OSCILLATORY AND ASYMPTOTIC BEHAVIOUR OF SECOND ORDER NONLINEAR DIFFERENCE EQUATIONS

by BING LIU and JURANG YAN

(Received 9th November 1994)

Abstract

In this paper we are dealing with oscillatory and asymptotic behaviour of solutions of second order nonlinear difference equations of the form

$$
\begin{equation*}
\Delta\left(r_{n-1} \Delta x_{n-1}\right)+F\left(n, x_{n}\right)=G\left(n, x_{n}, \Delta x_{n}\right), n \in N\left(n_{0}\right) . \tag{E}
\end{equation*}
$$

Some sufficient conditions for all solutions of (E) to be oscillatory are obtained. Asymptotic behaviour of nonoscillatory solutions of (E) is considered also.

1991 Mathematics subject classification: Primary 39A10.

1. Introduction

Recently, there has been a lot of interest in the oscillation and nonoscillation of second order difference equations. See, for example, [1-6] and the references cited therein. In this paper, we consider the second order nonlinear difference equation of the form

$$
\begin{equation*}
\Delta\left(r_{n-1} \Delta x_{n-1}\right)+F\left(n, x_{n}\right)=G\left(n, x_{n}, \Delta x_{n}\right), \tag{E}
\end{equation*}
$$

where $n \in N\left(n_{0}\right)=\left\{n_{0}, n_{0}+1, n_{0}+2, \ldots\right\}$ (n_{0} is a fixed non-negative integer) and Δ is the forward difference operator defined by $\Delta x_{n}=x_{n+1}-x_{n}$. Moreover, F and G are real-valued functions with $x: N\left(n_{0}\right) \rightarrow \mathbf{R}, \quad r: N\left(n_{0}\right) \rightarrow(0,+\infty), \quad F: N\left(n_{0}\right) \times R \rightarrow \boldsymbol{R} \quad$ and $G: N\left(n_{0}\right) \times \mathbf{R}^{2} \rightarrow \mathbf{R}$.
The purpose of this paper is to establish some new results on the oscillatory and asymptotic behaviour of solutions of (E). Our results differ greatly from those in [1-6] and the known literature.
As is customary (see [3], [4] and [6]), a nontrivial solution $\left\{x_{n}\right\}$ of (E) is said to be oscillatory if for every $N>0$ there exists a $k \geqq N$ such that $x_{k} x_{k+1} \leqq 0$. Otherwise the solution is called nonoscillatory.
In this paper, we further assume that the following conditions hold:
(H) There exist sequences $\{f(n)\},\{g(n)\}$ and ratio m of two odd integers such that for all sufficiently large n

$$
\frac{F(n, u)}{u^{m}} \geqq f(n) \quad \text { for } u \neq 0
$$

and

$$
\frac{G(n, u, v)}{u^{m}} \leqq g(n) \quad \text { for } u \neq 0 .
$$

2. Asymptotic behaviour of nonoscillatory solutions

In this section, we assume that

$$
\begin{equation*}
\sum_{k=n_{0}}^{\infty}[f(k)-g(k)]=\infty \tag{1}
\end{equation*}
$$

Theorem 1. Let conditions (H) and (1) hold, then any nonoscillatory solution of (E) must belong to one of the following two types:

$$
\begin{gathered}
A_{c}: x_{n} \rightarrow C \neq 0, n \rightarrow \infty, \\
A_{0}: x_{n} \rightarrow 0, n \rightarrow \infty .
\end{gathered}
$$

Proof. Let $\left\{x_{n}\right\}$ be a nonoscillatory solution of (E), then x_{n} is eventually positive or negative. Thus, from (E), we have

$$
\begin{align*}
\Delta\left(\frac{r_{n-1} \Delta x_{n-1}}{x_{n-1}^{m}}\right) & =\frac{r_{n} \Delta x_{n}}{x_{n}^{m}}-\frac{r_{n-1} \Delta x_{n-1}}{x_{n-1}^{m}} \\
& =\frac{x_{n-1}^{m} r_{n} \Delta x_{n}-x_{n}^{m} r_{n-1} \Delta x_{n-1}}{x_{n}^{m} x_{n-1}^{m}} \\
& =\frac{\Delta\left(r_{n-1} \Delta x_{n-1}\right)}{x_{n}^{m}}-\frac{\Delta x_{n-1} m \cdot r_{n-1} \Delta x_{n-1}}{\left(x_{n-1} x_{n}\right)^{m}} \\
& \leqq-[f(n)-g(n)]-\frac{\Delta x_{n-1}^{m} \cdot r_{n-1} \Delta x_{n-1}}{\left(x_{n-1} x_{n}\right)^{m}} \tag{2}
\end{align*}
$$

By the mean value theorem

$$
\begin{equation*}
\Delta x_{n-1}^{m}=m \xi_{n}^{m-1} \Delta x_{n-1} \tag{3}
\end{equation*}
$$

where $x_{n-1}<\xi_{n}<x_{n}$ or $x_{n}<\xi_{n}<x_{n-1}$. Thus from (2), (3) we have

$$
\Delta\left(\frac{r_{n-1} \Delta x_{n-1}}{x_{n-1}^{m}}\right) \leqq-[f(n)-g(n)]-\frac{m \xi_{n}^{m-1} \cdot r_{n-1}\left(\Delta x_{n-1}\right)^{2}}{\left(x_{n-1} x_{n}\right)^{m}}
$$

$$
\begin{equation*}
\leqq-[f(n)-g(n)] . \tag{4}
\end{equation*}
$$

Summing (4) from $n_{0}+1$ to n, we get

$$
\begin{equation*}
\frac{r_{n} \Delta x_{n}}{x_{n}^{m}} \leqq \frac{r_{n_{0}} \Delta x_{n_{0}}}{x_{n_{0}}^{m}}-\sum_{k=n_{0}+1}^{n}[f(k)-g(k)] . \tag{5}
\end{equation*}
$$

If x_{n} is eventually positive, then there exists $n_{1} \in N\left(n_{0}\right)$ such that $x_{n}>0$ for $n \in N\left(n_{1}\right)$, thus from (5) and (1) we have

$$
\Delta x_{n}<0 \quad \text { for } n \in N\left(n_{1}\right) .
$$

Hence x_{n} is monotone decreasing, and $\lim _{n \rightarrow \infty} x_{n}=C \geqq 0$, where C is a constant.
If x_{n} is eventually negative, then there exists $n_{2} \in N\left(n_{0}\right)$ such that $x_{n}<0$ for $n_{2} \in N\left(n_{0}\right)$, thus from (5) and (1) we have

$$
\Delta x_{n}>0 \text { for } n \in N\left(n_{2}\right) .
$$

Hence x_{n} is monotone increasing, then $\lim _{n \rightarrow \infty} x_{n}$ exists and $\lim _{n \rightarrow \infty} x_{n}=C \leqq 0$.
Thus any nonoscillatory solution of (E) must belong to the following two types: A_{c} or A_{0}. The proof of Theorem 1 is complete.

Theorem 2. Let conditions (H) and (1) hold.
(i) If $m=1$, then a necessary condition for equation (E) to have a nonoscillatory solution $\left\{x_{n}\right\}$ which belongs to A_{c} is that

$$
\begin{equation*}
\sum_{k=n_{1}+1}^{k} \frac{1}{r_{k}} \sum_{i=n_{1}+1}^{\infty}[f(i)-g(i)]<\infty \tag{6}
\end{equation*}
$$

where $n_{1} \in N\left(n_{0}\right)$ is sufficiently large.
(ii) If $0<m<1$, then a necessary condition for equation (E) to have a nonoscillatory solution $\left\{x_{n}\right\}$ which belongs to A_{0} or A_{c} is also (6).

Proof. (i) if $m=1$, let $\left\{x_{n}\right\}$ be a nonoscillatory solution of (E) which belongs to A_{c}. If $C>0$, then x_{n} is eventually positive. From the proof of Theorem 1, we have that Δx_{n} is eventually negative and from (1), there exists $n_{1} \in N\left(n_{0}\right)$ such that $x_{n}>0, \Delta x_{n}<0$, and $\sum_{i=n_{1}+1}^{n}[f(i)-g(i)]>0$ for $n \in N\left(n_{1}\right)$. Summing (4) from $n_{1}+1$ to n, it follows that

$$
\frac{r_{n} \Delta x_{n}}{x_{n}} \leqq \frac{r_{n_{1}} \Delta x_{n_{1}}}{x_{n_{1}}}-\sum_{i=n_{1}+1}^{n}[f(i)-g(i)] \leqq-\sum_{i=n_{1}+1}^{n}[f(i)-g(i)],
$$

this is,

$$
\begin{equation*}
\frac{\Delta x_{n}}{x_{n}} \leqq-\frac{1}{r_{n}} \sum_{i=n_{1}+1}^{n}[f(i)-g(i)] . \tag{7}
\end{equation*}
$$

Let $q(t)=x_{n}+(t-n) \Delta x_{n}, n \leqq t \leqq n+1$. Then $q^{\prime}(t)=\Delta x_{n}<0$, and $0<x_{n+1} \leqq q(t) \leqq x_{n}$ for $n<t<n+1$. Hence

$$
\begin{align*}
\sum_{k=n_{1}+1}^{n} \frac{\Delta x_{k}}{x_{k}} & =\sum_{k=n_{1}+1}^{n} \int_{k}^{k+1} \frac{q^{\prime}(t)}{x_{k}} d t \geqq \sum_{k=n_{1}+1}^{n} \int_{k}^{k+1} \frac{q^{\prime}(t)}{q(t)} d t \\
& =\sum_{k=n_{1}+1}^{n}[\log q(k+1)-\log q(k)] \\
& =\sum_{k=n_{1}+1}^{n}\left[\log x_{k+1}-\log x_{k}\right] \\
& =\log x_{n+1}-\log x_{n_{1}+1} \tag{8}
\end{align*}
$$

Thus from (7) and (8), we have

$$
\begin{aligned}
& \sum_{k=n_{1}+1}^{n} \frac{1}{r_{k}} \sum_{i=n_{1}+1}^{k}[f(i)-g(i)] \\
& \leqq \log x_{n_{1}+1}-\log x_{n+1}
\end{aligned}
$$

from which letting $n \rightarrow \infty$ and noting $\lim _{n \rightarrow \infty} x_{n}=C>0$, we obtain (6).
(ii) If $0<m<1$, let $\left\{x_{n}\right\}$ be a solution of (E) which belongs to A_{0} or A_{c}. As shown in the proof of case $m=1$, we can obtain

$$
\begin{equation*}
\frac{\Delta x_{n}}{x_{n}^{m}} \leqq-\frac{1}{r_{n}} \sum_{i=n_{1}+1}^{n}[f(i)-g(i)] \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=n_{1}+1}^{n} \frac{\Delta x_{k}}{x_{k}^{m}} \leqq(1-m)\left[x_{n_{1}+1}^{1-m}-x_{n+1}^{1-m}\right] . \tag{10}
\end{equation*}
$$

From (9) and (10) we have

$$
\sum_{k=n_{1}+1}^{n} \frac{1}{r_{k}} \sum_{i=n_{1}+1}^{k}[f(i)-g(i)] \leqq(1-m)\left(x_{n_{1}+1}^{1-m}-x_{n+1}^{1-m}\right)
$$

from which letting $n \rightarrow \infty$, and noting $0<m<1$ and $\lim _{n \rightarrow \infty} x_{n}=0$ or $\lim _{n \rightarrow \infty} x_{n}=C>0$, we obtain (6), that is.

$$
\sum_{k=n_{1}+1}^{\infty} \frac{1}{r_{k}} \sum_{i=n_{1}+1}^{k}[f(i)-g(i)]<\infty
$$

If $\left\{x_{n}\right\}$ is eventually negative, similarly we can show that (6) holds. Thus the proof Theorem 2 is complete.

3. Oscillation of solutions

Theorem 3. Let conditions (H), (1) and the following condition hold,

$$
\begin{equation*}
\sum_{k=n_{1}+1}^{\infty} \frac{1}{r_{k}}=\infty . \tag{11}
\end{equation*}
$$

Then all solutions of (E) are oscillatory.
Proof. Suppose on the contrary that there exists a nonoscillatory solution $\left\{x_{n}\right\}$. Without loss of generality, we assume that x_{n} is eventually positive. From the proof of Theorem 1, we have that Δx_{n} is eventually negative and from (1), there exists $n_{1} \in N\left(n_{0}\right)$ such that $x_{n}>0, \Delta x_{n}<0$ for $n \in N\left(n_{1}\right)$ and

$$
\sum_{i=n_{1}+1}^{n}[f(i)-g(i)] \geqq 0 \quad \text { for } n \in N\left(n_{1}\right)
$$

Summing (E) from $n_{1}+1$ to n, we have

$$
\begin{align*}
r_{n} \Delta x_{n} & =r_{n_{1}} \Delta x_{n_{1}}-\sum_{i=n_{1}+1}^{n}\left[F\left(k, x_{k}\right)-G\left(k, x_{k}, \Delta x_{k}\right)\right] \\
& \leqq r_{n_{1}} \Delta x_{n_{1}}-\sum_{k=n_{1}+1}^{n} x_{k}^{m}[f(k)-g(k)] \\
& =r_{n_{1}} \Delta x_{n_{1}}-x_{n}^{m} \sum_{k=n_{1}+1}^{n}[f(k)-g(k)]+\sum_{k=n_{1}+1}^{n-1} \Delta x_{k}^{m} \sum_{i=n_{1}+1}^{k}[f(i)-g(i)] \\
& =r_{n_{1}} \Delta x_{n_{1}}-x_{n}^{m} \sum_{k=n_{1}+1}^{n}[f(k)-g(k)]+\sum_{k=n_{1}+1}^{n-1}\left(m \xi_{k}^{m-1} \Delta x_{k}\right) \sum_{i=n_{1}+1}^{k}[f(i)-g(i)] \tag{12}
\end{align*}
$$

where $x_{k+1}<\xi_{k}<x_{k}$.
From $x_{n}>0, \Delta x_{n}<0$ for $n \in N\left(n_{1}\right)$ and (12), we have

$$
r_{n} \Delta x_{n} \leqq r_{n_{1}} \Delta x_{n_{1}}
$$

Thus

$$
\begin{equation*}
\Delta x_{n} \leqq \frac{1}{r_{n}} r_{n_{1}} \Delta x_{n_{1}} \tag{13}
\end{equation*}
$$

Summing (13) from $n_{1}+1$ to $n-1$, we get

$$
\begin{equation*}
x_{n} \leqq x_{n_{1}+1}+r_{n_{1}} \Delta x_{n_{1}} \sum_{k=n_{1}+1}^{n-1} \frac{1}{r_{k}} \tag{14}
\end{equation*}
$$

from (14), letting $n \rightarrow \infty$ and using (11) and $\Delta x_{n_{1}}<0$, we have $x_{n} \rightarrow-\infty$, which contradicts $x_{n}>0$. Thus Theorem 3 is proved.

Theorem 4. Let conditions (H) with $m=1,(11)$ and the following conditions hold,
(i) There exists a sufficiently large $n_{1} \in N\left(n_{0}\right)$ such that for $n \in N\left(n_{1}\right), f(n)-g(n) \geqq 0$ and

$$
\begin{equation*}
\sum_{k=n_{1}+1}^{\infty}[f(k)-g(k)]<\infty . \tag{15}
\end{equation*}
$$

(ii) There exists positive sequence $\left\{C_{n}\right\}$ such that

$$
\begin{equation*}
\sum_{k=n_{1}+1}^{\infty} C_{k}[f(k)-g(k)]=\infty \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=n_{1}+1}^{\infty} \frac{\left(\Delta C_{k-1}\right)^{2}}{C_{k}\left(\frac{1}{r_{k-1}} \sum_{i=k}^{\infty}[f(i)-g(i)]\right)}<\infty . \tag{17}
\end{equation*}
$$

Then all solutions of (E) are oscillatory.

Proof. Suppose that there exists a nonoscillatory solution $\left\{x_{n}\right\}$. Without loss of generality, we assume that $x_{n}>0$ for $n \in N\left(n_{1}\right)$. Hence (4) holds. Now, we show that $\Delta x_{n}<0$ for sufficiently large n and that this will lead to a contradiction.

Case (a). If there exists $n_{2} \in N\left(n_{1}\right)$ such that $\Delta x_{n_{2}}=0$, then summing (4) from $n_{2}+1$ to n, we have

$$
\begin{aligned}
\frac{r_{n} \Delta x_{n}}{x_{n}} & \leqq \frac{r_{n_{2}} \Delta x_{n_{2}}}{x_{n_{2}}}-\sum_{k=n_{2}+1}^{n}[f(k)-g(k)] \\
& =-\sum_{k=n_{2}+1}^{n}[f(k)-g(k)] .
\end{aligned}
$$

Thus from (15), we have $\Delta x_{n}<0$ for $n \in N\left(n_{2}\right)$. Hence summing (E) from $n_{3} \in N\left(n_{2}\right)$ to n, we can obtain that

$$
\lim _{n \rightarrow \infty} x_{n}=-\infty
$$

which contracts $x_{n}>0$.

Case (b) If $\Delta x_{n}>0$ for $n \in N\left(n_{1}\right)$. Similarly to (4) we have

$$
\begin{equation*}
\Delta\left(\frac{r_{n-1} \Delta x_{n-1}}{x_{n-1}}\right)<-[f(n)-g(n)] \tag{18}
\end{equation*}
$$

Summing (18) from $n+1, n \in N\left(n_{1}\right)$, to N and letting $N \rightarrow \infty$, we have

$$
0 \leqq \lim _{N \rightarrow \infty} \frac{r_{N} \Delta x_{N}}{x_{N}} \leqq \frac{r_{n} \Delta x_{n}}{x_{n}}-\sum_{k=n+1}^{\infty}[f(k)-g(k)] .
$$

Thus

$$
\sum_{k=n+1}^{\infty}[f(k)-g(k)] \leqq \frac{r_{n} \Delta x_{n}}{x_{n}} .
$$

From $\Delta x_{n}>0$ for $n \in N\left(n_{1}\right)$, we have

$$
\begin{equation*}
\frac{1}{r_{n}} \sum_{k=n+1}^{\infty}[f(k)-g(k)] \leqq \frac{1}{x_{n_{1}}} \Delta x_{n} \tag{19}
\end{equation*}
$$

Hence

$$
\begin{align*}
& \Delta\left(\frac{r_{n-1} C_{n-1} \Delta x_{n-1}}{x_{n-1}}\right)=\frac{r_{n} C_{n} \Delta x_{n}}{x_{n}}-\frac{r_{n-1} C_{n-1} \Delta x_{n-1}}{x_{n-1}} \\
& \quad=\frac{C_{n}\left(r_{n} \Delta x_{n}-r_{n-1} \Delta x_{n-1}\right)}{x_{n}}+\frac{C_{n} r_{n-1} \Delta x_{n-1}}{x_{n}}-\frac{r_{n-1} C_{n-1} \Delta x_{n-1}}{x_{n-1}} \\
& \quad=C_{n} \frac{G\left(n, x_{n}, \Delta x_{n}\right)-F\left(n, x_{n}\right)}{x_{n}}-\frac{C_{n} r_{n-1}\left(\Delta x_{n-1}\right)^{2}}{x_{n} x_{n-1}}+\frac{\Delta C_{n-1} r_{n-1} \Delta x_{n-1}}{x_{n-1}} \\
& \quad \leqq-C_{n}[f(n)-g(n)]-\frac{r_{n-1} x_{n}}{x_{n 1}}\left[\frac{\sqrt{C_{n}} \Delta x_{n-1}}{x_{n}}-\frac{\Delta C_{n-1}}{\left.2 \sqrt{C_{n}}\right]^{2}+\frac{r_{n-1}\left(\Delta C_{n-1}\right)^{2}}{4 C_{n}} \cdot \frac{x_{n}}{x_{n-1}}}\right. \\
& \quad \leqq-C_{n}[f(n)-g(n)]+\frac{r_{n-1}\left(\Delta C_{n-1}\right)^{2}}{4 C_{n}} \cdot \frac{x_{n}}{x_{n-1}} \\
& \quad \leqq-C_{n}[f(n)-g(n)]+\frac{r_{n-1}\left(\Delta C_{n-1}\right)^{2}}{4 C_{n}} \\
& \quad=-C_{n}[f(n)-g(n)]+\frac{r_{n-1} \Delta x_{n-1} \cdot\left(\Delta C_{n-1}\right)^{2}}{4 C_{n} \cdot \Delta x_{n-1}} . \tag{20}
\end{align*}
$$

Summing the following inequality from $n_{1}+1$ to $n+1$,

$$
r_{k-1} \Delta x_{k-1} \leqq-x_{k}[f(k)-g(k)],
$$

we find that

$$
\begin{align*}
r_{n-1} \Delta x_{n-1} & \leqq r_{n_{1}} \Delta x_{n_{1}}-\sum_{k=n_{1}+1}^{n-1} x_{k}[f(k)-g(k)] \\
& \leqq x_{n_{1}} \Delta x_{n_{1}}=M_{0} . \tag{21}
\end{align*}
$$

Using (21), (19), and (20) we have

$$
\begin{align*}
& \Delta\left(\frac{r_{n-1} C_{n-1} \Delta x_{n-1}}{x_{n-1}}\right) \\
& \leqq-C_{n}[f(n)-g(n)]+\frac{M_{0} \cdot\left(\Delta C_{n-1}\right)^{2}}{4 x_{n_{1}} \cdot C_{n}\left(\frac{1}{r_{n-1}} \sum_{k=n}^{\infty}[f(k)-g(k)]\right)} \\
& =-C_{n}[f(n)-g(n)]+M \cdot \frac{\left(\Delta C_{n-1}\right)^{2}}{C_{n}\left(\frac{1}{r_{n-1}} \sum_{k=n}^{\infty}[f(k)-g(k)]\right)},
\end{align*}
$$

where $M=M_{0} / 4 x_{n}$. Summing (22) from $n_{1}+1$ to n, we have

$$
\begin{gathered}
\frac{r_{n} C_{n} \Delta x_{n}}{x_{n}} \leqq \frac{r_{n_{1}} C_{n_{1}} \Delta x_{n_{1}}}{x_{n_{1}}}-\sum_{k=n_{1}+1}^{n} C_{k}[f(k)-g(k)] \\
+M \sum_{k=n_{1}+1}^{n} \frac{\left(\Delta C_{n-1}\right)^{2}}{C_{k}\left(\frac{1}{r_{k-1}} \sum_{i=k}^{\infty}[f(i)-g(i)]\right)}
\end{gathered}
$$

Letting $n \rightarrow \infty$ and noting (16), (17), we get

$$
\lim _{n \rightarrow \infty} \frac{r_{n} C_{n} \Delta x_{n}}{x_{n}}=-\infty
$$

Thus there exists $n_{2} \in N\left(n_{1}\right)$ such that $\Delta x_{n}<0$ for $n \in N\left(n_{2}\right)$, which contradicts $\Delta x_{n}>0$ for $n \in N\left(n_{1}\right)$.

Thus from Cases (a) and (b) we can show that there exists $n_{3} \in N\left(n_{1}\right)$ such that $\Delta x_{n_{3}}<0$. Summing (4) from $n_{3}+1$ to n we have

$$
\frac{r_{n} \Delta x_{n}}{x_{n}} \leqq \frac{r_{n_{3}} \Delta x_{n_{3}}}{x_{n_{3}}}-\sum_{k=n_{3}+1}^{n}[f(k)-g(k)] .
$$

Hence $\Delta x_{n}<0$ for $n \in N\left(n_{3}\right)$. Similarly to the last part of the proof of Theorem 3 and from (11) we have $\lim _{n \rightarrow \infty} x_{n}=-\infty$, which contradicts $x_{n}>0$. Theorem 4 is proved.

For the purpose of illustration we consider the following example.
Example. Consider the difference equation

$$
\Delta\left(\frac{1}{2 n^{1+\delta}} \Delta x_{n-1}\right)+\frac{1}{n^{1+\delta}} x_{n}+\frac{1}{4(n+1)^{1+\delta}}\left(\Delta x_{n}\right)^{2}=0, n \in N\left(n_{0}\right), n_{0} \geqq 1
$$

where $0<\delta<1$. Let $C_{n}=n, f(n)=1 / n^{1+\delta}$ and $g(n)=0, n \in N\left(n_{0}\right)$, then we find that conditions (H), (11), and (15)-(17) are satisfied. Thus from Theorem 4 all solutions of (E) are oscillatory. In fact, $\left\{x_{n}\right\}=\left\{(-1)^{n}\right\}$ is such a solution. We believe that the conclusion is not deducible from the oscillation criteria in $[3,4,6]$ and the known literature.

Acknowledgements. The authors thank the referee for many valuable suggestions.

REFERENCES

1. Sui-Sun Cheng and Horng-Jaan Li, Bounded and zero convergent solutions of second order difference equations. J. Math. Anal. Appl. 141 (1989), 463-483.
2. Andrzej Drozdowicz and Jerzy Popenda, Asymptotic behavior of solutions of difference equation of second order, J. Comput. Appl. Math. 47 (1993), 141-149.
3. Hue-Zhong He, Oscillatory and asymptotic behavior of second order nonlinear difference equations. J. Math. Anal. Appl. 175 (1993), 482-498.
4. Zdzislaw Szafranski and Blazej Szmanda, Oscillatory behavior of difference equations of second order, J. Math. Anal. Appl. 150 (1990), 414-424.
5. William F. Trench, Asymptotic behavior of solutions of Emden-fowler difference equations with oscillating coefficients, J. Math. Anal. Appl. 179 (1993), 135-153.
6. B. G. Zhang, Oscillation and asymptotic behavior of second order difference equations, J. Math. Anal. Appl. 173 (1993), 58-68.

Department of Mathematics
Shanxi University
Taiyuan, Shanxi 030006
People's Republic of China

