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Abstract

In this note we first prove that, for a positive integer n > 1 with n 6= p or p2 where p is a prime, there
exists a transitive group of degree n without regular subgroups. Then we look at 2-closed transitive groups
without regular subgroups, and pose two questions and a problem for further study.
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We first define four subsets of positive integers:

N R = {n ∈N | there is a transitive group of degree n without a regular subgroup},

N2R = {n ∈N | there is a 2-closed transitive group of degree n without a

regular subgroup},

N D = {n ∈N | there is a vertex-transitive digraph of order n that is non-Cayley},

N C = {n ∈N | there is a vertex-transitive graph of order n that is non-Cayley}.

In the literature there has been much work studying the set N C; see [5–9] for example.
Obviously, N R k N2R k N D k N C. It is known that N R % N C. For example,

12 /∈N C by [7, Theorem 3], but 12 ∈N R, since M11, acting on 12 points, has
no regular subgroup by [3]. Also it is easy to see that 6 is the smallest number in
N R \N C since A6 has no regular subgroups. In the first part of this note, we shall
determine the set N R.

It is well known that any prime number p does not belong to any one of the four
sets above. Moreover, Marušič [5] proved that p2 /∈N C. In fact, we have p2 /∈N R.

PROPOSITION 1. Any transitive group G of degree p2 on � has a regular subgroup.
Hence p2 /∈N R.
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PROOF. Take a minimal transitive subgroup P of G. Then P is a p-group and every
maximal subgroup M of P is intransitive. For any α ∈�, we have |Pα| = |P|/p2

and |Mα|> |M |/p2, so Mα = Pα . It follows that Pα ≤ M and hence Pα ≤8(P). If
|P :8(P)| = p, then P is cyclic and is regular. If |P :8(P)| = p2, then Pα =8(P).
Since 8(P) is normal in P and Pα is core-free, we have Pα = 1 and hence P ∼= Z2

p
is regular. 2

The following example shows that p3
∈N R. However, it has been proved that

p3 /∈N C; see [5, 6]. Therefore p3
∈N R \N C.

EXAMPLE 2. (1) Let p be an odd prime and let G be the group of order p4 presented
by

G = 〈a, b | a p2
= bp

= cp
= 1, [a, b] = c, [c, a] = a p, [c, b] = 1〉.

Let H = 〈c〉. Consider the transitive permutation representation ϕ of G acting on the
coset space [G : H ]. Then ϕ(G) is a transitive group of degree p3, and ϕ(G) has no
regular subgroups.

(2) Let

G = 〈a, b, c, d | a2
= b2
= c2
= d4

= 1, [a, b] = [b, c] = [c, a] = 1,

ad
= ab, bd

= bc, cd
= c〉.

Then G ∼= Z3
2 o Z4 has order 25. Let H = 〈b, d2

〉 and ϕ be the transitive permutation
representation of G acting on the coset space [G : H ]. Then ϕ(G) is a transitive group
of degree 23 and has no regular subgroup.

PROOF. (1) Since [c, a] = a p, 〈c〉5 G. Since Ker ϕ = coreG(H)= 1, the action is
faithful. So, ϕ(G)∼= G. Suppose that ϕ(G) has a regular subgroup, say ϕ(R). Then R
is maximal in G, and RH = G by the Frattini argument. But, H ≤ G ′ ≤8(G)≤ R, a
contradiction.

(2) Similar to (1), we can prove that H is core-free and contained in 8(G). The
details are omitted. 2

Now we are ready to determine the set N R. We first need the following
proposition.

PROPOSITION 3. Let p < q be two primes. Then pq ∈N R.

PROOF. Let W = Zp o Zq = 〈a〉 o 〈b〉, viewed as an imprimitive group of degree pq.
Since the action of b on the base group Zq

p is nontrivial, we may take a 〈b〉-invariant
subgroup H of the base group such that the action of b on H is also nontrivial and H
is smallest subject to this property. Then b is irreducible on H . Let G = H o 〈b〉.
Since p < q , |H | = pk > p. Take M l H . Consider the transitive permutation
representation ϕ of G acting on the coset space [G : M]. Since H is a minimal normal
subgroup of G, coreG(M)= 1 and ϕ is faithful. Since 〈b〉 is a Sylow q-subgroup and
maximal in G by the irreducibility of b on H , G has no subgroup of order pq . Hence
ϕ(G) has no regular subgroups. It follows that pq ∈N R. 2
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THEOREM 4. Let n be a positive integer greater than 1. Then n ∈N R unless n = p
or p2 for a prime p.

PROOF. This theorem follows from Proposition 1, Example 2, Proposition 3 and the
fact that, if m ∈N R, then km ∈N R for any positive integer k. 2

In the second part of this note we look at the set N2R. The next proposition shows
that p3 /∈N2R, while Marušič [5] proved that p3 /∈N C.

PROPOSITION 5. Any 2-closed transitive group G of degree p3 on � has a regular
subgroup.

To prove the above proposition, we need the concept of 2-closures of permutation
groups introduced by Wielandt [10].

Let G be a permutation group acting on �. Suppose that 10, 11, . . . , 1r−1 are
orbits of G acting on �×�. The 2-closure G(2) of G is defined by

G(2)
= {x ∈ Sym(�) |1x

i =1i , i = 0, 1, . . . , r − 1}.

Obviously, G(2)
≥ G; if G(2)

= G, we say that G is 2-closed. The following lemma is
quoted from [10, Exercise 5.28].

LEMMA A. Suppose that G is a 2-closed group and p a prime. Then the Sylow
p-subgroup P of G is also 2-closed.

THEOREM B (Wielandt’s dissection theorem). Let G be a permutation group acting
on �, and H a subgroup of G. Suppose that �=1 ∪ 0, 1 ∩ 0 = ∅, 1 6= ∅, 0 6= ∅
and 1H

=1, 0H
= 0. If, for any δ ∈1, H and Hδ have the same orbits on 0, then

H1
× H0

≤ G(2).

This theorem follows from [10, Theorem 6.5] and the following obvious fact: if
H ≤ G, then H (2)

≤ G(2).

PROOF OF PROPOSITION 5. Let P ∈ Syl(G). Then P is also transitive on �. Take
an element z ∈ Z(P) with o(z)= p. Let B = {B1, . . . , Bp2} be the set of orbits of
〈z〉. Then B is a complete block system of P . Assume that K = PB is the kernel of P
acting on B. Since K Bi = Zp, K is elementary abelian. Set P = P/K . Then P is a
transitive group on B.

Take 1 6= x ∈ K such that the support supp(x) of x has the minimum size. We claim
that supp(x) is a block of P . Since K is elementary abelian, x is of order p. If supp(x)
were not a block of P , then we could find an h ∈ P such that supp(x)h 6= supp(x)
and D = supp(x) ∩ supp(x)h 6= ∅. Since every Bi is a block of size p and p a prime,
supp(x), supp(x)h = supp(xh) and D are unions of several entire blocks of P in B.
Set J = 〈x, xh

〉. Then the nontrivial orbits of J are precisely the blocks contained
in supp(x) ∪ supp(xh). It is not difficult to check that, for any g ∈�− D, J and Jg
have the same orbits in D. So, by Theorem B, J D

× 1�−D
≤ P(2). In what follows,

for brevity, we use J D to denote J D
× 1�−D . Since P is 2-closed, P = P(2). Then
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JD ≤ P and hence JD ≤ K . Thus there exists an element y ∈ JD ≤ K of order p such
that |supp(y)|< |supp(x)|, which contradicts the choice of x .

Now we distinguish three cases, namely: (1) |supp(x)| = p; (2) |supp(x)| = p2 and
(3) |supp(x)| = p3.

If |supp(x)| = p, then supp(x)= Bi for some i . Hence P = Zp o P . Since P is a
transitive group of degree p2, it has a regular subgroup H isomorphic to Z2

p or Zp2 .
Thus P has a subgroup isomorphic to Zp o H , which has an abelian regular subgroup.

If |supp(x)| = p3, then K = 〈z〉 is semiregular. Assume that H/K is a regular
subgroup of P = P/K . Then H is a regular subgroup of P .

Finally we assume that |supp(x)| = p2. Then supp(x) is a block of P of length p2

which is a union of p Bi s. Assume that C = {C1, . . . , C p} is a block system of P with
supp(x)= C1. Then K = K C1 × · · · × K C p ∼= Zp

p.
If P = P/K has an element aK of order p2, then 〈a, z〉 is a regular subgroup of P .

So we may assume that expP = p. Take a regular subgroup H/K = 〈uK , vK 〉 of
P such that v ∈ PC − K . (Since PC has index p in P , this is possible.) We have
HC = 〈v, K 〉 and u /∈ HC . Without loss of generality we assume that Cu

i = Ci+1, for
all i (mod p). Define a permutation w of � by

w = vC1(vu)C2(vu2
)C3 · · · (vu p−1

)C p .

Since [v, u] = k ∈ K , vu
= vk. So

w = vC1(vk)C2(vkku)C3 · · · (vkku
· · · ku p−2

)C p

= (vC1vC2vC3 · · · vC p )(1C1kC2(kku)C3 · · · (kku
· · · ku p−2

)C p )

= vk̄,

where k̄ = 1C1kC2(kku)C3 · · · (kku
· · · ku p−2

)C p ∈ K , as K = K C1 × · · · × K C p . So
w ∈ HC . Since u p

∈ K , vu p
= v. So u centralizes w, and then R = 〈u, w〉 is abelian

and RK/K is transitive on B. If |R|> p2, then R is regular; if |R| = p2, then R × 〈z〉
is regular. This completes the proof of this proposition. 2

It is known that not all 2-closed transitive groups are the full automorphism groups
of a (di)graph. For example, the regular representation of a finite group that has no
graphical regular representation (GRR) or digraphical regular representation (DRR) is
such an example since regular groups are obviously 2-closed. (For GRRs and DRRs
of finite groups, see [1, 2, 4].) Now we would like to pose the following questions.

QUESTION 1. Determine N2R \N C.

QUESTION 2. Is N D =N C?

To study Question 1, we should first find nonregular 2-closed groups that are not
the full automorphism groups of (di)graphs. We do not know such examples.

To end this note, we propose a problem. We first define one more subset of positive
integers:

P N R = {n ∈N | there is a primitive group of degree n without a regular subgroup}.
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PROBLEM 3. Determine the set P N R.

Different from the set N R, we know that pn /∈ P N R for any prime p and any
positive integer n; see [11, Theorem]. Hence, determining the set P N R should be
much harder than N R.
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