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OSCILLATORY AND ASYMPTOTIC BEHAVIOUR OF SECOND
ORDER NONLINEAR DIFFERENCE EQUATIONS

by BING LIU and JURANG YAN

(Received 9th November 1994)

In this paper we are dealing with oscillatory and asymptotic behaviour of solutions of second order nonlinear
difference equations of the form

A(rn_, £*„_,) + F(n,xj = G(n,xn, A*.),neN(n0). (E)

Some sufficient conditions for all solutions of (E) to be oscillatory are obtained. Asymptotic behaviour of
nonoscillatory solutions of (E) is considered also.

1991 Mathematics subject classification: Primary 39A1O.

1. Introduction

Recently, there has been a lot of interest in the oscillation and nonoscillation of
second order difference equations. See, for example, [1-6] and the references cited
therein. In this paper, we consider the second order nonlinear difference equation of the
form

A(rn_! Axn_ x) + F(n, xn) = G(n, xn, Axn), (£)

where neN(n0) = {n0,no + l,no + 2,...} (n0 is a fixed non-negative integer) and A is the
forward difference operator defined by Axn = xn+i—xn. Moreover, F and G are
real-valued functions with x:N{no)^R, r:N(no)^r(0, +co), F:N(no)xR^R and
G:N(n0) xR 2 -R.

The purpose of this paper is to establish some new results on the oscillatory and
asymptotic behaviour of solutions of (£). Our results differ greatly from those in [1-6]
and the known literature.

As is customary (see [3], [4] and [6]), a nontrivial solution {*„} of (E) is said to be
oscillatory if for every N>0 there exists a k^N such that xkxk+l^0. Otherwise the
solution is called nonoscillatory.

In this paper, we further assume that the following conditions hold:
(H) There exist sequences {/(«)}, {g(n)} and ratio m of two odd integers such that for

all sufficiently large n
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and

° ^ foru#0.

2. Asymptotic behaviour of nonoscillatory solutions

In this section, we assume that

oo. (1)
k=no

Theorem 1. Let conditions (H) and (1) hold, then any nonoscillatory solution of (E)
must belong to one of the following two types:

, n->oo,

Ao.xn->0, M-KX).

Proof. Let {*„} be a nonoscillatory solution of (E), then xn is eventually positive or
negative. Thus, from (£), we have

A n _ 1 / xm

x?-irnA:

A(rn tA

< f f(n\-
= L/ i.»j

_ m

Y m Y m

iXn _ t )

1

iAxn

Ax

Ax"
(
/ (2)
(Xn-lXa)

By the mean value theorem

A x ^ - m f f - 1 ^ . . , , (3)

where xn_!<ijn<xn or xn<£n<xn_t. Thus from (2), (3) we have
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^-[/(»)-«(")]• (4)

Summing (4) from n0 + 1 to n, we get

r AY r AY

^ P ^ ^ P 3 - Z L/(*)-«W]. (5)
•"•n -^no & = no + 1

If xn is eventually positive, then there exists nleN(n0) such that xn>0 for neNinJ,
thus from (5) and (1) we have

Axn<0 forw

Hence xn is monotone decreasing, and limII_(0Oxn = C^0, where C is a constant.
If xn is eventually negative, then there exists n2eN(n0) such that xn<0 for n2eN(n0),

thus from (5) and (1) we have

Axn>0 for neN(n2).

Hence xn is monotone increasing, then limn_0Oxn exists and limn_0Oxn = C^0.
Thus any nonoscillatory solution of (E) must belong to the following two types: Ac or

Ao. The proof of Theorem 1 is complete.

Theorem 2. Let conditions {H) and (1) hold.
(i) lfm=\, then a necessary condition for equation (£) to have a nonoscillatory solution

{xn} which belongs to Ac is that

I L/(0-«(0]< oo. (6)
k = ni + l "k i = n\ + 1

where nt e Af(n0) is sufficiently large.
(ii) If 0<m<l, then a necessary condition for equation (E) to have a nonoscillatory

solution {xn} which belongs to Ao or Ac is also (6).

Proof, (i) if m= 1, let {xn} be a nonoscillatory solution of (£) which belongs to Ac. If
C>0, then xn is eventually positive. From the proof of Theorem 1, we have that Axn is
eventually negative and from (1), there exists n1eN(n0) such that xn>0, Axn<0, and
L?=«i + i [ / (0-f(0] >0 for neN(nx). Summing (4) from M, + 1 to n, it follows that

this is,

(7)
rn i =
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Let q(t) = xn + (t-n)Axn, n%t^n+\. Then q'(t) = Axn<0, and 0<xn + 1^q(i)^xn for
n<t<n + 1. Hence

Av n(t\

Z ^ = Z J ^ * £ Z f
= Z [log#+l)-log<#)]

= Z
* = m + 1

= logxn + 1- logxn i + 1. (8)

Thus from (7) and (8), we have

Z - Z [/(0 -«(0]
* = m + 1 rk i = m + 1

from which letting n->oo and noting limn_0OxB = c > 0 , we obtain (6).
(ii) If 0<m< 1, let {*„} be a solution of (£) which belongs to Ao or Ac. As shown in

the proof of case m= 1, we can obtain

^ N - ; r . Z+ [/(0-«(0] (9)

and

* = ni + l xk"

From (9) and (10) we have

" 1 *

from which letting n->oo, and noting 0<m<l and limn^ooxn = 0 or limn_0Oxn = C>0,
we obtain (6), that is.

Z - Z [/(0-^)]<oo.
* = n i + l rk i = n , + l

If {xn} is eventually negative, similarly we can show that (6) holds. Thus the proof
Theorem 2 is complete.
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3. Oscillation of solutions

Theorem 3. Let conditions (H), (1) and the following condition hold,

00 .

I -=oo. (11)

Then all solutions of(E) are oscillatory.

Proof. Suppose on the contrary that there exists a nonoscillatory solution {xn}.
Without loss of generality, we assume that xn is eventually positive. From the proof of
Theorem 1, we have that Axn is eventually negative and from (1), there exists n
such that xn>0, Axn<0 for neAT(nj) and

«(Q]£ for ne

Summing (£) from nt +1 to n, we have

£ e,x*)-G(k,xk, Axt)]
i = ni + l

= rn,AxB1-x: t U(k)~g(kn+ l Ax? £ [/(0~«(0]
k = ni + l k = ni + l i = m + l

£ " 'AxJ X [/(Q-«(i)] (12)

where xt + 1 <£k<xk.
From xn>0, Axn<0 for neAT(nj) and (12), we have

Thus

Axn^—rni Axni. (13)

Summing (13) from nx + 1 to n— 1, we get

x < x 1 + r Ax "£' 1 (14)
fc=ni +1 rk
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from (14), letting n-»oo and using (11) and Axn,<0, we have xa-> — oo, which
contradicts xn>0. Thus Theorem 3 is proved.

Theorem 4. Let conditions (H) with m = 1, (11) and the following conditions hold,
(i) There exists a sufficiently large nt eN(nQ) such that for neA^/i!),/^)—g(«) = 0 and

00

Z U(k)-g(k)~}< co. (15)
k=n, + l

(a) There exists positive sequence {Cn} such that

00

Z Ck[f{k)—g{ky] = oo (16)
k = n

and

Ck(-t-fu(i)-g(i)l)
-<oo. (17)

Then all solutions of(E) are oscillatory.

Proof. Suppose that there exists a nonoscillatory solution {xn}. Without loss of
generality, we assume that xn>0 for ne #(«,). Hence (4) holds. Now, we show that
Axn < 0 for sufficiently large n and that this will lead to a contradiction.

Case (a). If there exists n2eN(nl) such that Axn2 = 0, then summing (4) from
to n, we have

= - Z U(k)-g(k)l
k = nz+l

Thus from (15), we have Axn<0 for neN(n2). Hence summing (£) from n3eN(n2) to n,
we can obtain that

lim xn = — oo
n~*ao

which contracts xn>0.

Case (b) If Axn>0 for neNinJ. Similarly to (4) we have
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Xn-l

) |
Xn xn-i

2 ACG(n,xn,Axn)-F(n,xn) CBrn_1(Axn_1)
Xn - 1

X n - 1

Summing (18) from n + l, neN(nt), to N and letting 7V-KX>, we have

^ - £ Uik)-g{k)l
JV->oo XN Xn k = n+l

Thus

I uw-gikn^-^.
k=n+l ^n

From Axn>0 for ne^nj ) , we have

- £ [/(*)-«(*)] ^—Ax.. (19)

Hence

AAn-iCn-iAxn_1
N\_rnCnAxn rn-1Cn_1Axn_1

Zil I —

Summing the following inequality from Hj + 1 to n+ 1,

( 2 0 )
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we find that

gxn,Axn, = Af0. (21)

Using (21), (19), and (20) we have

A / r ._ 1 C. - 1 Ax. .

*„-„-!

= - CJLf(n) -*(«)] + M • ^ ^ , (22)

I
\ r n - l t = n

where M — M0/4xni. Summing (22) from Mj + 1 to n, we have

• » M - 1 [/•<«>-«<»)])

Letting n^oo and noting (16), (17), we get

1 . m r n C n Ax n = _ o o _

Thus there exists n2eN(nY) such that Axn<0 for neN(n2), which contradicts Axn>0 for

Thus from Cases (a) and (b) we can show that there exists n3eN(nl) such that
Axn3 < 0. Summing (4) from n3 + 1 to n we have

Hence Axn < 0 for n e N(n3). Similarly to the last part of the proof of Theorem 3 and
from (11) we have Iimn_00xn= — oo, which contradicts xn>0. Theorem 4 is proved.
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For the purpose of illustration we consider the following example.

Example. Consider the difference equation

^l+i(Axn)
2 = 0, neN(no), « 0 £ l

where 0<<5<l. Let Cn=n, f{ri) = l/nl+s and g[ri) = 0, neN(n0), then we find that
conditions (H), (11), and (15)—(17) are satisfied. Thus from Theorem 4 all solutions of (E)
are oscillatory. In fact, {xn} = {( —1)"} is such a solution. We believe that the conclusion
is not deducible from the oscillation criteria in [3, 4, 6] and the known literature.
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