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Abstract
We produce a flexible tool for contracting subcurves of logarithmic hyperelliptic curves, which is local around the
subcurve and commutes with arbitrary base-change. As an application, we prove that a hyperelliptic multiscale
differential determines a sequence of Gorenstein contractions of the underlying nodal curve, such that each mero-
morphic piece of the differential descends to generate the dualising bundle of one of the Gorenstein contractions.
This is the first piece of evidence for a more general conjecture about limits of meromorphic differentials.
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Introduction

Moduli spaces of differentials 𝜂 on Riemann surfaces C have undergone wide and deep investigation at
the interface between dynamics, topology and algebraic geometry [EMM15, Fil16]. Various questions
in Teichmüller theory can be interpreted in intersection-theoretic terms on compactifications of these
moduli spaces [Mir07, CMSZ20].

In order to compactify strata of differentials, the curve C should be allowed to degenerate: in the limit,
a smooth curve can become nodal, and the differential 𝜂 can vanish on a subcurve 𝐶<0. Rescaling the
differential appropriately, though, it is possible to extract more information – namely, a meromorphic
differential 𝜂<0 on the subcurve 𝐶<0 (possibly vanishing on a subcurve 𝐶<−1, and so on). By assigning
each vertex of the dual graph of C the generic vanishing order of the differential, and each half-edge of
the dual graph a slope from the order of zeroes or poles of the various meromorphic differentials, we
define a conewise-linear function 𝜆 with integer slopes on the dual graph. This is, roughly speaking, the
data of a generalised multiscale differential [BCG+19]. See also [Gen18, FP18] for different approaches
to compactifying strata of differentials.

Moduli spaces of generalised multiscale differentials are typically ‘too large’ of a compactification
in the sense that they contain more than the limits of differentials on smooth curves. The locus of these
smoothable differentials has been characterized in terms of the so-called global residue condition: a
zero-sum condition on residues of the differential at poles belonging to different irreducible components
of the curve, which are connected through components with greater values of 𝜆 [BCG+18].

The compactification is intrinsically logarithmic [CC19, CGH+22]. The conewise linear function 𝜆
is indeed a section of the characteristic sheaf of a log structure on the curve. It is a tropical canonical
differential in the sense that it belongs to the tropical canonical linear series. Even for these purely
combinatorial data, the moduli space is not in general irreducible (nor pure-dimensional); the locus of
smoothable (realisable) tropical differentials has been described explicitly in [MUW21].

With the logarithmic approach providing a purely algebraic point of view on multiscale differen-
tials, identifying the ‘main component’ parametrising smoothable differentials is the only outstanding
problem towards a characteristic-free understanding of moduli spaces of differentials. We state a con-
jecture, originally due to D. Ranganathan and J. Wise, relating smoothable differentials and Gorenstein
singularities:

Conjecture G (≈ Conjecture 5.1). Let (𝐶, 𝜂) be a generalised multiscale/rubber differential (up to
scaling), and let �̄� denote its tropicalization. Then 𝜂 is smoothable if and only if

(i) every level truncation �̄�𝑖 of �̄� (as in §1.6) is a realisable tropical differential [MUW21];
(ii) there exists a logarithmic modification �̃� : 𝐶 → 𝐶 with a natural extension 𝜂 of the pullback of 𝜂

to 𝐶, and a reduced Gorenstein contraction 𝜎 : 𝐶 → 𝐶𝑖 such that 𝜎∗𝜔𝐶𝑖
(�̄�𝑖) = �̃�∗𝜔𝐶 , and

(iii) the differential 𝜂𝑖 at level i descends to a local generator of 𝜔𝐶𝑖
.

The conjecture is motivated by work on stable maps [RSPW19a, RSPW19b, BCM20, BNR21,
Zhe21, BC23, BC22]. The connection between Gorenstein singularities and the (algebraic and tropical)
geometry of differentials was first evidenced in [Bat22]; see also [Bat24]. It appears from these works on
curves of genus one and two that Brill–Noether theory, intended as the study of special linear series on
curves, plays a key role in the construction of alternative compactifications of the moduli space of curves,
both abstract and embedded. In this paper, we explore this connection in the more general framework of
hyperelliptic curves and study Conjecture G in this special case. In forthcoming work, we will present
applications of our construction to the birational geometry of the moduli space of hyperelliptic curves
[Smy13, Smy11, Fed14, Bat22, BKN23, BM21, BB22].
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Strata of differentials are known to have at most three connected components [KZ03]. One of them
parametrises hyperelliptic differentials (i.e., differentials on hyperelliptic curves that are anti-invariant
under the hyperelliptic involution). Even after compactifying, this component is already irreducible
[CC19, §5]; hence, the above conjecture postulates that every hyperelliptic multiscale differential should
come from a Gorenstein contraction. This is indeed what we prove; the bulk of the paper consists of the
construction of such a contraction. The combinatorial data we need is a cutoff of the tropicalisation of
the hyperelliptic differential, which we call a contraction datum. Note that these tropical differentials
come from the target of the admissible cover and are therefore automatically realisable, as the target is
rational. We prove the following:

Theorem A (≈ Theorem 2.5). Let (𝜓 : 𝐶 → 𝑃, 𝜆) be a family of log hyperelliptic admissible covers of
genus g with a contraction datum over a base log scheme (𝑆, 𝑀𝑆). There exists a commutative diagram
in the category of schemes over S

𝐶 𝐶

𝑃 𝑃

𝜎

𝜓 𝜓

𝜏

such that

(i) 𝜏 is a contraction to a family of rational, reduced, Cohen–Macaulay curves 𝑃;
(ii) 𝐶 is a family of (not-necessarily reduced) Gorenstein curves of genus g such that 𝜎∗𝜔𝐶 = 𝜔𝐶 (𝜆);

(iii) 𝜓 is a two-to-one cover, specifically the quotient by a hyperelliptic involution 𝜄 : 𝐶 → 𝐶.

Moreover, the construction commutes with any strict base-change in(𝑆, 𝑀𝑆).

Note that constructing the contraction1 𝜎 : 𝐶 → 𝐶 directly is problematic: the naive strategy of
taking Proj(𝜔𝐶 (𝜆)) does not behave well under base-change and does not in general produce a flat
family. One solution has been put forward in [Boz21], by presenting O𝐶 directly in terms of logarithmic
data. Here, we pursue a similar strategy, by first contracting the target of the admissible cover – which,
being rational, does not present any issues – and then reconstructing 𝐶 as a double cover of the rational,
not necessarily Gorenstein curve 𝑃: the cover ‘cures’ the failure of 𝑃 to be Gorenstein by building in
the structure sheaf all the superabundant differentials. This suggests perhaps that, although restricting
to Gorenstein curves is very helpful with deformation theory, more general Cohen–Macaulay curves
may appear quite naturally when looking at covers and other types of maps from curves, see for instance
[HSS21].

In §3, we perform a local study of the singularities arising from our construction, including their
explicit equations and their dualising bundle.

Next, we proceed to show that our construction is very general: indeed, we have the following:

Theorem B (≈ Theorem 4.3). All smoothable, in particular all reduced, hyperelliptic Gorenstein curves
arise from the above construction.

Finally, in Section 5, we explain the conjectural relation between smoothable differentials and
Gorenstein curves. In the presence of a multiscale differential, there is a natural way to log modify the
curve C, so that a twist of the dualising bundle is trivial on higher levels. This has another benefit –
namely, it avoids nonreduced components arising in the Gorenstein contractions. In the special case
of hyperelliptic log differentials, we prove that they always descend to the Gorenstein contractions
associated to the cutoffs of their tropicalisations.

1A contraction is a surjective morphism of curves 𝜙 : 𝐶 → 𝐷 which is an isomorphism outside an exceptional subcurve of C,
whose connected components are contracted to curve singularities of the same genus in D [Smy13, §2.2]. Thus, technically, 𝜎 is
not a contraction when 𝐶 is not reduced.
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Corollary C (≈ Proposition 5.3). Conjecture G holds when C is a hyperelliptic curve and 𝜂 is anti-
invariant with respect to the hyperelliptic involution.

Recently, a complete proof of the conjecture has been given by D. Chen and Q. Chen [CC24].

Conventions

We work throughout over Spec(Z[ 1
2 ]). We use the theory of fs logarithmic schemes in the sense of

[Kat89]; we recommend readers new to this theory consult [Kat89] or the more extensive textbook
[Ogu18]. Given a logarithmic scheme (𝑋, 𝑀𝑋 ), we denote by 𝑋 its underlying scheme, especially when
we need to endow it with different logarithmic structures. We also use the language of tropical geometry
as developed in [CCUW20], and twisted curves in the sense of [AV02]. We refer the reader to §1, where
all the relevant concepts are introduced and precise references are provided.

1. Logarithmic hyperelliptic curves and differentials

1.1. Log (twisted) curves

We will be interested in enriching families of curves with some combinatorial data; for this reason,
we adopt the language of logarithmic and tropical geometry. Let (𝑆, 𝑀𝑆) be a logarithmic scheme.
F. Kato defined log curves over S as integral, saturated and logarithmically smooth morphisms
𝜋 : (𝐶, 𝑀𝐶 ) → (𝑆, 𝑀𝑆) with one-dimensional geometric fibres. He also proved the following more
explicit characterisation [Kat96, Theorem 1.3], which we may take as a definition.

Definition-Proposition 1.1. A family of log curves is a morphism of logarithmic schemes

𝜋 : (𝐶, 𝑀𝐶 ) → (𝑆, 𝑀𝑆)

such that
1. the underlying morphism of schemes is a flat family of nodal curves;
2. the log structure admits the following description: for each geometric point p of C, there exists an

étale local neighbourhood with a strict étale morphism over S to one of the following:

smooth point A1
𝑆 with the log structure pulled back from the base 𝜋∗𝑀𝑆 ;

marking A1
𝑆 with the log structure generated by the zero section and 𝜋∗𝑀𝑆 ;

node O𝑆 [[𝑥, 𝑦]]/(𝑥𝑦 = 𝑡) for some 𝑡 ∈ O𝑆 , with semistable log structure induced by the multipli-
cation map A2

𝑆 → A1
𝑆 and 𝑡 : 𝑆 → A1.

In the last case, log(𝑡) (a local section of 𝑀𝑆) and t are called smoothing parameters of the node.
An n-pointed family of log curves consists of a family of log curves 𝜋 : (𝐶, 𝑀𝐶 ) → (𝑆, 𝑀𝑆) and a

tuple of disjoint sections 𝜎𝑖 : 𝑆 → 𝐶, 𝑖 = 1, . . . , 𝑛 (not logarithmic), such that for each 𝑝 ∈ 𝐶 with the
log structure of a marking, the zero section of A1

𝑆 agrees with exactly one of the sections 𝜎𝑖 on the étale
local neighborhood of p in the definition above. A family of n-pointed log curves is stable if the same
is true of its underlying morphism of schemes.

The stacks 𝔐𝑔,𝑛 and M𝑔,𝑛 of prestable (resp. stable) n-pointed curves of genus g admit log structures
such that they represent the moduli of prestable (resp. stable) families of log curves over the category
of logarithmic schemes [Gil12]. The log structure in each case is easily described: it is the log structure
associated to the divisor of singular curves. In particular, the stalk of the characteristic sheaf 𝑀𝔐𝑔,𝑛 at
a strict geometric point 𝑠 → 𝔐𝑔,𝑛 is isomorphic to N#𝐸 (𝑠) , where 𝐸 (𝑠) is the set of nodes of the nodal
curve 𝐶𝑠 associated to 𝑠 → 𝔐𝑔,𝑛. Given a family of prestable log curves 𝜋 : (𝐶, 𝑀𝐶 ) → (𝑆, 𝑀𝑆),
the logarithmic structure on 𝑆 obtained by pulling back the log structure of 𝔐𝑔,𝑛 along the classifying
morphism 𝜋 : 𝑆 → 𝔐𝑔,𝑛 is called the minimal logarithmic structure and denoted by 𝑀can

𝑆 . It has
the following universal property: there exists a unique log curve 𝜋can : (𝐶, 𝑀can

𝐶 ) → (𝑆, 𝑀can
𝑆 ) and a
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unique morphism of log schemes 𝜇 : (𝑆, 𝑀𝑆) → (𝑆, 𝑀can
𝑆 ) covering id𝑆 , such that 𝜋 is the pullback of

𝜋can along 𝜇.
Generalising Kato’s result, M. Olsson [Ols07] proved that there is an equivalence of categories

between (balanced) twisted curves in the sense of [AV02] and log smooth curves 𝜋 : (𝐶, 𝑀𝐶 ) → (𝑆, 𝑀𝑆)
with a Kummer extension 𝑀𝑆 ↩→ 𝑀 ′

𝑆 and a choice of an integer 𝑎𝑖 for every marking 𝑝𝑖 of C. We
recall that a map of fs monoids ℎ : 𝑄 → 𝑃 is called Kummer if it is injective and for every 𝑝 ∈ 𝑃,
there exists a 𝑏 ∈ N such that 𝑏𝑝 = ℎ(𝑞) for some 𝑞 ∈ 𝑄 (see, for instance, [Ill02]). The Kummer
extension 𝑀𝑆 ↩→ 𝑀 ′

𝑆 induces a Kummer log ètale morphism 𝑆′ → 𝑆 of Deligne–Mumford stacks,
roughly speaking, when S is log smooth over a point with trivial log structure, an iterated root stack
introducing roots of the smoothing parameters log(𝑡) = 𝑏 log(𝑠). By pulling back C to 𝑆′ and taking a
further root stack of 𝐶 ×𝑆 𝑆′ along components over the nodal divisor, we arrive at a twisted curve 𝐶 ′

with local model:

[Spec(O𝑆′ [[𝑢, 𝑣]]/(𝑢𝑣 − 𝑠))/𝜇𝑏],

where 𝑥 = 𝑢𝑏 , 𝑦 = 𝑣𝑏 and 𝜇𝑏 acts with weights (1,−1, 0) on (𝑥, 𝑦, 𝑠). Similarly, 𝐶 ′ entails an 𝑎𝑖-root
stack of 𝐶 ×𝑆 𝑆′ along the marking 𝑝𝑖 .

The stack of twisted curves 𝔐tw
𝑔,𝑛 admits a canonical locally free log structure and a Kummer log

ètale map to 𝔐𝑔,𝑛.

1.2. Tropicalisation and conewise-linear functions

To a family of log smooth curves 𝜋 : 𝐶 → 𝑆 one can associate a family of tropical curves trop(𝜋) : Γ →
𝑆[CCUW20, Section 7.2]. Over a geometric point s, the tropical curve Γ𝑠 is the dual graph of 𝐶𝑠

metrised in 𝑀𝑆,𝑠 , where the length of an edge 𝑒𝑞 , corresponding to the node 𝑞 ∈ 𝐶𝑠 , is the class of
the smoothing parameter log(𝑡𝑞) in the stalk of the characteristic sheaf 𝑀𝑆,𝑠 . For each specialisation
𝑠1 � 𝑠0, there is an associated map Γ𝑠0 → Γ𝑠1 which applies the induced map 𝑀𝑆,𝑠0 → 𝑀𝑆,𝑠1 to each
edge length and contracts the edges whose length goes to 0. Thus, Γ𝑠 can be thought of as a family of
(standard, R≥0 metrised) tropical curves over the dual cone 𝜎𝑠 = Hom(𝑀𝑆𝑠 ,R≥0). These cones 𝜎𝑠 can
be glued together into the tropicalisation of S, as we proceed to explain next, and Γ can be equivalently
thought of as a family of tropical curves over trop(𝑆).

Indeed, tropical geometry can be embedded in algebraic geometry by means of the Artin fan machin-
ery [CCUW20, Section 6.3]: an Artin fan is a (relative) 0-dimensional Artin stack with log structure,
admitting a strict ètale cover by Artin cones. These are quotients (in the sense of stacks) of affine toric
varieties by their dense tori: A𝜎 = [Spec(𝑅[𝜎∨ ∩ 𝑀

gp
])/Spec(𝑅[𝑀gp

])]. In fact, the 2-category of
Artin fans is equivalent to the 2-category of stacks over rational polyhedral cones. Artin fans provide
a cover of the Olsson stack of logarithmic structures [Ols03], with the property that every logarithmic
scheme admits a universal strict morphism to an Artin fan 𝑋 → A𝑋 encoding all the combinatorial
(and none of the geometric) information about X. Thanks to the above-mentioned equivalence, we may
think of A𝑋 as a cone stack, which we call the tropicalisation of X, and sometimes denote by trop(𝑋).

Let C be a log smooth curve over a geometric point, and let 𝑞 ∈ 𝐶 be a node. The groupification of
the characteristic monoid at q can be identified with

𝑀
gp
𝐶,𝑞 
 {(𝛾1, 𝛾2) ∈ 𝑀

gp,⊕2
𝑆,𝜋 (𝑞) | 𝛾2 − 𝛾1 ∈ Zlog(𝑡𝑞)}.

This allows for an identification of global sections of the characteristic group on C with conewise
linear (CL) functions2 on the tropicalisation Γ with values in 𝑀

gp
𝑆 and integral slopes along the edges:

2The traditional terminology is piecewise linear. We use the term ‘conewise’ to stress the fact that 𝛾 is required to be linear on
the edges of Γ, and not only on some unspecified subdivision. However, to be precise, these functions should be called conewise
affine.
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𝐻0(𝐶, 𝑀
gp
𝐶 ) = {Z − CL functions on Γ with values in 𝑀

gp
𝑆 };

see [CCUW20, Remark 7.3]. Moreover, the fundamental exact sequence

0 → O×
𝐶 → 𝑀

gp
𝐶 → 𝑀

gp
𝐶 → 0,

and its long exact sequence in cohomology show that to every section 𝛾 ∈ 𝐻0(𝐶, 𝑀
gp
𝐶 ), there is an

associated O×
𝐶 -torsor of lifts of 𝛾 to 𝑀

gp
𝐶 ; this can be filled into a line bundle in two ways, and we choose

the convention such that for 𝛾 ∈ 𝐻0(𝐶, 𝑀𝐶 ) (i.e., 𝛾 ≥ 0 in the partial order on 𝑀
gp
𝐶 induced by 𝑀𝐶 ),

the log structure induces a section O𝐶 → O𝐶 (𝛾). The restriction of O𝐶 (𝛾) to the component 𝐶𝑣 of C
corresponding to a vertex v of Γ is made explicit in [RSPW19a, Proposition 2.4.1]:

O𝐶𝑣 (𝛾) 
 O𝐶𝑣

(∑
𝑠(𝛾, 𝑒𝑞)𝑞

)
⊗ 𝜋∗O𝑆 (𝛾(𝑣)), (1.1)

where 𝑠(𝛾, 𝑒𝑞) denotes the outgoing slope of 𝛾 along the edge corresponding to q.

1.3. Rubber and multiscale differentials

Multiscale differentials were introduced to compactify strata of differentials over the Deligne–Mumford
compactification of the moduli space of curves [BCG+18]. We will focus on an equivalent approach
based on logarithmic geometry [CGH+22]. On a smooth curve, a holomorphic differential up to scaling
is encoded in the location of its 2𝑔−2 zeroes, counted with multiplicity. Hence, we may think of strata of
differentials as codimension g substacks ofM𝑔,𝑛. This naive approach fails over reducible curves, where
the distribution of the markings does not reflect the multidegree of the dualising bundle (or any other
bundle we may be interested in representing as a weighted sum of the markings). A possible solution is
to twist by some components of the nodal curve (a vertical divisor which will be represented by a CL
function on the dual graph up to translation), but even this may only work after restricting to a substack
of a birational modification of M𝑔,𝑛. The following moduli problems were introduced in [MW20] in
order to extend the classical Abel-Jacobi section aj : M𝑔,𝑛 → Pic𝑔,𝑛 beyond the compact-type locus.
We fix an n-tuple 𝜇 = (𝑚1, . . . , 𝑚𝑛) of integers summing to 2𝑔 − 2.

Definition 1.2. Div𝑔,𝜇 is the stack parametrising families of log smooth curves 𝐶 → 𝑆 of genus g with
the choice of a global section 𝛼 of the characteristic group 𝑀

gp
𝐶 up to translations by 𝑀

gp
𝑆 , such that the

slope of 𝛼 along the i-th leg is 𝑚𝑖 . The conewise-linear function 𝛼 is said to be aligned if the values of
𝛼 at the vertices of Γ are totally ordered in 𝑀

gp
𝑆 (with the partial order induced by 𝑀𝑆). The logarithmic

subfunctor of Div𝑔,𝜇 consisting of pairs (𝐶, 𝛼) such that 𝛼 is aligned is denoted by Rub𝑔,𝜇.3

The following is one of the main results of [MW20]:

Theorem 1.3. Div𝑔,𝜇 and Rub𝑔,𝜇 are represented by algebraic stacks with a log smooth log structure.
In fact, they are both birational log ètale modifications of the stack of prestable curves:

Rub𝑔,𝜇 → Div𝑔,𝜇 → 𝔐𝑔,𝑛.

The Abel-Jacobi section extends to a finite and unramified morphism:

aj : Div𝑔,𝜇 → Pic𝑔,𝑛.

3An extra requirement is needed in order to ensure that Rub is smooth – namely, that the log modification of C induced by
𝛼 is itself a log curve; we refer the reader to [CGH+22, Definition 2.1] for the details. Notice that the logarithmic subfunctor
Rub ⊆ Div is represented by a birational modification of underlying stacks.
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Definition 1.4. The moduli space of rubber differentials H†(𝜇) is defined via the Cartesian diagram:

H†(𝜇) M𝑔,𝑛

Rub𝑔,𝜇 Pic2𝑔−2
𝑔,𝑛 ,

� 𝜔

aj

where the right vertical map associates to a stable curve C its dualising bundle 𝜔𝐶 .
Spelling out the definition, a rubber differential consists of a stable curve 𝐶 → 𝑆 and a conewise-

linear function �̄� on Γ = trop(𝐶) → 𝑆 up to translations by 𝑀𝑆 , whose values at the vertices of Γ are
totally ordered, together with a specified isomorphism

O𝐶 (�̄�) = 𝜔𝐶 , or equivalently 𝜔𝐶 (𝜆) = O𝐶 , (1.2)

where we have set 𝜆 = −�̄�.
We may thus think of Γ as an ordered (or level) graph. Equation (1.2) may be thought of as a section

of 𝜔𝐶 (i.e., a differential), vanishing on all but the top level. In fact, it is proved in [CGH+22] that more
information can be extracted from �̄� – namely, a collection (𝜂𝑖)𝑖=0,...,−𝑁 of meromorphic differentials,
one on each level subcurve of C. The orders of the 𝜂𝑖 at markings and at the preimages of the nodes
are determined by the slopes of �̄� at the corresponding legs and edges. Rubber differentials turn out to
be equivalent to the generalised multiscale differentials from [BCG+19]. To resemble the conventions
adopted in the literature on multiscale differentials, we may fix a lift of �̄� to an honest CL function by
setting max(�̄�) = 0 (equivalently, min(𝜆) = 0) and identify the values of �̄� with the set {0,−1, . . . ,−𝑁}.

The vertical maps in the diagram of Definition 1.4 are strict; thus, a rubber differential on 𝐶 → 𝑆
induces the same minimal logarithmic structure on S as its tropicalisation �̄�. This is a locally free log
structure parametrising the differences between consecutive values of �̄�. The moduli space of stable
rubber differentials H†(𝜇) is represented by a separated DM stack with log structure and is finite (in
particular, representable) over the Hodge bundle over Rub (cf. [CC19, Corollary 3.2]). Typically, H†(𝜇)
is not irreducible. Limits of differentials on smooth curves are identified in [BCG+18] by means of an
analytic condition called global residues.
Remark 1.5 (Tropical differentials). We briefly recall the theory of divisors on metric graphs, in
parallel with that of Riemann surfaces. A divisor D on Γ is a finite formal sum of points of Γ with
integer coefficients. For an integral conewise-linear function f (up to translation) on Γ, let div( 𝑓 ) =∑

𝑒�𝑣 𝑠( 𝑓 , 𝑒 � 𝑣)𝑣 be the principal divisor on Γ associated to f, where 𝑠( 𝑓 , 𝑒 � 𝑣) denotes the slope
of f along e in the outgoing direction from v. We see that Z-CL functions on Γ play the same role as
rational functions on algebraic curves; thus, they are also denoted by Rat(Γ). The tropical linear series
of a divisor D on Γ refers either to 𝑅(𝐷) = { 𝑓 ∈ Rat(𝐷) |𝐷 − div( 𝑓 ) ≥ 0} or to |𝐷 |, consisting of the
same functions taken up to translation.

Let 𝐾Γ denote the canonical divisor of the tropicalisation of C – that is, the divisor on Γ with
2𝑔(𝑣) − 2 + val(𝑣) chips on the vertex v (here the valence of a vertex is the number of edges of finite
length that are adjacent to it). Then, the tropicalisation of a rubber differential is a member of the
canonical linear series |𝐾Γ | (i.e., a tropical differential). The same is true for the restriction of �̄� to a
subcurve (i.e., if we truncate Γ up to a certain level of �̄�).

1.4. Hyperelliptic admissible covers via roots and logs

Admissible covers were introduced by Harris and Mumford in their work on the Kodaira dimension of
the moduli space of curves of high genus [HM82] in order to compactify the locus of smooth k-gonal
curves. Anticipating the developments of relative Gromov–Witten theory, their moduli were studied by
S. Mochizuki by introducing logarithmic structures [Moc95], and by D. Abramovich, A. Corti and A.
Vistoli by introducing orbifold structures [ACV03]. The two approaches are essentially equivalent in
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view of Olsson’s work on log twisted curves that has been recalled above. We refer the reader to the
paper [SvZ20] (resp. the book [BR11]) for a concise (resp. extensive) overview of the subject.

In this paper, we will focus on the hyperelliptic case. Fix a genus 𝑔 ≥ 1 and a number of markings
𝑛 ≥ 0 (later on, markings will record the zeroes of a differential). We first recall the orbifold point of
view:
Definition 1.6. A family of twisted hyperelliptic covers over a scheme S consists of the following data:
(𝑃tw → 𝑆, Σ ⊆ 𝑃tw, 𝜙 : 𝑃tw → B(Z/2Z)) where
◦ 𝑃tw → 𝑆 is a twisted curve with relative coarse moduli 𝑃 → 𝑆, a rational nodal curve,
◦ Σ → 𝑆 is a collection of 2𝑔 + 2 gerbes banded by Z/2Z (unlabelled) together with n sections of

𝑃tw → 𝑆 (labelled), all disjoint, and
◦ 𝜙 : 𝑃tw → B(Z/2Z) is a representable morphism of orbifolds to the classifying stack of Z/2Z.

Pulling back the universal Z/2Z-cover ∗ over B(Z/2Z), we obtain one 𝜓 ′ : 𝐶 → 𝑃tw over the twisted
curve. Since 𝜙 is representable and ∗ is a scheme, so is 𝐶 → 𝑆: in fact, it is an ordinary nodal curve
of genus g [ACV03, Lemma 2.2.1], and 𝜓 : 𝐶 → 𝑃 is a Z/2Z-admissible cover ramified exactly at the
preimage of the gerby markings and nodes [ACV03, §4].

We may think of the necessity of gerby nodes as follows: when P is smooth, 𝜓∗O𝐶 = O𝑃 ⊕O𝑃 (−
1
2 b)

makes sense because deg(b) = 2𝑔 + 2 is even and Pic(𝑃) = Z. When P is reducible, though, a problem
occurs if b has odd degree on some components of P: in fact, removing any node q of P separates the
latter into two connected components, and we call q even (resp. odd) if so is the degree of b on either of
the two. Twisting along the odd nodes will allow us to find the root of O𝑃 (−b), which we call F ; see,
for instance, [Fed14, §2]. Summing up, we have

𝐶 𝑃tw 𝑃
𝜓′

𝜓

𝜌

where 𝜓 ′ is finite ètale with 𝜓 ′
∗O𝐶 = O𝑃′ ⊕ F , and 𝜓 is finite but not flat with 𝜓∗O𝐶 = O𝑃 ⊕ 𝜌∗F .

Indeed, the character of the line bundle F at an odd node is nontrivial, and correspondingly, 𝜌∗F is a
torsion-free, rank-one sheaf on P that is not locally free at the odd nodes.
Remark 1.7. With an eye towards motivating our construction in §2, we observe that 𝜓 ′

∗𝜔𝐶 = 𝜔𝑃 ⊕
(𝜔𝑃 ⊗ F−1) by duality, and the morphism induced by adjunction (𝜓 ′)∗ (𝜔𝑃 ⊗ F−1) → 𝜔𝐶 is an
isomorphism, generalising the smooth case.

Now, following [Moc95, Definition 3.5], we will consider families of hyperelliptic admissible covers
adapted to the setting of log schemes. Parallel to [Moc95, Definition 3.4], we observe that the stack
𝔐log

𝑔,𝑛1+𝑛2 of prestable log curves of genus g with 𝑛1+𝑛2 markings admits a natural action of the symmetric
group on 𝑛1 letters 𝔖𝑛1 permuting the first 𝑛1 points. The stack quotient 𝔐𝔖log

𝑔,𝑛1 |𝑛2
� [𝔐log

𝑔,𝑛1+𝑛2/𝔖𝑛1]

parametrises prestable log curves C with a simple divisor r of 𝑛1 ‘symmetrised markings’, and 𝑛2
ordered markings 𝑢1, . . . , 𝑢𝑛2 (collectively u).
Definition 1.8. A family of n-marked log hyperelliptic covers of genus g over a log scheme S consists
of the following data:

1. families (𝐶, r, u) ∈ 𝔐𝔖log
𝑔,2𝑔+2 |2𝑛 (𝑆) and (𝑃, b, v) ∈ 𝔐𝔖log

0,2𝑔+2 |𝑛 (𝑆),
2. a Z/2Z-Galois–Kummer log étale morphism 𝜓 : 𝐶 → 𝑃 over S,
satisfying the following conditions:
◦ 𝜓 is ramified at r and possibly some nodes of C, and 𝜓−1 (b) = 2r;
◦ writing 𝑢1,1, 𝑢1,2, . . . , 𝑢𝑛,1, 𝑢𝑛,2 for the markings making up u in C and 𝑣1, . . . , 𝑣𝑛 for the markings

making up v in P, we have that 𝜓 maps 𝑢𝑖,1, 𝑢𝑖,2 to 𝑣𝑖 for each 𝑖 = 1, . . . , 𝑛;
◦ there is a hyperelliptic involution 𝜄 : 𝐶 → 𝐶 over 𝜓 fixing r and swapping 𝑢𝑖,1 with 𝑢𝑖,2.
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Remark 1.9. More concretely, in keeping with Kato’s local description of log curves, the map𝜓 : 𝐶 → 𝑃
takes one of the following forms strict étale locally in P:

1. (unramified points) A strict, trivial double cover of a neighborhood of a smooth point, a marked
point 𝑣𝑖 or a node with the usual log structure;

2. (ramification over a point of b) The map SpecO𝑆 [N] → SpecO𝑆 [N] induced by the multiplication
by 2 map from N→ N;

3. (ramification over a node) The map

SpecO𝑆 [𝑥, 𝑦]/(𝑥𝑦 − 𝑡) → SpecO𝑆 [𝑧, 𝑤]/(𝑧𝑤 − 𝑡2)

induced by 𝑧 ↦→ 𝑥2, 𝑤 ↦→ 𝑦2 and log(𝑧) ↦→ 2 log(𝑥), log(𝑤) ↦→ 2 log(𝑦) on log structures.

Remark 1.10. The two definitions above are almost equivalent in view of Olsson’s work on log twisted
curves. While P is the schematic quotient of C by the hyperelliptic involution 𝜄, the twisted curve 𝑃tw

can be recovered as the stack quotient [𝐶/𝜄]. A minor difference between the two definitions is that the
latter entails an individual labelling of the 2𝑛 preimages in C of the n markings of P (or 𝑃tw). As it will
be apparent, this is not needed for our construction.

We say that a log hyperelliptic admissible cover is stable if (𝑃, b, v) is Deligne–Mumford stable as
a rational pointed curve. Notice that (𝐶, r, u) will be as well. We denote by H𝑔,𝑛 the moduli space of
genus g, n-marked, stable log hyperelliptic admissible covers. Then, H𝑔,𝑛 is represented by a proper
DM stack with log structure, which is furthermore (log) smooth [Moc95, §3.22].

Indeed, given a family of log hyperelliptic admissible covers over S, there is an associated minimal
logarithmic structure on S, satisfying a similar universal property to the minimal log structure for
pointed log curves. When 𝜓 is stable, this is the same as the log structure pulled back from H𝑔,𝑛 along
the classifying map. More explicitly, it is a Kummer extension of the minimal log structure of P as a
log smooth curve, introducing square roots of the smoothing parameters corresponding to the nodes
over which 𝜓 is ramified. Indeed, 𝜓 can be factored as 𝐶 → 𝑃tw → 𝑃, where the first map is strict
étale, and the second one is Kummer log étale and birational – albeit it is only representable by DM
stacks. The minimal log structure for 𝜓 is the same as that for 𝑃tw as a log twisted curve, which is
recalled in §1.1.

1.5. Hyperelliptic differentials

The paper [CC19] developed the theory of log differentials without imposing an alignment (so, replacing
the stack Rub with the stack Div in Definition 1.4), focusing on the hyperelliptic and spin components.
Here, we shall revisit [CC19, Definition 5.3]. Unlike [CC19], we do impose an alignment.

Definition 1.11. A hyperelliptic rubber differential over a log scheme S is the datum of

(i) a log hyperelliptic admissible cover 𝜓 : (𝐶, r, u) → (𝑃, b, v) over S, and
(ii) a rubber differential 𝜂 on C,

such that

𝜄∗(𝜂) = −𝜂, (1.3)

where 𝜄 is the hyperelliptic involution.

Remark 1.12. Let C be a smooth hyperelliptic curve. Then, every (global holomorphic) differential
on C is 𝜄-anti-invariant. This follows, for instance, from the well-known fact that if an affine patch of
C is written as {𝑦2 = 𝑝(𝑥)} ⊆ A2 (with p a square-free polynomial of degree 2𝑔 + 2), then 𝜄 acts
as (𝑥, 𝑦) ↦→ (𝑥,−𝑦), and a basis of the space of differentials on C is given by { d𝑥

𝑦 , . . . , 𝑥𝑔−1 d𝑥
𝑦 }

(compatibly with the Riemann–Hurwitz formula 𝜔𝐶 = 𝜓∗𝜔𝑃 (
1
2 b)). Alternatively, any 𝜄-invariant
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differential descends to P1 and must therefore be trivial. We will see a generalisation of this statement
in Remark 4.6. It follows that limits of Abelian differentials on smooth hyperelliptic curves are anti-
invariant.

Given the latter condition, the vanishing orders of 𝜂 at the conjugate points 𝑢𝑖,1 and 𝑢𝑖,2 are the
same. We may therefore denote the vanishing order of 𝜂 by an n-tuple 𝜇 = (𝑚1, . . . , 𝑚𝑛) ∈ N𝑛

𝑔−1 of
nonnegative integers summing to 𝑔 − 1. We restrict our attention to strata of hyperelliptic differentials
with no zeroes at the Weierstrass points.4

1.6. Contraction data

Consider a hyperelliptic rubber differential (𝜓 : 𝐶 → 𝑃, �̄�). Denote by Γ, 𝑇 ′ and T the tropicalizations
of 𝐶, 𝑃tw and P, respectively. As 𝜌 : 𝑃tw → 𝑃 is a root stack, the induced map 𝑇 ′ → 𝑇 is also a
root stack, introducing halves of lengths of the edges of T corresponding to branching nodes of P. By
condition (1.3), the CL function �̄� descends to a CL function �̄�𝑇 on 𝑇 ′. We view �̄�𝑇 as a CL function
on T, except that it may have half-integral slopes on the branching edges; pulling back to Γ multiplies
the slope by 2 precisely along these edges. Equation (1.2) descends then to

𝜔𝑃tw (b/2) = O𝑃tw (�̄�𝑇 ) or equivalently 𝜔𝑃tw (b/2 + 𝜆𝑇 ) = O𝑃tw , (1.4)

where 𝜆𝑇 = −�̄�𝑇 . Indeed, 𝜌∗𝜔𝑃 = 𝜔𝑃tw [Chi08, Proposition 2.5.1], and 𝜓∗𝜔𝑃 = 𝜔𝐶 (−r) by definition
of the ramification divisor. Since 𝜌 induces an isomorphism of Picard groups up to torsion and P is
rational, (a multiple of) condition (1.4) can be checked numerically. Equation (1.4) becomes

val(𝑣) − 2 +
1
2

deg(b) (𝑣) + div(𝜆𝑇 ) (𝑣) = 0, (1.5)

for every vertex v of T. Here, val denotes the edge valency, deg(b) the multidegree (or tropicalization)
of the branch divisor, and div(𝜆𝑇 ) (𝑣) the sum of the outgoing slopes of 𝜆𝑇 along all the edges adjacent
to v.5 In keeping with Remark 1.5, we could say that 𝜆𝑇 is in the log canonical tropical linear series of
𝑇 ′. The same is true as well for its restriction to any subcurve of 𝑇 ′.

In order to produce a Gorenstein contraction of a log hyperelliptic cover, we do not need the whole
data of a log hyperelliptic differential, but only its combinatorial shadow (i.e., its tropicalisation). In fact,
if we are happy to allow nonreduced structures along components of the contraction, we do not need to
know precisely at which points the zeroes of the differential are located, but only on which components.
We extract this combinatorial information in the following:
Definition 1.13. Let 𝜓 : (𝐶, r, u) → (𝑃, b, v) be a log hyperelliptic admissible cover. A contraction
datum is a CL function 𝜆𝑇 on 𝑇 ′ = trop(𝑃tw) such that 𝜆𝑇 (𝑣) ≥ 0 for every vertex v of 𝑇 ′, and 𝜆𝑇 is a
member of the log canonical tropical linear series of the support of 𝜆𝑇 (i.e., the coefficient

𝐷 (𝑣) = val(𝑣) − 2 +
1
2

deg(b) (𝑣) + div(𝜆𝑇 ) (𝑣)

is a nonnegative integer for every vertex v such that 𝜆𝑇 (𝑣) is strictly positive).
Example 1.14. To illustrate the combinatorics of contraction data, we consider the dual graphs of several
log hyperelliptic admissible covers with 𝑔 = 2 and 𝑛 = 1 (i.e., two simple zeroes at conjugate points).
We first consider the possible stable hyperelliptic admissible covers where 𝑇 ′ has a single edge. We may

4Differentials with zeroes of even multiplicity 2𝑚′ at a Weierstrass point arise in the boundary of these spaces when a marking
v of contact order 𝑚′ bubbles off onto a new rational component together with a single branch point: the node is then also
branching, and the differential vanishes there with multiplicity 2𝑚′.
Notice the slight abuse of notation with 𝜇 being half of what it used to be in the previous sections.

5We can also modify �̄�𝑇 to �̄�′𝑇 by making its slope − 1
2 on all the legs corresponding to b, so that Equation (1.5) becomes

val(𝑣) − 2 = div(�̄�′𝑇 ) (𝑣) .
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Figure 1. Contraction data on hyperelliptic admissible covers with one edge.
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Figure 2. A contraction datum on a larger log hyperelliptic admissible cover supported on the left 3
vertices. Unnumbered blue legs are single branch legs.

attempt to construct a contraction datum supported on a single vertex v by computing the required slope
of 𝜆𝑇 at v using Equation (1.5), then shifting 𝜆𝑇 so that its minimum value is 0. The possibilities are
illustrated in Figure 1. We indicate the number of legs coming from b and the branching edges (nodes)
in blue, the legs coming from markings in black (𝜆 has slope −1 along them, since our sign convention
implies that zeroes of the differential point down, and poles point up), and the positive slopes of 𝜆, 𝜆𝑇
in green. We recall that pulling back 𝜆𝑇 to 𝜆 doubles slopes on branching edges. Since Equation (1.5) is
stable under generization, we can deduce the slopes of contraction data on genus two admissible covers
with more components by generizing to the single-edge graphs. See Figures 1 and 2.

2. Construction of Gorenstein contractions

Let now (𝜓 : 𝐶 → 𝑃, 𝜆𝑇 ) be a log hyperelliptic admissible cover over S with a contraction datum.
Using 𝜆𝑇 , we will produce a hyperelliptic Gorenstein contraction 𝐶 of C. As we have mentioned in the
introduction, the idea is for 𝐶 to be associated with 𝜔𝐶 (𝜆), but taking Proj directly does not behave well
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with base-change. Our strategy is to first contract P to 𝑃, which is less problematic since P is rational,
and then construct 𝐶 as a double cover of 𝑃 by twisting the (horizontal) branch divisor b of 𝜓 with the
(vertical) CL function 𝜆𝑇 . The dualising sheaf and its twists are seen to play a key role in connection
with the Gorenstein condition. We stress that the double cover 𝜓 will not be flat whenever the dualising
sheaf of 𝑃 is not a line bundle, and the branch locus of 𝜓 will only be a generalised divisor. The double
cover 𝜓 will also fail to be flat at some of the odd nodes of P, but this issue has already been solved in
the classical (nodal) case by introducing some orbifold structure.

2.1. Contracting the rational curve

Consider the line bundle L := 𝜔𝑃tw (𝜆𝑇 ), whose pullback to C is 𝜔𝐶 (𝜆). Note that L⊗2 descends to a
line bundle 𝐿⊗2 = 𝜔⊗2

𝑃 (b+2𝜆𝑇 ) of degree 2𝑔−2 and nonnegative multidegree on P. In particular, since
P is rational, L has vanishing higher cohomology, 𝜋𝑃,∗𝐿

⊗2𝑘 is a vector bundle of rank 2𝑘 (𝑔 − 1) + 1
on S for any positive integer k (the relative Proj will therefore be flat by [Sta18, Tag 0D4C]), and 𝐿⊗2

is semiample relative to the base (the contraction map 𝜏 is thus defined everywhere). Moreover, the
formation of 𝜋𝑃,∗𝐿

⊗2𝑘 commutes with arbitrary base-change by [Har77, Theorem III.12.11]. Let

𝑃
𝜏
−→ 𝑃 := Proj

𝑆

(⊕
𝑘≥0

𝜋𝑃,∗𝐿
⊗2𝑘

)

be the resulting contraction. The fibres of 𝜏 are connected components of the locus where 𝐿⊗2 is trivial
(equivalently, of multidegree 0). In particular, they are connected, rational, nodal curves. The map
O𝑃 → O𝑃 induces an identification of the latter with R𝜏∗O𝑃 , and 𝑃 is a family of rational Cohen–
Macaulay curves. Therefore, the singularities appearing in the fibres of 𝑃 are ordinary m-fold points
(the singularity of the coordinate axes in A𝑚): 𝑞 ∈ 𝑃 is an m-fold point if 𝜏−1(𝑞) meets the rest of P in
m nodes. These singularities are Gorenstein (even planar) if and only if they are smooth points or nodes
(i.e., 𝑚 ≤ 2). Let O𝑃 (2) denote the line bundle on 𝑃 induced by 𝐿⊗2 on P.

2.2. Square roots of bundles and curves

We will need a square root of O𝑃 (2). By mere multidegree considerations, such a line bundle does
not always exist on 𝑃 itself, but it does after reintroduction of some stack structure on P and 𝑃. An
important observation is that this orbifold structure is only ever needed at nodes of P and 𝑃 away from
the exceptional locus of 𝜏.
Lemma 2.1 (cf. [Fed14, Lemma 3.5]). There is a commutative diagram

𝑃′ 𝑃
′

𝑃 𝑃

𝜏′

𝜏

and unique line bundles L′ ∈ Pic(𝑃′), O
𝑃
′ (1) ∈ Pic(𝑃′

) with the following properties:
1. 𝑃′ is a partial coarsening of 𝑃tw, while 𝜏′ is representable;
2. O

𝑃
′ (1)⊗2 is isomorphic to the pullback of O𝑃 (2),

3. (𝜏′)∗O
𝑃
′ (1) � L′, and so (L′) ⊗2 is isomorphic to the pullback of 𝐿⊗2;

4. 𝑣∗𝑖 (L′ |𝑃tw) � 𝑣∗𝑖L for each 𝑖 = 1, . . . , 𝑛.
Proof. Given a node p of P, we say that p is odd (resp. even) for a line bundle B of even degree if B
restricts to an odd (resp. even) degree line bundle on the connected components of the normalisation of
P at p. Let 𝑍𝑜𝑑𝑑 be the locus of odd nodes for L⊗2 outside of the support of 𝜆𝑇 . Similarly, let 𝑍𝑒𝑣𝑒𝑛 be
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the locus of even nodes for L⊗2 unioned with the support of 𝜆𝑇 . We may construct the partial coarsening
𝑃′ by gluing P away from 𝑍𝑜𝑑𝑑 with 𝑃tw away from 𝑍𝑒𝑣𝑒𝑛. Using the fact that 𝜏 is an isomorphism
away from its exceptional locus, we construct the twisted curve 𝑃

′ by gluing 𝑃 away from the image of
𝑍𝑜𝑑𝑑 with 𝑃′ away from the exceptional locus of 𝜏.

We begin by considering the case of an individual curve P. Imagine first trying to find a square root
of 𝐿⊗2 on P; since P is rational, this is purely a matter of multidegree. Since 𝜔⊗2

𝑃 has even degree
on every component, a problem may occur only when there is a node p which is odd for b (i.e., a
node of P separating b into two odd parts). These are precisely the nodes where 𝑃tw has nontrivial
orbifold structure.6 The issue is resolved by twisting P at a subset of the odd nodes for b, and the same
twisting will guarantee the existence of a square root of O𝑃 (2) on 𝑃

′. Importantly, the odd nodes in
the exceptional locus of 𝜏 need no twisting because 𝜆𝑇 acts as a correction factor, as we now show. So
let p be an odd node for b, and assume that 𝜆𝑇 has nonzero slope along the edge 𝑒𝑝 corresponding to
p. Then at least one of the two adjacent vertices is contained in the support of 𝜆𝑇 ; call it v. Notice that
Equation (1.5) is stable under edge contractions, so in applying it to v, we may as well assume that 𝑒𝑝
is the only edge of T. Then we see from Equation (1.5) that 𝜆𝑇 must have half-integral slope along 𝑒𝑝
so that it can balance b. It follows that p is even for 𝐿⊗2.

Returning to the case of an arbitrary family, choose 𝑣𝑖 : 𝑆 → 𝑃tw to be any of the marked points. As
in [Fed14, Lemma 3.6], a standard descent argument shows that the square roots on fibers can be glued
to a unique line bundle L′ so that (L′) ⊗2 is isomorphic to the pullback of 𝐿⊗2 and 𝑣∗𝑖 (L′ |𝑃tw ) � 𝑣∗𝑖L.
Since 𝑃tw → 𝑃 is an isomorphism in the complement of the odd nodes, the rigidification condition
𝑣∗𝑖 (L′ |𝑃tw ) � 𝑣∗𝑖L assures that L′ is isomorphic to L on the complement of the odd nodes, so the
analogous rigidification conditions 𝑣∗𝑗 (L′ |𝑃tw ) � 𝑣∗𝑗L hold as well.

Moreover, L′ is trivial on the exceptional locus of 𝜏, and it therefore descends to a line bundle O
𝑃
′ (1)

which squares to (the pullback of) O𝑃 (2). �

Remark 2.2. The arrows 𝑃′ → 𝑃 and 𝑃
′
→ 𝑃 are isomorphisms on an open neighborhood of the locus

contracted by 𝜏 – namely, on the complement of 𝑍𝑜𝑑𝑑 . Thus, in the following construction, one can
ignore the difference between 𝑃′ and P and 𝑃

′ and 𝑃 when working locally near the contracted locus.

2.3. The double cover: module structure

We will construct a Gorenstein double cover 𝜓 : 𝐶 → 𝑃 by first constructing the following commutative
diagram of curve-line bundle pairs:

(𝐶, 𝜔𝐶 (𝜆)) (𝐶, 𝜔𝐶 )

(𝑃′,L′) (𝑃
′
,O

𝑃
′ (1)).

𝜎

𝜓′ 𝜓
′

𝜏′

(2.1)

Then we will compose with the commutative square of Lemma 2.1.
For this, we will first construct an O

𝑃
′-algebra O

𝑃
′ ⊕

(
𝜔

𝑃
′ ⊗ O𝑃 (−1)

)
, and then set

𝐶 := Spec
𝑃
′

(
O

𝑃
′ ⊕

(
𝜔

𝑃
′ ⊗ O

𝑃
′ (−1)

))
.

Let us denote 𝜔
𝑃
′ ⊗ O

𝑃
′ (−1) by F , and let 𝐹 denote its pushforward to 𝑃. The latter is a rank one,

torsion-free (i.e., depth one) sheaf on 𝑃, which fails to be a line bundle in two cases:

6The representable map 𝑃tw → BZ/2Z can be thought of as extracting a root of 𝜔⊗2
𝑃 (b) – that is, 𝜔𝑃tw .
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1. when 𝑃 has worse than nodal singularities, because 𝜔𝑃 is not locally free there;
2. and at the odd nodes of 𝑃, because both 𝜔

𝑃
′ and O

𝑃
′ (−1) are line bundles over those nodes, but the

former comes from 𝑃 and the latter does not, so F has a nontrivial character.

As a consequence, 𝜓 will fail to be flat at those points. However, since 𝑃 is flat over the base, then so is 𝐶.

Remark 2.3. Twisting the dualising sheaf of a non-Gorenstein curve with a line bundle is known to
produce another irreducible component of the compactified Picard scheme [Kas12].

2.4. The double cover: algebra structure

In order to give O𝐶 an O
𝑃
′-algebra structure, we need a cosection F ⊗2

→ O
𝑃
′ . Twisting by O

𝑃
′ (2),

it is equivalent to find an O
𝑃
′-module map 𝜔⊗2

𝑃
′ → O

𝑃
′ (2). Notice that everything comes from 𝑃, so

we could as well work on the coarse curve for this subsection. Since 𝜏′ is representable and it only
contracts rational curves, its higher direct images vanish, and R𝜏′∗O𝑃′ = O

𝑃
′ . A direct application of

Grothendieck duality yields

𝜔
𝑃
′ = RH𝑜𝑚(R𝜏′∗O𝑃′ , 𝜔

𝑃
′ ) = R𝜏′∗ RH𝑜𝑚(O𝑃′ , (𝜏′)!𝜔

𝑃
′ ) = 𝜏′∗𝜔𝑃′ .

Recall from §1.2 that the fundamental sequence of log geometry associates to every section �̄� of the
characteristic monoid 𝑀

gp an O∗-torsor of lifts to the log structure 𝑀gp, whose associated line bundle
we denote by O(−�̄�). Moreover, if 𝛾 ≥ 0 in the partial order of 𝑀

gp induced by 𝑀 , the log structure
map 𝛼 : 𝑀 → O∗ endows O(−�̄�) with a cosection, making it into a generalised Cartier divisor. Putting
together the (vertical) divisor of 𝜆𝑇 with the (horizontal) branch divisor b, adjunction gives us a map

(𝜏′)∗𝜔⊗2
𝑃
′ → (𝜏′)∗𝜏′∗𝜔

⊗2
𝑃′ → 𝜔⊗2

𝑃′ → 𝜔⊗2
𝑃′ (2𝜆𝑇 + b) = (L′) ⊗2 (2.2)

pushing forward to the desired

𝜔⊗2
𝑃
′ → 𝜏′∗ (𝜏

′)∗𝜔⊗2
𝑃
′ → O

𝑃
′ (2).

Note that there is an involution 𝜄 of O𝐶 over O𝑇 acting as −1 on sections of F .
Also, note that the fibres of 𝐶 fail to be reduced whenever there is a component 𝑃1 of P in the support

of 𝜆𝑇 such that the degree of 𝐿⊗2 on 𝑃1 is strictly positive. Indeed, the section O𝑃′ → O𝑃′ (2𝜆𝑇 ) is
constantly 0 along such a component, and 𝑃1 is not contracted by 𝜏′; so the algebra structure of 𝐶 over
the generic point of 𝑃1 is isomorphic to k(𝑡) [𝜖]/(𝜖2).

2.5. The Gorenstein property

We argue that 𝐶 is Gorenstein. More precisely, its dualising sheaf 𝜔𝐶 can be identified with the line
bundle (𝜓

′
)∗O

𝑃
′ (1). Duality for the finite morphism 𝜓

′ gives

𝜓
′
∗𝜔𝐶 = H𝑜𝑚(𝜓

′
∗O𝐶 , 𝜔

𝑃
′ ) = 𝜔

𝑃
′ ⊕ H𝑜𝑚(𝜔

𝑃
′ , 𝜔

𝑃
′ ) (1).

Now,O
𝑃
′ → H𝑜𝑚(𝜔

𝑃
′ , 𝜔

𝑃
′ ) is an isomorphism because everything is pulled back from the coarse curve

𝑃, and the statement is true there by [Har07, Corollary 1.7]. So we get a morphism O
𝑃
′ (1) → 𝜓

′
∗𝜔𝐶 ,

or equivalently, (𝜓 ′
)∗O

𝑃
′ (1) → 𝜔𝐶 . Since 𝜓

′ is affine, and therefore 𝜓
′
∗ is exact, it is enough to show

that this is an isomorphism after pushforward along 𝜓
′, which follows from push-pull and the above:

𝜓
′
∗ (𝜓

′
)∗O

𝑃
′ (1) = O

𝑃
′ (1) ⊕ 𝜔

𝑃
′ = 𝜓

′
∗𝜔𝐶 .
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2.6. The contraction morphism

We argue that there exists a morphism 𝜎 : 𝐶 → 𝐶 covering 𝜏′. Since 𝜓
′ is affine, it is enough to define

an O𝑆-algebra map O𝐶 → 𝜎∗O𝐶 after pushing forward along 𝜓
′. Since we want 𝜓

′
∗𝜎∗ = 𝜏′∗𝜓

′
∗, by

adjunction, it is enough to define a morphism (𝜏′𝜓 ′)∗𝜓
′
∗O𝐶 → O𝐶 . We focus on F since the pullback

of O
𝑃
′ is naturally identified with O𝐶 . The map is induced by (𝜏′)∗𝜔

𝑃
′ → 𝜔′

𝑃 (see 2.4) and by the
effective Cartier divisor r + 𝜆 on C as follows:

(𝜏′𝜓 ′)∗𝜔
𝑃
′ (−1) = (𝜓 ′)∗ ((𝜏′)∗𝜔

𝑃
′ ⊗ (L′)−1) = (𝜓 ′)∗ (𝜏′)∗𝜔

𝑃
′ ⊗ (𝜔𝐶 (𝜆))

−1 →

(𝜓 ′)∗𝜔𝑃 ⊗ (𝜔𝐶 (𝜆))
−1 = 𝜔𝐶 (−r) ⊗ (𝜔𝐶 (𝜆))

−1 = O𝐶 (−r − 𝜆) → O𝐶 .

This an isomorphism in the complement of the ramification and contracted loci.

Remark 2.4. Following up on Remark 2.2, we observe that𝐶 can be constructed by gluing its restriction
over the complement of the odd nodes of 𝑃, where no twisting of the base is necessary, together with
its restriction to the complement of Exc(𝜏), where it is isomorphic to C over P.

2.7. The arithmetic genus

Finally, we note that the arithmetic genus of 𝐶 is the same as that of C. This follows from smoothing and
the following important observation: the construction of Diagram (2.1) – in particular, of the contraction
𝜏, the double cover 𝜓 and the contraction 𝜎 – commutes with arbitrary base-change.

The arithmetic genus of 𝐶 can also be computed directly. Since 𝜓
′ is affine, it is enough to compute

ℎ0 (𝑃
′
, 𝜓

′
∗𝜔𝐶 ) = ℎ0 (𝑃

′
,O

𝑃
′ (1) ⊕ 𝜔

𝑃
′ ). Since 𝜔

𝑃
′ is the pullback of 𝜔𝑃 and since 𝑃 is rational,

ℎ0 (𝑃
′
, 𝜔

𝑃
′ ) = 0. However, ℎ0 (𝑃

′
,O

𝑃
′ (1)) = ℎ0 (𝑃′,L′) = 𝑔, since L′ is a nonnegative line bundle of

total degree 𝑔 − 1 on the twisted rational curve 𝑃′.
Summing up, we have proved the following:

Theorem 2.5. Let (𝜓 : 𝐶 → 𝑃, 𝜆𝑇 ) be a log hyperelliptic admissible cover of genus g with a contraction
datum. There exists a contraction (𝜎, 𝜏) to (𝜓 : 𝐶 → 𝑃) such that

(i) 𝑃 is a rational, reduced, Cohen–Macaulay curve;
(ii) 𝐶 is a (not-necessarily reduced) Gorenstein curve of genus g such that 𝜎∗𝜔𝐶 = 𝜔𝐶 (𝜆);

(iii) 𝜓 is the schematic quotient of a hyperelliptic involution 𝜄 : 𝐶 → 𝐶.

Moreover, the construction commutes with arbitrary base-change.

3. Local computations

In this section, we provide local equations for the singularities of 𝐶 (over a geometric point), including
some familiar examples in low genera. From these, we deduce that our singularities can be constructed
by gluing 𝐴𝑚-singularities (and ribbons) along specified tangent directions. Then we write down the
normalisation of 𝐶 and use this explicit expression to compute its dualising bundle and conductor,
verifying once again that 𝐶 is Gorenstein.

3.1. Local equations

Suppose now that p is a point of 𝑃 with ℓ branches. Write 𝑠𝑖 for a local parameter along the ith branch of
P above p (we shall replace these by unit multiples if needed, taking advantage of k being algebraically
closed). Local equations of 𝑃 at p are

𝐴 = Ô𝑃,𝑝 = k�𝑠1, . . . , 𝑠𝑙�/(𝑠𝑖𝑠 𝑗 : 𝑖 ≠ 𝑗).
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Now write q for the point of 𝐶 above p. We obtain the local ring of 𝐶 at q by adjoining a variable
𝑢𝑖 for every local generator of 𝐹 (or 𝜔𝑃) at p, subject to the relations expressing the multiplicative
structure. Recall that the latter is determined by twisting with 2𝜆𝑇 and b. Let 𝑚𝑖 be the (positive) slope
of 2𝜆𝑇 at the ith branch (note that this is not the slope of 𝜆 at the non-ramified edges of Supp(𝜆)).
Nonreduced (double) components, also called split ribbons, arise in 𝐶 when a component of Supp(𝜆𝑇 )
is not contracted under 𝜏. We encode this by writing

𝛿𝑖 =

{
0 if 𝜆𝑇 > 0 on the 𝑖th branch
1 else.

Then, if ℓ ≠ 1, we have the ring

Ô𝐶,𝑞 = 𝐴[𝑢2, . . . , 𝑢ℓ]/𝐼,

where 𝑢2, . . . , 𝑢ℓ represent the differentials 𝑑𝑠1
𝑠1

− 𝑑𝑠2
𝑠2

, . . . , 𝑑𝑠1
𝑠1

− 𝑑𝑠ℓ
𝑠ℓ

, and I is generated by

1. 𝑠1(𝑢𝑖 − 𝑢 𝑗 ) for each 2 ≤ 𝑖 < 𝑗 ≤ ℓ;
2. 𝑠𝑖𝑢 𝑗 for each 𝑖 ≠ 𝑗 , 2 ≤ 𝑖, 𝑗 ≤ ℓ;
3. 𝑢2

𝑖 − 𝛿1𝑠
𝑚1
1 − 𝛿𝑖𝑠

𝑚𝑖

𝑖 for each 𝑖 = 2, . . . , ℓ;
4. 𝑢𝑖𝑢 𝑗 − 𝛿1𝑠

𝑚1
1 for each 𝑖 ≠ 𝑗 with 2 ≤ 𝑖, 𝑗 ≤ ℓ,

where the first two equations describe the A-module structure of 𝜔𝑃 , and the last two describe the
multiplication as in Equation (2.2).

If ℓ = 1 and p is the image of a contracted component, the formula above needs a correction to
account for the difference between 𝜔𝑃 (being generated by 𝑑𝑠1) and O𝑃 (1) (with 𝜔𝑃 being generated
by 𝑑𝑠1

𝑠1
). More precisely, if 𝑝 denotes the node of P over p, the natural map 𝜏∗𝜔𝑃 � 𝜏∗𝜏∗𝜔𝑃 → 𝜔𝑃 is

induced by twisting by 𝑝. We thus have

Ô𝐶,𝑞 = 𝐴[𝑢]/(𝑢2 − 𝛿1𝑠
𝑚1+2
1 ),

which is either a germ of an 𝐴𝑚1+1 singularity (if 𝛿1 ≠ 0) or a ribbon (if 𝛿1 = 0).
Similarly (but easier), if ℓ = 1 and p belongs to b, we have

Ô𝐶,𝑞 = 𝐴[𝑢]/(𝑢2 − 𝛿1𝑠1),

either a germ of a ribbon or a point of ramification of the cover; and if ℓ = 1 and p does not belong to
b, we have

Ô𝐶,𝑞 = 𝐴[𝑢]/(𝑢2 − 𝛿1),

either a germ of a ribbon or a trivial part of the double cover.

3.2. Examples

We recover some familiar examples of curve singularities of low genus.

Example 3.1. We construct a genus one singularity with six branches, cf. [Smy11, Boz21].

1 trop(𝜓)
1 11

4
𝜆𝑇

0
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In green, we write the slopes of 𝜆𝑇 , and in blue instead, the number of branch points. The line bundle L
is trivial on the central vertex of the tree, so the corresponding component is contracted into an ordinary
(rational) 3-fold point. The sheaf 𝜔𝑃 ⊗ O𝑃 (−1) has two generators 𝑢2 and 𝑢3, corresponding to the
generators ( d 𝑠1

𝑠1
,− d 𝑠2

𝑠2
, 0) and ( d 𝑠1

𝑠1
, 0,− d 𝑠3

𝑠3
). The resulting singularity has local equations of the form

Ô𝐶,𝑞 = k[[𝑠1, 𝑠2, 𝑠3]] [𝑢2, 𝑢3]/(𝑠𝑖𝑠 𝑗 , 𝑢
2
2 − 𝑠2

1 − 𝑠2
2, 𝑢

2
3 − 𝑠2

1 − 𝑠2
3, 𝑠1(𝑢2 − 𝑢3), 𝑠2𝑢3, 𝑠3𝑢2, 𝑢2𝑢3 − 𝑠2

1),

which is isomorphic to k[[𝑥1, 𝑥1, 𝑥2, 𝑥2, 𝑥3]]/𝐼6 from [Smy11, Proposition A.3] via

𝑠1 = 𝑥1 − 𝑥1, 𝑠2 = 𝑥2 − 𝑥2, 𝑠3 =
1
2
𝑥3, 𝑢2 = 𝑥1 + 𝑥1 − (𝑥2 + 𝑥2), 𝑢3 = 𝑥1 + 𝑥1 − 𝑥3.

Example 3.2. We construct a genus two singularity ‘of type I” with three branches; cf. [Bat22].

2 trop(𝜓)
1

3
2

5
1 𝜆𝑇

0

The line bundle L is trivial on the middle component of the chain, which is contracted to a node. The
dualising sheaf 𝜔𝑃 is itself a line bundle, with local generator u. We obtain

Ô𝐶,𝑞 = k[[𝑠1, 𝑠2]] [𝑢]/(𝑠1𝑠2, 𝑢
2 − 𝑠2

1 − 𝑠3
2),

which is isomorphic to k[[𝑥1, 𝑥1, 𝑥2]]/(𝑥1𝑥2 − 𝑥1𝑥2, 𝑥1𝑥1 − 𝑥3
2) [Bat22, Equation (4) on p.11] via

𝑠1 =
1
2
(𝑥1 − 𝑥1), 𝑠2 = 𝑥2, 𝑢 =

1
2
(𝑥1 + 𝑥1).

Example 3.3. We construct a (2)-tailed ribbon of genus two; cf. [BC23, Definition 2.21].

2 trop(𝜓)
1

6
𝜆𝑇

0

In this case, 𝑃 is isomorphic to P. Local equations:

Ô𝐶,𝑞 = k[[𝑠1, 𝑠2]] [𝑢]/(𝑠1𝑠2, 𝑢
2 − 𝑠2

1),

which is isomorphic to k[[𝑥1, 𝑥2, 𝑦]]/(𝑥1𝑥2, (𝑥1 − 𝑥2)𝑦) [BC23, Example 2.20] via

𝑥1 = 𝑢 + 𝑠1, 𝑥2 = 𝑢 − 𝑠1, 𝑦 = 𝑠2.

Example 3.4. Isolated Gorenstein singularities of genus three are classified in [Bat24]. The hyperelliptic
ones are identified with the ones described in the present paper.
Example 3.5. We construct a nonreduced singularity of genus three.

3
trop(𝜓)

3
2

1
7

𝜆𝑇

0
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Again, 𝑃 is isomorphic to 𝑃 = 𝐿 ∪ 𝑅. Local equations:

Ô𝐶,𝑞 = k[[𝑠1, 𝑠2]] [𝑢]/(𝑠1𝑠2, 𝑢
2 − 𝑠3

1).

The double structure on the right component R is given by the line bundle O𝑅 (−
1
2 b − 𝜆𝑇 ) = O𝑅 (−2);

hence, the ribbon 𝑅 has genus 1. We can obtain the curve 𝐶 by gluing the cuspidal curve 𝐿 with the
ribbon 𝑅 along a length two subscheme, which checks out to give 𝑝𝑎 (𝐶) = 3.

Example 3.6. Classical 𝐴𝑘 and 𝐷𝑘 singularities are recovered by setting ℓ = 1, 𝑚1 = 𝑘 − 1 and
ℓ = 2, 𝑚1 = 1, 𝑚2 = 𝑘 − 2, respectively.

3.3. Gluing

The preimage in 𝐶 of a branch of 𝑃 is either a double curve or an 𝐴𝑚 singularity. Here, we explain how
to recover 𝐶 by gluing them along some tangent directions.

The subscheme cut out by 𝑠𝑖 for 𝑖 ≠ 1 and 𝑢𝑖 − 𝑢 𝑗 for 𝑖 < 𝑗 is isomorphic to

k�𝑠1�[𝑢1]/(𝑢
2
1 − 𝛿1𝑠

𝑚1
1 ), (3.1)

where 𝑢1 is the common image of 𝑢2, . . . , 𝑢𝑚. It is either a germ of a ribbon or an 𝐴𝑚1−1 singularity.
Similarly, for each 𝑗 = 2, . . . , ℓ, the subscheme cut out by 𝑠𝑖 for 𝑖 ≠ 𝑗 and 𝑢𝑖 for 𝑖 ≠ 𝑗 is isomorphic to

k�𝑠 𝑗�[𝑢 𝑗 ]/(𝑢
2
𝑗 − 𝛿 𝑗 𝑠

𝑚 𝑗

𝑗 ),

which is again either a germ of a ribbon or an 𝐴𝑚 𝑗−1 singularity.
If we only restrict down to the subscheme cut out by 𝑠1, we find that we get

k�𝑠2, . . . , 𝑠ℓ�[𝑢2, . . . , 𝑢ℓ]/(𝑠𝑖𝑠 𝑗 , 𝑠𝑖𝑢 𝑗 , 𝑢
2
𝑖 − 𝛿𝑖𝑠

𝑚𝑖

𝑖 : 𝑖 ≠ 𝑗 , 2 ≤ 𝑖, 𝑗 ≤ ℓ), (3.2)

the transverse union of the singularities for 𝑗 = 2, . . . , ℓ above.
Our next claim is that the singularity at q is the result of gluing the tangent vector 𝜕

𝜕𝑢1
of Spec of

(3.1) with the tangent vector
∑ℓ

𝑖=2
𝜕
𝜕𝑢𝑖

of Spec of (3.2).
To see this, consider the sequence

0 → Ô𝐶,𝑞 →
k�𝑠1�[𝑢1]

(𝑢2
1 − 𝛿1𝑠

𝑚1
1 )

×
k�𝑠2, . . . , 𝑠ℓ�[𝑢2, . . . , 𝑢ℓ]

(𝑠𝑖𝑠 𝑗 , 𝑠𝑖𝑢 𝑗 , 𝑢
2
𝑖 − 𝛿𝑖𝑠

𝑚𝑖

𝑖 : 𝑖 ≠ 𝑗 , 2 ≤ 𝑖, 𝑗 ≤ ℓ)
→ 𝑄 → 0.

To see that the first map is injective, observe that the kernel is contained in (𝑠1) ∩ (𝑠2, . . . , 𝑠ℓ) = 0.
Note that both 〈𝑠1, 0〉 and 〈0, 𝑠𝑖〉 for 𝑖 = 2, . . . , ℓ are in the image of the first map, so Q is supported on
𝑉 (𝑠1, . . . , 𝑠ℓ). Restricting to this vanishing, we find

0 → 𝑘 [𝑢2, . . . , 𝑢ℓ]/(𝑢2, . . . , 𝑢ℓ)
2 → 𝑘 [𝑢1]/𝑢

2
1 ×

𝑘 [𝑢2, . . . , 𝑢ℓ]

(𝑢2, . . . , 𝑢ℓ)2 → 𝑄 → 0.

The first map clearly admits a retract, so we conclude 𝑄 � 𝑘 [𝜖]/𝜖2. This yields the claim.
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3.4. Normalisation

The normalisation 𝐶
𝜈

of the germ of 𝐶 at q can be computed as follows. Consider

𝐶
𝜈

𝐶𝑃
𝜈
,red 𝐶𝑃

𝜈 𝐶

𝑃
𝜈

𝑃.

�

From this, we see that it is enough to understand the normalisation of the 𝐴𝑚-singularities and of
ribbons, and put these formulae together. Assume that 𝛿1 = 1 and 𝑚1 is even; the other cases are left to
the avid reader. Renumbering {2, . . . , ℓ}, we may assume that

◦ for 𝑖 = 2, . . . , ℎ, we have 𝛿𝑖 = 1 and 𝑚𝑖 even,
◦ for 𝑖 = ℎ + 1, . . . , 𝑘 , we have 𝛿𝑖 = 1 and 𝑚𝑖 odd,
◦ for 𝑖 = 𝑘 + 1, . . . , ℓ, we have 𝛿𝑖 = 0.

The normalisation is then given by the ring

ℎ∏
𝑖=1

k�𝑎𝑖� × k�𝑏𝑖� ×
𝑘∏

𝑖=ℎ+1
k�𝑐𝑖� ×

𝑙∏
𝑖=𝑘+1

k�𝑑𝑖�

with ring homomorphism

𝑠𝑖 ↦→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑎𝑖 , 𝑏𝑖) for 𝑖 = 1, . . . , ℎ
𝑐2
𝑖 for 𝑖 = ℎ + 1, . . . , 𝑘

𝑑𝑖 for 𝑖 = 𝑘 + 1, . . . , ℓ
𝑢𝑖 ↦→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑎𝑚1/2

1 ,−𝑏𝑚1/2
1 , 𝑎𝑚𝑖/2

𝑖 ,−𝑏𝑚𝑖/2
𝑖 ) for 𝑖 = 2, . . . , ℎ

(𝑎𝑚1/2
1 ,−𝑏𝑚1/2

1 , 𝑐𝑚𝑖

𝑖 ) for 𝑖 = ℎ + 1, . . . , 𝑘
(𝑎𝑚1/2

1 ,−𝑏𝑚1/2
1 , 0) for 𝑖 = 𝑘 + 1, . . . , ℓ

(3.3)

Notice that 𝑚𝑖

2 (resp. 𝑚𝑖) is precisely the slope of 𝜆 on the edge corresponding to 𝑞𝑖 , 𝑖 = 1, . . . , ℎ
(resp. 𝑖 = ℎ + 1, . . . , 𝑘).

3.5. Differentials

For this section, we assume that 𝐶 is reduced. Recall that the conductor ideal of the normalisation
𝜈 : 𝐶𝜈 → 𝐶 is 𝔠 = Ann(𝜈∗Ô𝐶𝜈 ,𝑞/Ô𝐶,𝑞); it is the largest ideal of Ô𝐶,𝑞 that is also an ideal of 𝜈∗Ô𝐶𝜈 ,𝑞 .
It follows from the explicit parametrisation in the previous section that

𝔠 =
(
𝑎𝑚𝑖/2+1
𝑖 , 𝑏𝑚𝑖/2+1

𝑖 , 𝑐𝑚𝑖+1
𝑖

)
. (3.4)

From this, we can verify that 𝐶 is Gorenstein in a second way.

Corollary 3.7. 𝐶 is a Gorenstein curve.

Proof. The following criterion is due to Serre (see, for instance, [AK70, Proposition VIII.1.16]): 𝐶 is
Gorenstein if and only if dimk (O𝐶𝜈/𝔠) = 2𝛿. Now,

𝛿 = 𝑔(𝑞) + 2ℎ + 𝑘 − 1, (3.5)

where 2ℎ + 𝑘 is the number of branches of q, and 𝑔(𝑞) is the genus of the singularity.
The latter is the same as the genus of the subcurve of C contracted to it. This corresponds to a connected

component of the support of 𝜆𝑇 . Since the following formulae are stable under edge contraction, we
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may as well assume that there is a single vertex v in the support of 𝜆𝑇 , resp. irreducible component 𝐶𝑣

of C contracting to q. The genus of this component is determined by the Riemann–Hurwitz formula

2𝑔(𝐶𝑣 ) + 2 = 𝑏 + 𝑘, (3.6)

where b is the number of branch points supported on 𝐶𝑣 , and k the number of odd nodes (for b) adjacent
to v. However, balancing 𝜆𝑇 at v as in Equation (1.5), we find

div(𝜆𝑇 ) =
ℎ+𝑘∑
𝑖=1

𝑚𝑖

2
= val(𝑣) − 2 +

𝑏

2
. (3.7)

Finally, from the above formula for the conductor, we find that

dimk (O𝐶𝜈/𝔠) =
ℎ+𝑘∑
𝑖=1

𝑚𝑖 + 2ℎ + 𝑘 by eq. (3.4)

= 2val(𝑣) − 4 + 𝑏 + 2ℎ + 𝑘 by eq. (3.7)
= 𝑏 + 𝑘 − 4 + 2(2ℎ + 𝑘) by a simple manipulation
= 2(𝑔 + 2ℎ + 𝑘 − 1) = 2𝛿. by eq. (3.6) and eq. (3.5). �

We can also describe the dualising bundle of 𝐶 more explicitly.

Corollary 3.8. A local generator of 𝜔𝐶 at q is given by

𝜂 =
d𝑠1
𝑢𝑠1

−
𝑘∑
𝑖=2

d𝑠𝑖
𝑢𝑖𝑠𝑖

=
d𝑎1

𝑎𝑚1/2+1
1

−
d𝑏1

𝑏𝑚1/2+1
1

−
ℎ∑
𝑖=2

(
d𝑎𝑖

𝑎𝑚𝑖/2+1
𝑖

−
d𝑏𝑖

𝑏𝑚𝑖/2+1
𝑖

)
−

𝑘∑
𝑖=ℎ+1

d𝑐𝑖
𝑐𝑚𝑖+1
𝑖

,

and, if we write (𝐶𝜈 , 𝑞𝑖 , 𝑞𝑖 , 𝑞 𝑗 ) 𝑖=1,...,ℎ
𝑗=ℎ+1,...,𝑘

for the pointed normalisation of 𝐶 at q, then

𝜈∗𝜔𝐶 = 𝜔𝐶𝜈

(
ℎ∑
𝑖=1

(𝑚𝑖

2
+ 1

)
(𝑞𝑖 + 𝑞𝑖) +

𝑘∑
𝑖=ℎ+1

(𝑚𝑖 + 1)𝑞𝑖

)
.

Proof. Recall Rosenlicht’s theorem [AK70, Proposition VIII.1.16]: for a reduced curve 𝐶, sections of
the dualising sheaf 𝜔𝐶 can be identified with meromorphic differentials 𝜂 on the normalisation 𝐶𝜈 such
that, for all regular functions f on 𝐶, one has∑

𝑞𝑖 ∈𝜈−1 (𝑞)

Res𝑞𝑖 ( 𝑓 𝜂) = 0. (3.8)

This implies that the order of vanishing of the conductor at 𝑞𝑖 is an upper bound for the order of pole
of sections of 𝜔𝐶 at 𝑞𝑖: if t is a local parameter of 𝐶𝜈 at 𝑞𝑖 , and 𝑡𝜇 is a section of 𝔠 (and in particular
of Ô𝐶,𝑞), no meromorphic differential with pole order 𝜇 + 1 or higher at 𝑞𝑖 can ever descend to 𝜔𝐶 .
Under this condition, Equation (3.8) is automatically satisfied for all 𝑓 ∈ 𝔠.

Since Ô𝐶,𝑞/𝔠 is generated by
〈
1, 𝑠𝑖 , . . . , 𝑠𝑚𝑖/2

𝑖 , 𝑢 𝑗

〉
𝑖=1,...,𝑘;
𝑗=2,...,𝑘

as a k-vector space, it is easy to check

that the meromorphic differential 𝜂 from the statement descends to a local section of 𝜔𝐶 .
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Moreover, since the latter is a line bundle and 𝜂 has the highest possible pole order at every 𝑞𝑖 , it
follows that 𝜂 is indeed a generator: pick a local generator 𝜂′, and write 𝜂 = 𝑔𝜂′ for some 𝑔 ∈ Ô𝐶,𝑞;
then the order of pole of 𝜂 at 𝑞𝑖 is lower than that of 𝜂′ (or 𝜂 vanishes on the entire branch containing
𝑞𝑖 , which it does not), so they have to be equal, so g has to be an invertible scalar.

The second claim follows from Noether’s formula [Cat82, Proposition 1.2]: 𝜔𝐶𝜈 = 𝜈∗𝜔𝐶 (𝔠). �

4. Classification of Gorenstein hyperelliptic curves

In this section, we prove a partial converse to our previous result – namely, that most Gorenstein
hyperelliptic curves arise from our construction. We focus on the unmarked case for notational simplicity.
We start by specifying what exactly we mean by a Gorenstein hyperelliptic curve.

Definition 4.1. We say that 𝜓 : 𝐶 → 𝑃 is a Gorenstein hyperelliptic cover if 𝑃 is a rational, reduced,
Cohen–Macaulay projective curve; 𝜓 is a finite (not necessarily flat) cover of degree two over every
irreducible component of 𝑃; 𝐶 is a Gorenstein (not necessarily reduced) curve; there is a hyperelliptic
involution 𝜄 on 𝐶 with quotient 𝑃.

Remark 4.2. Every nonreduced component of 𝐶 is a split ribbon: recall that a ribbon is called split
when it admits a projection to its underlying reduced curve 𝑅red ↩→ 𝑅 → 𝑅red [BE95, §1].

Theorem 4.3. Every smoothable Gorenstein hyperelliptic cover arises from the construction of §2.

Corollary 4.4. Every reduced Gorenstein hyperelliptic cover arises from the construction of §2.

In the presence of a 𝐺 = Z/2Z-action on 𝐶, we may split the structure (in fact, any equivariant) sheaf
into eigenspaces for the G-action (on every G-stable open). We can thus write

𝜓∗O𝐶 = O ⊕ 𝐹,

where O denotes the 1-eigenspace, and 𝐹 the −1. By assumption, 𝜄-invariant functions descend to 𝑃,
whence we can identify O with O𝑃 . In particular, the finite cover 𝜓 admits a trace map even when it is
not flat.

We know that 𝐹 is some sheaf of pure rank one on 𝑃. Our next goal is to show that 𝐹 is a twist of
𝜔𝑃 by a line bundle. We recall that, in his study of generalised divisors, Hartshorne has introduced a
generalisation of reflexivity for sheaves which is useful when the base scheme is Cohen–Macaulay but
not Gorenstein. Denote by −𝜔 the functor H𝑜𝑚(−, 𝜔), i.e. 𝜔-dualisation. A sheaf G is 𝜔-reflexive if
G → G𝜔𝜔 is an isomorphism. This implies that G is torsion-free [Har07, Lemma 1.4].

Remark 4.5. It follows from Grothendieck’s duality for a finite morphism 𝑓 : 𝑋 → 𝑌 that

( 𝑓∗G)𝜔 = H𝑜𝑚O𝑌 ( 𝑓∗G, 𝜔𝑌 ) = 𝑓∗H𝑜𝑚O𝑋 (G, 𝑓 !𝜔𝑌 ) = 𝑓∗(G𝜔).

In particular, 𝜓∗𝜔𝐶 = H𝑜𝑚O𝑃
(𝜓∗O𝐶 , 𝜔𝑃) = 𝜔𝑃 ⊕ 𝐹

𝜔 .

Remark 4.6. Since 𝑃 is rational, 𝜔𝑃 has no global section (by Serre duality). It follows that (global
regular) sections of the dualising sheaf on 𝐶 can be identified with sections of 𝐹

𝜔 on 𝑃; in particular,
they are all 𝜄-anti-invariant. This generalises Remark 1.12 beyond the case of smooth curves.

Since O𝐶 and O𝑃 are both 𝜔-reflexive, we may conclude that the same holds true for 𝐹.

Lemma 4.7. 𝐹 is a rank-one, 𝜔-reflexive sheaf.

Lemma 4.8. 𝐹
𝜔 is a line bundle, except where 𝜓 maps a node to a node with ramification.

Proof. We may work locally around a closed point p of 𝑃. If 𝑃 is smooth at p, then 𝜓 is flat by ‘miracle
flatness’, so 𝐹 is itself a line bundle, and 𝐹

𝜔 is as well.
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If p is a node, we consider two cases: either 𝜓 is flat over p, in which case we can conclude as before7;
or 𝜓 is not flat. In this case, we claim that 𝐶 has a node at the preimage n of p, and 𝜓 is ramified at n
on both branches. To show this, we are going to normalise 𝑃 and 𝐶 simultaneously. Indeed, 𝐹 is not a
line bundle, but there is a line bundle 𝐹

′ on the normalisation 𝜈 : 𝑃
′
→ 𝑃 such that 𝐹 = 𝜈∗𝐹

′[OS79,
Proposition 10.1]. Consider the following exact sequence:

0 → O𝑃 ⊕ 𝐹 → 𝜈∗(O𝑃
′ ⊕ 𝐹

′
) → k𝑝 → 0. (4.1)

We may endow the second term with a 𝜈∗O𝑃
′-algebra structure induced by the one of O𝐶 . Indeed,

there is always a map

(𝜈∗𝐹
′
) ⊗2 → 𝜈∗(𝐹

′ ⊗2
),

which, in this case, a local computation shows to be surjective. In fact, we may as well replace (𝜈∗𝐹
′
) ⊗2

by Sym2(𝜈∗𝐹
′
). We get the desired multiplication map by lifting

Sym2 𝐹 O𝑃

𝜈∗(𝐹
′ ⊗2

) 𝜈∗O𝑃
′ .

𝜇

𝜇′

Explicitly, if 𝐹
′ is generated as O

𝑃
′-module by an element (𝑥, 𝑦) (and its pushforward along 𝜈 is

generated as an O𝑃-module by two elements 𝑥 = (1, 0) · (𝑥, 𝑦) and 𝑦 = (0, 1) · (𝑥, 𝑦)), its square
𝐹

′ ⊗2 is generated by (𝑥2, 𝑦2) as an O
𝑃
′-module, and by 𝑥2 and 𝑦2 as an O𝑃-module. The O𝑃-module

Sym2 𝐹 has an extra generator 𝑥𝑦. However, locally, O𝑃 
 k[𝑠, 𝑡]/(𝑠𝑡) (while O
𝑃
′ 
 k[𝑠] ⊕ k[𝑡]), and

𝑠𝑦 = 𝑡𝑥 = 0 implies that 𝔪𝑝 · 𝑥𝑦 = 0; hence, the multiplication map 𝜇 : Sym2 𝐹 → O𝑃 must send this
element to 0. It follows that the multiplication map 𝜇′ : 𝜈∗(𝐹

′ ⊗2
) → 𝜈∗O𝑃

′ is well-defined. Moreover,
it clearly lifts to a map of O

𝑃
′-modules. We thus get the desired double cover 𝐶

′
→ 𝑃

′, together with
a birational morphism 𝐶

′
→ 𝐶. Since 𝑃

′ is smooth (disconnected), the former map is flat and 𝐶
′

is
smooth, so the latter map is the normalisation of 𝐶. Equation (4.1) shows that 𝐶 has 𝛿-invariant 1 (and at
least two branches) at n, so n must be a node, and moreover, the cover is ramified at n on both branches.

Finally, if 𝑃 is not Gorenstein at p, we may argue as follows. Let q be the point of 𝐶 over p (if there
were two, 𝜓 would be a local isomorphism, contradicting the fact that 𝐶 is Gorenstein). The group
G acts on 𝜔𝐶 . By assumption, 𝜔𝐶 admits a single generator at q that we will call 𝜂. Consider the
eigenspace decomposition 𝜂 = 𝜂1 +𝜂−1. If 𝜂−1 = 0, then 𝜔𝑃 is generated by 𝜂1 as an O𝑃-module, which
is a contradiction. Since 𝜂 generates 𝜔𝐶 and 𝜂−1 is itself a section of 𝜔𝐶 , we can write 𝜂−1 = 𝑓 𝜂. We
claim that 𝑓 (𝑞) ≠ 0, so we can as well take 𝜂−1 as a generator of 𝜔𝐶 . Decomposing f and 𝜂 into their
homogeneous pieces, we write

𝜂−1 = 𝑓−1𝜂1 + 𝑓1𝜂−1.

Since 𝜄∗ 𝑓−1(𝑞) = − 𝑓−1(𝑞), which implies 𝑓−1 ∈ 𝔪𝑞 , we have to check that 𝑓1(𝑞) ≠ 0. Were 𝑓1 (𝑞) = 0,
then 1 − 𝑓1 would be a unit, and we could write

𝜂−1 =
𝑓−1

1 − 𝑓1(𝑞)
𝜂1,

so we could take 𝜂1 as a generator of 𝜔𝐶 , which is a contradiction as above. This shows that the generator
of 𝜔𝐶 can be assumed to be of pure weight −1; hence, 𝐹𝜔 has a single generator as an O𝑃-module. �

7All singularities of the form k[[𝑥, 𝑦, 𝑧 ]]/(𝑥𝑦, 𝑧2 − 𝑥𝛼 − 𝑦𝛽) fall under this category (e.g., 𝐷𝑘 -singularities when 𝛼 = 1).
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Remark 4.9. As in the previous section, the failure of 𝐹𝜔 to be a line bundle can be cured by introducing
orbifold structures at the odd nodes. By abuse of notation, we assume that this has been done and that
𝐹

𝜔 therefore is a line bundle on 𝑃.

Lemma 4.10. 𝜓∗
𝐹

𝜔

 𝜔𝐶 .

Proof. By adjunction, there exists a morphism

𝜓
∗
𝐹

𝜔
→ 𝜓

∗
𝜓∗𝜔𝐶 → 𝜔𝐶 .

Since 𝜓 is finite, it is enough to check that the composite is an isomorphism after pushing forward along
𝜓. Since 𝐹

𝜔 is a line bundle, we may apply the projection formula to compute

𝜓∗𝜓
∗
𝐹

𝜔
= 𝐹

𝜔
⊗ 𝜓∗O𝐶 = 𝐹

𝜔
⊗ (O𝑃 ⊕ 𝐹).

Since 𝐹
𝜔 is a line bundle, 𝐹𝜔

⊗ 𝐹 is also a rank-one torsion-free; hence, we have a short exact sequence

0 → 𝐹
𝜔
⊗ 𝐹

ev
−→ 𝜔𝑃 → Q → 0,

where Q is a torsion sheaf. By taking 𝜔-duals, we get

0 → H𝑜𝑚(𝜔𝑃 , 𝜔𝑃) = O𝑃 → H𝑜𝑚(𝐹
𝜔
⊗ 𝐹, 𝜔𝑃) → E𝑥𝑡1 (Q, 𝜔𝑃) → 0.

Since 𝐹
𝜔 is a line bundle, the first arrow is an isomorphism, which shows that Q vanishes. We conclude

that

𝜓∗𝜓
∗
𝐹

𝜔
= 𝐹

𝜔
⊕ 𝐹

𝜔
⊗ 𝐹 = 𝐹

𝜔
⊕ 𝜔𝑃 = 𝜓∗𝜔𝐶 . �

Proof of Theorem 4.3. Consider a smoothing Ψ̄ : C → P of𝜓 overΔ , and mark the generic fibreP 𝜂 with
the branch divisor of Ψ̄. After a finite base change if necessary, let (P ,B) be the unique limit of (P 𝜂 ,B𝜂)
as a stable curve with unordered markings. Let Ψ : C → P be the associated hyperelliptic admissible
cover with the minimal log structure. Let Φ𝑃 : P → P denote the contraction, and similarly, Φ𝐶 .

Since C is a normal surface, and by reflexivity of the sheaves involved, we notice that 𝜔C/Δ and
Φ∗

𝐶𝜔C/Δ differ only by a vertical divisor, supported on the central fibre. We may hence write

Φ∗
𝐶𝜔C/Δ = 𝜔C/Δ (𝜆),

for some conewise-linear function 𝜆 ∈ 𝐻0(C, 𝑀C), a priori only with the divisorial log structure of C
with respect to its central fibre. However, let P tw denote the orbicurve [C/𝜄]. Since 𝜔𝐶 = 𝜓

∗
𝐹

𝜔 , and
𝜔𝐶 = 𝜓∗𝜔𝑃tw (b/2), we deduce that their difference is also pulled back from 𝑃tw. Hence, 𝜆 is pulled
back from 𝜆𝑇 on 𝑇 ′ with its divisorial log structure.

We may now apply our construction to (Ψ, 𝜆𝑇 ), thus obtaining a Gorenstein hyperelliptic curve
Ψ̄′ : C ′

→ P ′
, fitting in the following diagram:

C

C P C ′

P P ′
.

Φ𝐶

Ψ
Φ′

𝐶

Ψ̄

Φ𝑃 Φ′
𝑃

Ψ̄′

𝛽
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Observe that P and P ′
are normal surfaces, and the exceptional loci of Φ𝑃 and Φ′

𝑃 are the same,
so we may find an isomorphism 𝛽 : P 
 P ′

commuting with the Φ𝑃’s by birational rigidity [Deb01,
Lemma 1.15]. Moreover, 𝛽∗OP′ (1) 
 𝐹

𝜔 .
Now, by 𝜔-reflexivity, we recover 𝐹 
 𝛽∗𝜔P (−1), and therefore, Ψ̄∗OC = 𝛽∗(Ψ̄′

∗OC′ ). The branch
divisor is determined by the image of B, and by the components of the central fibre that are contained in
the support of 𝜆 without being contracted by Φ (by Riemann–Hurwitz); hence, we conclude that there
is also an isomorphism 𝛼 : C 
 C ′

covering 𝛽. �

Proof of Corollary 4.4. We are left to show that 𝜓 can be smoothed out when 𝐶 is reduced. We will
proceed step by step by showing that the various ingredients of this moduli problem are unobstructed.

The reduced rational curve 𝑃 is smoothable; see [Har10, Example 29.10.2].
The line bundle 𝐹

𝜔 can be smoothed out since the relative Picard scheme of a curve is unobstructed.
Consequently, the structure sheaf of 𝐶 can be smoothed out by taking its 𝜔-dual 𝐹.

Finally, the multiplication map 𝜇 is a cosection of 𝐹⊗2. Consider the pairing

𝐻0(𝐹
⊗−2

) × 𝐻𝑜𝑚(𝐹
⊗−2

, 𝜔𝑃) → 𝐻0 (𝜔𝑃) = 0

by composition. Since 𝐶 is reduced by assumption, 𝜇 does not vanish generically on any component
of 𝑃. It follows that every section of H𝑜𝑚(𝐹

⊗−2
, 𝜔𝑃) must vanish generically, and since this sheaf is

torsion-free, it is zero tout court. By Serre duality, ℎ1 (𝐹
⊗−2

) = 0; hence, deformations of 𝜇 are also
unobstructed. �

Remark 4.11. We expect the result to hold for all Gorenstein hyperelliptic curves, but we have not been
able to prove the smoothability of nonreduced curves yet. However, these curves can be dispensed with
as far as our application to differentials is concerned.

5. The differential descent conjecture

5.1. Abelian differentials in general

The moduli space of Abelian differentials has at most three connected components (depending on the
multiplicity 𝜇 of the zeroes) [KZ03]. In general, connected components of the space of multiscale
differentials are not irreducible. The global residue condition (GRC) was introduced in [BCG+18] to
single out the smoothable differentials. Roughly speaking, it says that the sum of the residues at poles
of level i that are joined by a connected subcurve at level 𝑖 + 1 must vanish, despite the possibility
that the corresponding nodes belong to different subcurves at level i. The proof of necessity goes by
cutting the generic fibre of a smoothing along the vanishing cycle corresponding to these nodes, and
applying Stokes’ theorem to compute the integral of the abelian differential on the resulting surface with
boundary. The proof of sufficiency is more complicated and based on a refined plumbing construction.
With the logarithmic understanding of the moduli space of generalised multiscale differentials reached
in [CC19, CGH+22], the GRC remains the only ingredient of [BCG+19] relying on transcendental
techniques. A purely algebraic description of smoothable differentials is contained in the following
conjecture, originally due to Ranganathan and Wise.

Conjecture 5.1 (Gorenstein curves and smoothable differentials). Let (𝐶, 𝜂) be a logarithmic rubber
differential with tropicalisation 𝜆. Then 𝜂 is smoothable if and only if

(i) for every level i, the truncation 𝜆𝑖 of 𝜆 (as in §1.6) is a realisable tropical differential;
(ii) there exists a logarithmic modification 𝐶 → 𝐶, a natural extension 𝜂 of the pullback of 𝜂 to 𝐶, and

a reduced Gorenstein contraction 𝜎 : 𝐶 → 𝐶𝑖 such that 𝜎∗𝜔𝐶𝑖
= 𝜔𝐶 (𝜆𝑖), and

(iii) the differential 𝜂𝑖 at level i descends to a local generator of 𝜔𝐶𝑖
.
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Here, 𝐶𝑖 is determined by 𝜂 as follows, in order to ensure that the twist of the canonical bundle be
trivial on the upper levels, and to avoid nonreduced components in the contractions 𝐶𝑖 . Indeed, ribbons
appear when 𝜔𝐶 (𝜆𝑖) has positive degree on the support of 𝜆𝑖 . This happens precisely when at least
one zero of order 𝑚 ≥ 1 is contained in the support of 𝜆𝑖 . In this case, since we have a nontrivial
logarithmic structure of marking type at the zero, we can subdivide the corresponding leg at level i;
classically, this means sprouting a new semistable rational component at the marking. In the natural
coordinates [𝑥0 : 𝑥1] with respect to the two special points, the differential 𝜂 can be extended uniquely
to the new component �̃� by setting 𝜂 �̃� = 𝑥𝑚0 d𝑥0; the choice of a nonzero scalar is compensated by the
automorphisms of the underlying curve. Notice that this differential does not contribute to the GRC,
since 𝑚 + 2 > 1. The mere existence of the nonzero differentials at levels higher than i guarantees that
the twist of the canonical bundle by 𝜆𝑖 will be trivial (not just numerically). We provide the following
ad hoc example in the hope of acquainting the reader with the log modification procedure.
Example 5.2. Let (𝐶, 𝜂) be a generalised multiscale differential, where C consists of two components
𝐶0 and 𝐶−1 joined at a single node q. Assume that 𝐶0 is a curve of genus two, and 𝜂0 is a holomorphic
differential with simple zeroes at q and its conjugate point 𝑞, which in particular is a marking of C
(note that C is not hyperelliptic in the sense of admissible covers, although 𝐶0 is; the specific 𝐶1 will
be immaterial for this discussion). In a general one-parameter smoothing, 𝐶0 will have negative self-
intersection; in particular, it can be contracted by general principles (Artin’s criterion). The resulting
singularity is formally isomorphic to k[[𝑡3, 𝑡4, 𝑡5]], which is not Gorenstein. Indeed, since 𝜔𝐶0 =
O𝐶0 (𝑞 + 𝑞), twisting by a multiple of 𝐶0 will never make the relative dualising bundle of the family
trivial on 𝐶0. Instead, we are going to modify C by log blowing up 𝐶0 at 𝑞, and then contract, which
results into a locally planar singularity of type 𝐴5, whose dualising bundle is generated by a meromorphic
differential with poles of order three on either branch.

5.2. Hyperelliptic differentials

The connected component consisting of hyperelliptic differentials is already irreducible [CC19, Propo-
sition 5.16]. This is proved by identifying the moduli space of hyperelliptic differentials with a moduli
space of quadratic differentials on rational curves. We therefore view the following result as a first proof
of concept for Conjecture 5.1.
Proposition 5.3. Let (𝜓 : 𝐶 → 𝑃, 𝜂) be a log rubber hyperelliptic differential with tropicalisation �̄�.
The differential 𝜂𝑖 at level i descends to a generator of the dualising sheaf of the Gorenstein contraction
associated to (𝜓 : 𝐶𝑖 → 𝑃, 𝜆𝑖) as in §2.
Proof. Let 𝜂𝑖 denote the collection of differentials on components at level ≤ 𝑖. Then 𝜂𝑖 is a section of the
restriction of 𝜔𝐶 (𝜆𝑖) to 𝐶≤𝑖 (i.e., a meromorphic differential with poles along the level [𝑖, 𝑖 + 1]-nodes,
whose order of pole is determined by the slopes of �̄� plus one). Since 𝜂𝑖 is 𝜄-anti-invariant, it descends
to a section of the odd part of 𝜓∗𝜔𝐶 (𝜆𝑖) on 𝑃≤𝑖 , which is the restriction of L. Since the latter is trivial
on 𝑃>𝑖 , this section extends uniquely to P. We can therefore identify it with a section of O𝑃 (1) on 𝑃,
and in turn with an anti-invariant section of 𝜔𝐶 . In fact, up to scaling, it can be identified with the local
generator given in Corollary 3.8. �

Remark 5.4. Anti-invariance under 𝜄 implies that residues at conjugate (resp. Weierstrass) points are
opposite (resp. zero). In particular, 𝜄-anti-invariance implies that the Global Residue Condition holds.
Although every holomorphic differential on a hyperelliptic curve is 𝜄-anti-invariant (Remark 4.6) (and
so are their limits), generalised multiscale differentials are only meromorphic on lower levels of the
curve; hence, the above is a proof of Conjecture 5.1 not for any differential on a hyperelliptic curve C
(in the sense of admissible covers), but only for the 𝜄-anti-invariant ones. See Example 5.6.
Example 5.5. Let C be a nodal curve consisting of two hyperelliptic components 𝐶0, of genus 𝑔0,
and 𝐶−1, joined at a single node q, which is Weierstrass on both. Let 𝜂 be an anti-invariant multiscale
differential on C, such that 𝜂0 has a single zero of multiplicity 2𝑔0 − 2 at q. Then 𝜆 has slope 2𝑔0 − 1
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along the corresponding edge. The meromorphic differential 𝜂1 has a pole of order 2𝑔0 at q; notice that
the GRC is automatically satisfied by the Residue Theorem. The contraction 𝐶−1 has an 𝐴2𝑔0 -singularity
(of genus 𝑔0) at q, and 𝜂−1 ≈ d𝑡

𝑡2𝑔0
descends to a generator of 𝜔𝐶−1

.

Example 5.6. Let (𝐶, 𝜂) be a genus 3 hyperelliptic multiscale differential whose level graph is the
following:

1 1 trop(𝜓)
1 1

1 1

4 4
𝜆𝑇

−1

0

Let 𝜂 restrict to d𝑧 on the two elliptic curves. Choose coordinates on the rational curves 𝑅𝑖 at level
−1 in such a way that the nodes are 0 and ∞, and the zeroes a and b. Then 𝜂 restricts to

𝛼𝑖 (𝑡 − 𝑎) (𝑡 − 𝑏)
d𝑡
𝑡2

on the rational curve 𝑅𝑖 , 𝑖 = 1, 2. Here, 𝜄-anti-invariance forces 𝛼1 = −𝛼2. Contracting the subcurves
at level 0, we obtain two rational curves joined at two tacnodes. There is a linear condition for a
meromorphic differential with poles of order two on the pointed normalisation to descend to the tacnode
(cf. [Smy11, §2.2]) which is analogous to the condition 𝛼1 = −𝛼2 from above. However, any choice of
𝛼𝑖 gives rise to a generalised multiscale differential.
Remark 5.7. If 𝑎 = −𝑏, the residues are zero. By varying the 𝛼𝑖 , we thus get an example of a multiscale
differential which satisfies the GRC but is not anti-invariant. This will be the limit of differentials
on smooth, non-hyperelliptic curves. There are of course even more examples of non-hyperelliptic
differentials on a hyperelliptic curve if we do not impose that the sets of zeroes and poles are invariant
under the hyperelliptic involution.
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