P_{\mathcal{B}}$ is the kernel of *P* acting on \mathcal{B} . Since $K^{B_i} = \mathbb{Z}_p$, *K* is elementary abelian. Set $\overline{P} = P/K$. Then \overline{P} is a transitive group on \mathcal{B} .

Take $1 \neq x \in K$ such that the support $\operatorname{supp}(x)$ of x has the minimum size. We claim that $\operatorname{supp}(x)$ is a block of P. Since K is elementary abelian, x is of order p. If $\operatorname{supp}(x)$ were not a block of P, then we could find an $h \in P$ such that $\operatorname{supp}(x)^h \neq \operatorname{supp}(x)$ and $D = \operatorname{supp}(x) \cap \operatorname{supp}(x)^h \neq \emptyset$. Since every B_i is a block of size p and p a prime, $\operatorname{supp}(x)$, $\operatorname{supp}(x)^h = \operatorname{supp}(x^h)$ and D are unions of several entire blocks of P in \mathcal{B} . Set $J = \langle x, x^h \rangle$. Then the nontrivial orbits of J are precisely the blocks contained in $\operatorname{supp}(x) \cup \operatorname{supp}(x^h)$. It is not difficult to check that, for any $g \in \Omega - D$, J and J_g have the same orbits in D. So, by Theorem B, $J^D \times 1^{\Omega - D} \leq P^{(2)}$. In what follows, for brevity, we use J^D to denote $J^D \times 1^{\Omega - D}$. Since P is 2-closed, $P = P^{(2)}$. Then

 $J_D \le P$ and hence $J_D \le K$. Thus there exists an element $y \in J_D \le K$ of order p such that $|\operatorname{supp}(y)| < |\operatorname{supp}(x)|$, which contradicts the choice of x.

Now we distinguish three cases, namely: (1) $|\operatorname{supp}(x)| = p$; (2) $|\operatorname{supp}(x)| = p^2$ and (3) $|\operatorname{supp}(x)| = p^3$.

If $|\operatorname{supp}(x)| = p$, then $\operatorname{supp}(x) = B_i$ for some *i*. Hence $P = \mathbb{Z}_p \wr \overline{P}$. Since \overline{P} is a transitive group of degree p^2 , it has a regular subgroup *H* isomorphic to \mathbb{Z}_p^2 or \mathbb{Z}_{p^2} . Thus *P* has a subgroup isomorphic to $\mathbb{Z}_p \wr H$, which has an abelian regular subgroup.

If $|\operatorname{supp}(x)| = p^3$, then $K = \langle z \rangle$ is semiregular. Assume that H/K is a regular subgroup of $\overline{P} = P/K$. Then H is a regular subgroup of P.

Finally we assume that $|\operatorname{supp}(x)| = p^2$. Then $\operatorname{supp}(x)$ is a block of P of length p^2 which is a union of p B_i s. Assume that $C = \{C_1, \ldots, C_p\}$ is a block system of P with $\operatorname{supp}(x) = C_1$. Then $K = K^{C_1} \times \cdots \times K^{C_p} \cong \mathbb{Z}_p^p$.

If $\overline{P} = P/K$ has an element aK of order p^2 , then $\langle a, z \rangle$ is a regular subgroup of P. So we may assume that $\exp \overline{P} = p$. Take a regular subgroup $H/K = \langle uK, vK \rangle$ of \overline{P} such that $v \in P_{\mathcal{C}} - K$. (Since $P_{\mathcal{C}}$ has index p in P, this is possible.) We have $H_{\mathcal{C}} = \langle v, K \rangle$ and $u \notin H_{\mathcal{C}}$. Without loss of generality we assume that $C_i^u = C_{i+1}$, for all $i \pmod{p}$. Define a permutation w of Ω by

$$w = v^{C_1}(v^u)^{C_2}(v^{u^2})^{C_3}\cdots(v^{u^{p-1}})^{C_p}.$$

Since $[v, u] = k \in K$, $v^u = vk$. So

$$w = v^{C_1} (vk)^{C_2} (vkk^u)^{C_3} \cdots (vkk^u \cdots k^{u^{p-2}})^{C_p}$$

= $(v^{C_1} v^{C_2} v^{C_3} \cdots v^{C_p}) (1^{C_1} k^{C_2} (kk^u)^{C_3} \cdots (kk^u \cdots k^{u^{p-2}})^{C_p})$
= $v\bar{k}$,

where $\bar{k} = 1^{C_1} k^{C_2} (kk^u)^{C_3} \cdots (kk^u \cdots k^{u^{p-2}})^{C_p} \in K$, as $K = K^{C_1} \times \cdots \times K^{C_p}$. So $w \in H_C$. Since $u^p \in K$, $v^{u^p} = v$. So u centralizes w, and then $R = \langle u, w \rangle$ is abelian and RK/K is transitive on \mathcal{B} . If $|R| > p^2$, then R is regular; if $|R| = p^2$, then $R \times \langle z \rangle$ is regular. This completes the proof of this proposition.

It is known that not all 2-closed transitive groups are the full automorphism groups of a (di)graph. For example, the regular representation of a finite group that has no graphical regular representation (GRR) or digraphical regular representation (DRR) is such an example since regular groups are obviously 2-closed. (For GRRs and DRRs of finite groups, see [1, 2, 4].) Now we would like to pose the following questions.

QUESTION 1. Determine $\mathcal{N}_2\mathcal{R} \setminus \mathcal{NC}$.

QUESTION 2. Is $\mathcal{ND} = \mathcal{NC}$?

To study Question 1, we should first find nonregular 2-closed groups that are not the full automorphism groups of (di)graphs. We do not know such examples.

To end this note, we propose a problem. We first define one more subset of positive integers:

 $\mathcal{PNR} = \{n \in \mathbb{N} \mid \text{there is a primitive group of degree } n \text{ without a regular subgroup}\}.$

PROBLEM 3. Determine the set \mathcal{PNR} .

Different from the set \mathcal{NR} , we know that $p^n \notin \mathcal{PNR}$ for any prime p and any positive integer n; see [11, Theorem]. Hence, determining the set \mathcal{PNR} should be much harder than \mathcal{NR} .

Acknowledgements

The author is grateful to Dr Haipeng Qu and Dr Jing Xu for their valuable discussions on the work in this paper.

References

- László Babai, 'On the abstract group of automorphisms', in: *Combinatorics*, London Mathematical Society Lecture Note Series, 52 (ed. H. N. V. Temperley) (Cambridge University Press, Cambridge, New York, 1981), pp. 1–40.
- [2] _____, 'Finite digraphs with regular automorphism groups', *Period. Math. Hungar.* **11** (1980), 257–270.
- [3] Michael Giudici, 'Factorisations of sporadic simple groups', J. Algebra 304 (2006), 311–323.
- [4] Chris D. Godsil, 'GRR's for non-solvable groups', in: *Algebraic Methods in Graph Theory, Vol. I and II (Szeged, 1978)*, Colloq. Math. Soc. Jannos Bolyai, 25 (North-Holland, Amsterdam, 1981), pp. 221–239.
- [5] Dragan Marušič, 'Vertex-transitive graphs and digraphs of order p^k ', Ann. Discrete Math. 27 (1985), 115–128.
- [6] Brendan D. McKay and Cheryl E. Praeger, 'Vertex-transitive graphs which are not Cayley graphs, I', J. Aust. Math. Soc. (A) 56 (1994), 53–63.
- [7] _____, 'Vertex-transitive graphs which are not Cayley graphs, II', J. Graph Theory 22 (1996), 321–334.
- [8] A. A. Miller and Cheryl E. Praeger, 'Non-Cayley, vertex transitive graphs of order twice the product of two distinct odd primes', J. Algebraic Combin. 3 (1994), 77–111.
- [9] M. A. Iranmanesh and Cheryl E. Praeger, 'On non-Cayley vertex-transitive graphs of order a product of three primes', J. Combin. Theory Ser. B 81 (2001), 1–19.
- [10] H. Wielandt, Permutation Groups Through Invariant Relations and Invariant Functions (Ohio State University, Columbus, OH, 1969).
- [11] Ming-Yao Xu, 'Vertex-primitive digraphs of prime-power order are hamiltonian', *Discrete Math.* 128 (1994), 415–417.

MING-YAO XU, Department of Mathematics, Shanxi Normal University, Linfen, Shanxi 041004, People's Republic of China

e-mail: xumy@dns.sxnu.edu.cn

and

LMAM, Institute of Mathematics, Peking University, Beijing 100871,

People's Republic of China

e-mail: xumy@math.pku.edu.cn