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Abstract

Objective: To evaluate the construct validity of the NIH Toolbox Cognitive Battery (NIH TB-CB) in the healthy oldest-old (85þ years old).
Method: Our sample from the McKnight Brain Aging Registry consists of 179 individuals, 85 to 99 years of age, screened for memory, neu-
rological, and psychiatric disorders. Using previous researchmethods on a sample of 85þ y/o adults, we conducted confirmatory factor analy-
ses on models of NIH TB-CB and same domain standard neuropsychological measures. We hypothesized the five-factor model (Reading,
Vocabulary, Memory, Working Memory, and Executive/Speed) would have the best fit, consistent with younger populations. We assessed
confirmatory and discriminant validity. We also evaluated demographic and computer use predictors of NIH TB-CB composite scores.
Results: Findings suggest the six-factor model (Vocabulary, Reading, Memory, Working Memory, Executive, and Speed) had a better fit than
alternative models. NIH TB-CB tests had good convergent and discriminant validity, though tests in the executive functioning domain had
high inter-correlations with other cognitive domains. Computer use was strongly associated with higher NIH TB-CB overall and fluid cog-
nition composite scores. Conclusion: The NIH TB-CB is a valid assessment for the oldest-old samples, with relatively weak validity in the
domain of executive functioning. Computer use’s impact on composite scores could be due to the executive demands of learning to use a tablet.
Strong relationships of executive function with other cognitive domains could be due to cognitive dedifferentiation. Overall, the NIH TB-CB
could be useful for testing cognition in the oldest-old and the impact of aging on cognition in older populations.
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Introduction

The population of individuals within the oldest-old age range (85
years and older) is rapidly growing (Vincent & Velkoff, 2010).
However, the lack of available data with a comprehensive assess-
ment of cognitive functions in healthy agers over age 85 limits
research in this age cohort. The developers of the NIH Toolbox
Cognitive Battery (NIH TB-CB) limited their collection of norma-
tive data to those ages 3–85. Technology use in the cognitive testing
environment is emerging, so ensuring the validity of using these
new neuropsychological testing methods in the aging population
is essential – especially since this oldest-old population may be less
likely than other age groups to be comfortable with technology
usage. Results of this study inform the use of the NIH TB-CB in
future research in the oldest-old population.

The NIH TB-CB strives towards brevity, portability, and homo-
geneity in neurobehavioral assessment research through short
tasks performed on an iPad (Gershon et al., 2013). The
Cognitive Battery covers a wide range of cognitive domains,
including executive functioning, episodic memory, language,
processing speed, attention, and working memory (Gershon
et al., 2013). The NIH Toolbox has been shown to be valid in
diverse samples of varying age, language, race, ethnicity, gender,
education, developmental disability, and neurological conditions
(Carlozzi, Goodnight, et al., 2017; Flores et al., 2017; Hackett
et al., 2018; Heaton et al., 2014; Hessl et al., 2016; Ma et al.,
2021; Mungas et al., 2013; Tulsky et al., 2017; Weintraub,
Dikmen, et al., 2013; Weintraub et al., 2014). For example,
Mungas et al. (2014) examined younger and older age groups
but only up to age 85.While the NIH TB-CB has been used in older
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adult samples (O’Shea et al., 2018), to our knowledge, no data find-
ings have been reported on the effectiveness of the NIH TB-CB as a
battery to measure cognitive functions in healthy individuals over
age 85.

Factor analysis of the NIH Toolbox cognitive measures with
standard neuropsychological tests of the same domains of cogni-
tion revealed good construct validity (Mungas et al., 2014), sup-
porting correspondence between a given domain and a test used
to measure it, which was indicated by the individual tests showing
both strong associations with the hypothesized cognitive domains
(i.e., convergent validity) and weak relationships between each of
the tests and other domains (i.e., discriminant validity). In this
case, Mungas et al. (2014) tested the validity of the NIH TB-CB
in a cohort of adults, 20 to 85 years of age using confirmatory factor
analysis. Although the NIH Toolbox assesses six specific domains
(working memory, executive function, episodic memory, process-
ing speed, vocabulary, and reading), they found that a five-factor
model best describes the relationship between the NIH TB-CB and
standard neuropsychological measures: Vocabulary, Reading,
Episodic Memory, Working Memory, and Executive Function/
Processing Speed with the NIH TB-CB tests falling largely within
expected domains (Mungas et al., 2014). This factor structure did
not vary across younger (ages 20–60) and older adults (ages 60–
85), supporting the use of the NIHTB-CB as ameasure of cognitive
health across the adult age range from 20 to 85. Investigating the
factor structure of the NIH TB-CB in individuals older than age 85
provides an important opportunity to evaluate its utility for assess-
ing cognitive functions in the fastest growing age group within the
population of healthy older adults.

This study examines the validity of the NIH TB-CB cognitive
domains in cognitively healthy older adults over age 85, which,
to our knowledge, has yet to be reported. We employed a series
of confirmatory factor analyses to investigate the convergent
and discriminant validity, as well as the dimensional structure
underlying the NIH TB-CHB and other validated measures of cog-
nition in healthy older adults aged 85 years old and over. We
hypothesized that the factor structure of the NIH Toolbox would
be consistent across the lifespan, and thus the 5-factor model,
derived from a younger adult sample (Mungas et al., 2014), would
have a better model fit than alternative factor models. We also
sought to evaluate the influence of demographic characteristics
and computer use in this oldest-old age cohort on NIH TB-CB
Composite scores.

Method

Participants

We analyzed data collected from the McKnight Brain Aging
Registry, a cohort of community-dwelling, cognitively unim-
paired older adults, 85 to 99 years of age. Figure 1 shows the
extensive participant screening process. During initial screening
over the phone, trained study coordinators administered the
Telephone Interview for Cognitive Status modified (Cook
et al., 2009) and an interview to assess for major exclusion criteria,
which included individuals under age 85, severe psychiatric con-
ditions, and neurological conditions, and cognitive impairment.
Following the telephone screening, eligible participants under-
went an in-person screening visit during which they were evalu-
ated by a neurologist, a detailed medical history was obtained to
assess health status and eligibility, and the Montreal Cognitive
Assessment (MoCA) was administered (Nasreddine et al.,
2005). An additional point was added for adjustment of the

MoCA score to account for non-white race and/or education
equal to or below 12th grade. This adjustment was for the purpose
of fairly screening individuals of lower education or non-white
backgrounds and this adjustment is not based on normative data.
The study was conducted in accordance with the Helsinki decla-
ration. Approval for the study was received from the Institutional
Review Boards at each of the data collection sites including
University of Alabama at Birmingham, University of Florida,
University of Miami, and University of Arizona.

Our fully screened sample consists of 192 community-dwelling
individuals aged 85–99. We removed data from 13 participants
from the analysis due tomissingness related to administrator error,
low visual acuity, participant’s color blindness, or participant not
completing the task. This left a remaining 179 participants in our
sample. Only 138 participants were given the questionnaire related
to computer use since this was adopted after data collection had
begun; therefore analyses with the computer frequency variable
are based on those 138 participants. Data from this group of
healthy agers were collected using a standardized protocol across
the four McKnight Institutes: University of Alabama at
Birmingham, University of Florida, University of Miami, and
University of Arizona.We recruited participants throughmailings,
flyers, physician referrals, and community-based recruitment.

Figure 1. Participant screening process. Telephone screening criteria included exclu-
sion formajor physical disabilities, dependence in instrumental activities of daily living
or basic activities of daily living, uncontrolled medical conditions that would limit life
expectancy or interfere with participation in the study, severe psychiatric conditions,
neurological conditions (i.e., major vessel stroke, Parkinson’s disease, dementia),
active substance abuse or alcohol dependence, less than 6th-grade reading level,
vision or hearing deficits that would cause impediment to cognitive test administra-
tion, MRI contraindications, and inability to follow study protocol and task instructions
due to cognitive impairment. TICS-M was administered over the phone. An additional
evaluation was included in the screening visit, including examination by a neurologist,
geriatric depression scale, and detailed medical history.
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Cognitive measures

Testing was performed by staff trained and certified across the four
sites to administer the test battery. Testing was administered across
two visits on separate days. We performed quality control on
behavioral data through the double data entry tool in Redcap,
wherein we entered data twice, and discrepancies were identified
and corrected (Harris et al., 2019, 2009). The data were then again
visually inspected and assessed for potential outliers and errors.

NIH TB-CB measures

We used scores from the NIH TB-CB (Gershon et al., 2013;
Weintraub et al., 2014), including the Dimensional Change
Card Sort (DCCS) Test, the Flanker Inhibitory Control and
Attention Test, the Picture Sequence Memory Test, the Pattern
Comparison Processing Speed Test, the List Sorting Working
Memory Test, the Oral Reading Recognition Test, and the
Picture Vocabulary Test. The DCCSTest measures executive func-
tion by indicating a target characteristic and then instructing par-
ticipants to quickly select the object that matches the indicated
characteristic for that trial (either shape or color). The Flanker
Inhibitory Control and Attention Testmeasures executive function
by having participants quickly select the correct direction of an
arrow among a set of arrows. The Pattern Comparison
Processing Speed Test measures processing speed by having par-
ticipants quickly decide whether or not two images match. The
Picture Sequence Memory Test measures episodic memory by ask-
ing participants to place cards in a particular order from memory.
The List Sorting Working Memory Test measures working
memory by presenting an increasing number of pictures and then
instructing participants to order the pictures by size and semantic
category from memory. The Oral Reading Recognition Test mea-
sures language by having participants read aloud words shown on
the screen. The Picture Vocabulary Test measures language by pre-
senting a word verbally and instructing participants to select one of
four images that best describes the word. Table 1 includes NIH TB-
CB measures and their associated domains. Only raw or calculated
scores were used for the analysis. We also performed follow-up
analysis with demographically corrected scores for the NIH TB-
CB scores.

Standard neuropsychological measures

We used standard neuropsychological tests with strong psycho-
metric properties within the same domains as those used in the
NIH TB-CB. Memory functioning was assessed through the
California Verbal Learning Test II (Delis et al., 1987), a word list
learning task, and the Benson Figure Test (Beekly et al., 2007), a
visual memory task. Executive functioning was assessed through
the Trail Making Test B (Gaudino et al., 1995), visual attention
and switching task;Wechsler adult intelligence scale-fourth edition

(WAIS-IV) Matrix Reasoning (Benson et al., 2010) subtest, which
involves recognizing and utilizing pattern recognition and integra-
tion; and the Stroop Color Word-Inhibition test (MacLeod, 1991;
MacLeod, 1992), an inhibition task. Language/Vocabulary was
assessed through the WAIS-IV Similarities (Benson et al., 2010),
which involves explaining abstract relationships between two
words. Processing speed was assessed through the WAIS-IV
Coding and Symbol Search (Benson et al., 2010) subtests which
both involve speeded visual processing. Lastly, working memory
was assessed through the WAIS-IV Letter-Number sequencing
subtest (Benson et al., 2010), a task involving sequencing a set
of letters and numbers, and Digit Span (Beekly et al., 2007), a num-
ber recall task including recall backward. Table 2 includes the stan-
dard neuropsychological measures and their associated domains.
Only raw or calculated scores were used. We also performed fol-
low-up analysis with demographically corrected scores for the NIH
TB-CB scores.

Confirmatory factor analysis

Based on the methods of previous work fromMungas et al. (2014),
we performed a series of confirmatory factor analyses, which
allowed us to assess the degree to which the original conceptual
model of the NIH TB-CB aligns with the factor structure of the
NIH TB-CB and standard neuropsychological measures of the
same cognitive domains within the oldest-old.We comparedmod-
els matching this conceptual model, as well as alternative models,
detailed in Table 3.

Following Mungas et al. (2014), we included the following tests
of model fit: overall Chi-square test of model fit as well as the
Tucker Lewis Index (Tucker & Lewis, 1973), Comparative Fit
Index (Bentler & Bonett, 1980; Bentler, 1990), the root mean
square error of approximation (Browne & Cudeck, 1992), and
Standardized Root Mean Square Residual (Bentler, 1989). We
evaluated modification indices to see if there could be any signifi-
cant improvement in the model by changing model parameters.
We compared models using the Akaike Information Criterion
(AIC). This approach can further establish the reproducibility of
previous findings (Mungas et al., 2014) while extending it to our
oldest-old cohort. We used R and the lavaan package to perform
confirmatory factor analysis (Rosseel, 2012).

Evaluation of validity

Convergent validity was assessed by examining factor loadings of
NIH TB-CB on their domain factor and evaluating the correlation
between an average of the standard neuropsychological measures
of a domain and the NIH TB-CB of the domain. Discriminant val-
idity was assessed by examining modification indices cross-load-
ings of NIH TB-CB measures, identifying high inter-correlation
of factors, and evaluating the correlation between an average of

Table 1. NIH toolbox measures and associated cognitive domains

Measure Scoring measure Associated domains

Dimensional change card sort test (DCCS) Computed scores Executive function (cognitive flexibility and attention)
Flanker inhibitory control and attention Computed scores Executive function (cognitive flexibility and attention)
Picture sequence memory test Theta scores Episodic memory
Pattern comparison processing speed test Raw scores Attention and Processing Speed
List sorting working memory test Raw scores Working memory and executive functioning
Oral reading recognition test Theta scores Language (reading and crystalized abilities)
Picture vocabulary test Theta scores Language (receptive vocabulary)
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the standard neuropsychological measures of a domain and the
NIH TB-CB of a different domain. These methods of assessing val-
idity of cognitive measures have been applied previously
(Andresen, 2000; Carlozzi, Tulsky, et al., 2017; Heaton et al.,
2014; Tulsky et al., 2017; Weintraub, Bauer, et al., 2013).

Multiple regression with NIH TB-CB composite scores

Composite scores are automatically generated through the NIH
TB-CB. Prior work that generated normative data indicated that
there is a decline of fluid composite scores with age and a plateau
of crystallized composite scores after middle age (Casaletto et al.,
2015). The composite scores from our sample fit with this trend
(Table 4) with relatively similar crystallized scores as other older
adults and lower fluid scores than younger adults age groups
(Casaletto et al., 2015). Three multiple linear regressions predicted
the three NIH TB-CB Uncorrected Composite Standard Scores-
Total, Crystallized, and Fluid. Predictors included years of educa-
tion, age, gender (1=Male, 2= Female), race (1 =White,
2= Black/African American, 3=Asian), and computer use fre-
quency (0=No computer experience/Not used a computer in last
3 months, 1= Less than 1 hr a week, 2= 1 hr but less than 5 hr a
week, 3= 5 hr but less than 10 hr a week, 4= 10 hr but less than 15
hr a week, 5=At least 15 hr a week). Table 4 includes descriptive
statistics for these variables.

Results

Model fit

Based on prior studies, we hypothesized that the 5-factor model of
the NIH TB-CB and standard neuropsychological measures would
have a better fit than alternative factor models. We found that the
5-factor (Language, Memory, Working Memory, Executive, and
Speed) and 6-factor (Vocabulary, Reading, Memory, Working
Memory, Executive, and Speed) models have similar fit indices that
indicate good fit (Table 5). The 6-factor model had a slightly
smaller AIC (5-factor AIC = 16608.769 and 6-factor
AIC = 16606.818). We, therefore, chose the 6-factor model as
the best fit. The model aligns with the original six domains of
the NIH TB-CB (working memory, executive function, episodic
memory, processing speed, language, and reading) (Gershon
et al., 2013).

The 5-factor model found in Mungas et al. (2014) (Vocabulary,
Reading, Memory, Working Memory, Executive/Speed) was

different from the 5-factor model our study found to be a good
fit in the oldest-old sample. Mungas et al. (2014) found that the
model that combined executive and speed into one factor, and sep-
arated vocabulary and reading into two separate factors, was a bet-
ter fit than a 5-factor model that separated executive and speed
factors and instead combined vocabulary and reading into a lan-
guage factor (Table 5). We did not find an inter-correlation
between executive and speed factors>.9 as was found in prior stud-
ies (Mungas et al., 2014; Tulsky et al., 2017).

Convergent validity

Standardized coefficients for the 6-factor model (Table 6) showed
NIH TB-CB measures loaded strongly on their respective factors,
supporting convergent validity. Picture Vocabulary loaded very
highly (.82) on the Vocabulary factor; List Sorting loaded highly
(.634) on the Working Memory factor; both DCCS and Flanker
loaded strongly (.62 and .585) on the Executive Functioning factor;
Picture Sequencing loaded strongly (.533) on the Memory factor,
and Pattern Comparison had a moderate loading (.442) on the
Speed factor. When we analyzed the correlation between an aver-
age of the standard neuropsychological measures of a domain and
the NIH TB-CB of the domain, we found Picture Sequence, List
Sorting, Pattern Comparison, and Picture Vocabulary all had
adequate correlations for convergent validity; however, Flanker
and DCCS measures had weak correlations with the executive
functioning standard neuropsychological measures, and therefore
convergent validity was not supported based on this metric
(Andresen, 2000). Since we did not have a standard neuropsycho-
logical measure available to load with the NIH TB-CB Oral
Reading Task, convergent validity for the Reading domain was
not assessed.

Discriminant validity

Only one weak modification index indicated a split loading of the
NIH TB-CB Flanker measure on the Vocabulary factor. The lack of
strong cross-loadings between factors indicated discriminant val-
idity of our model. Additionally, the inter-correlations among the
six factors (inter-correlation range of r = .157–.811; Table 7) were
within acceptable limits as used in a prior NIH TB validity study
(Tulsky et al., 2017). The consistently highest inter-correlations
were between executive functioning and other domains (inter-cor-
relations range of r = .428–.811; Table 7). While vocabulary and
reading were correlated (r = .641), these two crystallized

Table 2. Standard neuropsychological measures and associated cognitive domains

Measures Scoring measure Domains

Trail making test (TMT) part B Time (number of seconds per line drawn) Executive functioning (switching)
Letter-number sequencing Number of correct trials Working memory (mental

manipulation)
Digit span backward Number of correct trials Working memory (mental

manipulation)
California verbal learning test
(CVLT)

Total number of correct responses at delayed recall Episodic verbal learning and memory

Matrix reasoning (WAIS-IV) Total number of correct responses Perceptual reasoning (executive
function)

Coding (WAIS-IV) Total number correct within the specified time limit Processing speed
Symbol search (WAIS-IV) The difference in number of correct responses and number of incorrect

responses
Processing speed

Similarities (WAIS-IV) Total number of correct responses Verbal reasoning and comprehension
Stroop color-word inhibition Interference score Executive functioning (inhibition)
Benson figure test Total score based on accuracy and placement of figure components Episodic visual memory
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intelligence factors were also related to fluid intelligence factors;
therefore, there was no clear crystallized/fluid separation.

The correlation between an average of the standard neuro-
psychological measures of a domain and the NIH TB-CB of a dif-
ferent domain indicated Picture Sequence, List Sorting, Pattern
Comparison, and Picture Vocabulary all had correlations to other
domains that were smaller than the correlation to their domain

(Figure 2). However, Flanker and DCCS measures had higher cor-
relations to domains outside Executive Functioning; therefore, this
metric indicates poor discriminant validity for these measures.

Together, convergent and discriminant validity evidence indi-
cates sufficient construct validity of the NIH TB-CB within an 85þ
cohort, with relatively weaker construct validity for executive func-
tioning measures in the NIH TB-CB.

Table 3. Alternative models

1 Factor model

Model Factors Measures used in each factor
1a Global All
2 Factor models
Model Factors Measures used in Each Factor
2a Crystallized Oral reading recognition, picture vocabulary, similarities

Fluid Picture sequence memory, list sorting WM, LNS, digit span backward, CVLT, Benson figure, DCCS, pattern
comparison processing speed, list sorting WM, TMT part B, matrix reasoning, coding, symbol search, Stroop color-
word inhibition, flanker

2b Memory Picture sequence memory, list sorting WM, LNS, digit span backward, CVLT, Benson figure
Non-memory DCCS, pattern comparison processing speed, list sorting WM, TMT part B, matrix reasoning, coding, symbol

search, Stroop color-word inhibition, flanker
3 Factor models
Model Factors Measures used in each factor
3a Language Oral reading recognition, picture vocabulary

EM/WM Picture sequence memory, list sorting WM, LNS, digit span backward, CVLT, Benson figure
EF/speed DCCS, pattern comparison processing speed, list sorting WM, TMT part B, matrix reasoning, coding, symbol

search, Stroop color-word inhibition, flanker
3b Language Oral reading recognition, picture vocabulary

EM Picture sequence memory, CVLT, Benson figure
WM/EF/Speed DCCS, pattern comparison processing speed, list sorting WM, TMT part B, LNS, digit span backward, matrix

reasoning, coding, symbol search, Stroop color-word inhibition, flanker
4 Factor Models
Model Factors Measures used in each factor
4a Language Oral reading recognition, picture vocabulary

EM Picture sequence memory, Benson figure
WM List sorting WM, LNS, digit span backward
EF/Speed DCCS, pattern comparison processing speed, list sorting WM, TMT part B, matrix reasoning, coding, symbol

search, Stroop color-word inhibition, flanker
4b Vocabulary Picture Vocabulary

Reading Oral reading recognition
EM Picture sequence memory, CVLT, Benson figure
WM/EF/Speed DCCS, pattern comparison processing speed, list sorting WM, trail making part B, LNS, digit span backward,

matrix reasoning, symbol search and coding, Stroop color-word inhibition, flanker
4c Vocabulary Picture vocabulary

Reading Oral reading recognition
EM/WM Picture sequence memory, list sorting WM, LNS, digit span backward, CVLT, Benson figure
EF/speed DCCS, pattern comparison processing speed, list sorting WM, TMT part B, matrix reasoning, coding, symbol

search, Stroop color-word inhibition, flanker
5 Factor models
Model Factors Measures used in each factor
5a Language Oral reading recognition, picture vocabulary

EM Picture sequence memory, CVLT, Benson figure
WM List sorting WM, LNS, digit span backward
EF DCCS, list sorting WM, TMT Part B, matrix reasoning, Stroop color-word inhibition, flanker
Speed Pattern comparison processing speed, coding, symbol search

5b Vocabulary Picture vocabulary
Reading Oral reading recognition
EM Picture sequence memory, CVLT, Benson figure
WM List sorting WM, LNS, digit span backward
EF/speed DCCS, pattern comparison processing speed, list sorting WM, TMT part B, matrix reasoning, coding, symbol

search, Stroop color-word inhibition, flanker
6 Factor model
Model Factors Measures used in each factor
6a Vocabulary Picture vocabulary

Reading Oral reading recognition
EM Picture sequence memory, CVLT, Benson figure
WM List sorting WM, digit span backward
EF DCCS, list sorting WM, TMT part B, matrix reasoning, Stroop color-word inhibition, flanker
Speed Pattern comparison processing speed, coding, symbol search
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Predictors of NIH TB-CB composite scores

Race (β=−3.5, p = .009), data collection site (β= 1.98, p = .017),
computer use frequency (β= 1.19, p = .007), and years of education
(β= .64, p= .021)were significant predictors of theNIHTB-CBTotal
composite score and the overall model’s adjusted R2 was .1541 (p <
.001) There was a significantR2-change of .164 (p< .001) between the
first block of the covariate, site, and the secondblockwith race, gender,
age, years of education, and computer use frequency.

Only computer use frequency (β= 1.12, p = .02) was a signifi-
cant predictor of NIH TB-CB Fluid composite score, and the over-
all model’s adjusted R2 was .03 (p= .07). There was a significant R2-
change of .0717 (p = .042) between the first block of the covariate,
site, and the second block with race, gender, age, years of education,
and computer use frequency.

Race (β=−4.16, p = .001) and years of education (β= 1.1, p <
.001) were significant predictors of NIH TB-CB Crystallized
composite score, and the overall model’s adjusted R2 was .21 (p
< .001). There was a significant R2-change of .17 (p< .001) between
the first block of the covariate, site, and the second block with race,
gender, age, years of education, and computer use frequency.

Follow-up analysis with demographically corrected scores for
the NIH TB-CB

We repeated the analysis with demographically corrected scores
for the NIH TB-CB and found no differences in the interpretation
of the findings including no changes in determination of best-fit-
ting model, validity or predictors of NIH TB-CB Composite Scores

Table 4. Participant characteristics

Participant characteristics total sample (n= 179)

Age (Years), þ/−SD (Years) 88.34 þ/−3.06 (85–99)
Education (Years), Mean þ/−SD (range) 18.13þ/−2.69 (11–22)
Race and Education Adjusted MoCA, Mean þ/−SD (range) 24.78 þ/−2.51 (17–30)
NIH TB Cognitive Total Composite demographically corrected* standard score, Mean þ/−SD (range) 104.75þ/−12.18 (71–135)
NIH TB Cognitive Fluid Composite demographically corrected* standard score, Mean þ/−SD (range) 97.52 þ/−12.7 (75–130)
NIH TB Cognitive Crystallized Composite demographically corrected* standard score, Mean þ/−SD (range) 110.7 þ/−12.84 (71–170)
Sex, n (%)
Female 96 (53.63%)
Male 83 (46.36%)
Race/ethnicity, n (%)
Non-Hispanic Caucasian 165 (92.21%)
African American 6 (3.35%)
Hispanic Caucasian 5 (2.79%)
Asian 3 (1.67%)
Marital status, n (%)
Widowed 87 (48.6%)
Married 70 (39.1%)
Divorced 13 (7.26%)
Domestic partnership 6 (3.35%)
Never married 3 (1.67%)
Sample subset (n= 138)
Computer use frequency, Mean þ/−SD (range) 2.8þ/−1.75(0–5)
NIH TB uncorrected total cognition composite score, Mean þ/−SD (range) 95 þ/−8.53 (76–116)
NIH TB uncorrected fluid cognition composite score, Mean þ/−SD (range) 80þ/−9.38 (61–102)
NIH TB uncorrected crystallized cognition composite score, Mean þ/−SD (range) 112þ/−7.87 (93–129)

*Note that demographic corrections are not available for individuals over age 85; therefore, corrections for all participants, including those over 85 years of age, were based on normative data
for individuals aged 85 years old.

Table 5. Model fit indices

Model Overall χ2 [df] CFI TLI RMSEA (90% CI) SRMR AIC

1a 283.765 [119] 0.784 0.753 0.088 (0.075–0.101) 0.075 16699.98
2a 240.598 [118] 0.839 0.814 0.076 (0.062–0.09) 0.072 16658.794
2b 274.544 [118] 0.794 0.763 0.086 (0.073–0.099) 0.074 16692.739
3a 223.483 [116] 0.859 0.834 0.072 (0.058–0.086) 0.071 16645.678
3b 220.664 [116] 0.862 0.839 0.071 (0.057–0.085) 0.068 16642.86
4a 195.412 [113] 0.892 0.87 0.064 (0.048–0.079) 0.065 16623.608
4b 215.099 [114] 0.867 0.842 0.070 (0.056–0.085) 0.067 16641.294
4c 221.732 [114] 0.858 0.831 0.073 (0.058–0.087) 0.07 16647.928
5a 172.573 [109] 0.916 0.896 0.057(0.040–0.073) 0.06 16608.769
5b 187.030 [110] 0.899 0.875 0.063 (0.047–0.078) 0.064 16621.225
6a 162.623 [105] 0.924 0.902 0.055 (0.038–0.072) 0.058 16606.818

Overall chi-squared measures how well a model compares to observed data. Comparative Fit Index (CFI) examines the discrepancy between data and the hypothesized model. Tucker Lewis
Index (TLI) analyzes the discrepancy between the x2 of the hypothesized model and the null model. The Root Mean Squared Error of Approximation (RMSEA) analyzes discrepancy between the
hypothesized model (with optimal parameter estimates) and population covariance matrix. The Standardized Root Mean Square Residual (SRMR) is the root of the discrepancy between the
sample covariance matrix and model covariance matrix. The Akaike Information Criterion (AIC) is a value used to evaluate how well a model fits the data. Lower is a better fit.
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(see Supplemental Table 1 and 2 for model fit indices and model
standardized coefficients).

Discussion

In our cohort of cognitively unimpaired, older adults over 85 years
of age, the NIH TB-CB tests and standard neuropsychological
measures had convergent and discriminant validity, consistent
with the six domains of cognition initially intended to be evaluated

by the NIH TB-CB. These findings suggest the NIH TB-CB has
construct validity in oldest-old adults, ages 85–99. The 5-factor
model (model 5a), which combines reading and vocabulary into
a language factor, also displayed a good model fit. There was rel-
atively less evidence to support the combination of executive func-
tion and speed factors, as shown in the 5-factor model by Mungas
et al. (2014). However, there were strong relationships between
executive function and all other factors. We also found that com-
puter use frequency strongly predicted the total and fluid NIH TB-
CB composite scores, suggesting that either: (1) greater experience
with computers impacts performance on this tablet-based assess-
ment; or (2) having lower cognitive capacity (reflected in the NIH
TB-CB scores) leads to less computer use.

Cognitive dedifferentiation and the executive decline
hypothesis

Cognitive dedifferentiation describes the tendency for separable
cognitive abilities (such as language and executive function) to
become less separable with age; dedifferentiation may reflect
underlying cognitive impairment (Baltes et al., 1980; Batterham
et al., 2011; Hülür et al., 2015; Wallert et al., 2021; Wilson et al.,
2012). Our findings of more widespread domain inter-correlations
with executive functioning could reflect age-related cognitive
dedifferentiation. We only included healthy individuals in our
sample, so this cognitive dedifferentiation may be a result of
healthy aging.

A potential explanation for the strong relationship between
executive function and other cognitive domains is that executive
functions may play a greater role in supporting nonexecutive task
performance in older people, as outlined in the executive decline
hypothesis (Crawford et al., 2000; Ferrer-Caja et al., 2002;
Salthouse et al., 2003). Prior factor analysis research has shown
similar relationships between executive and nonexecutive tasks
(Lamar et al., 2002). This reflects on a broader issue in classifying
tests as measuring only a single domain. The NIH TB was inten-
tionally developed so that each cognitive domain would be linked
to one or two tasks from the toolbox. The domains are not pure,
however, and the tests used to assess each are likely to be affected by
performance limitations in other domains.

We found that the best-fitting model was the 6 factor model,
rather than the 5 factor model (model 5b) that Mungas et al.
(2014) found to best fit data for a younger sample. The difference
in best-fit model could be due to increased associations of executive
function with all other domains in the oldest-old. Both the hypoth-
esis of greater cognitive dedifferentiation with age and the execu-
tive decline hypothesis would predict increased association of
executive function with other domains, as was observed. Thus,
our result is likely to represent a more holistic effect than simply
reflecting a tight coupling between executive functioning and speed
domains in this population.

Role of computer use frequency in cognitive performance

Younger age, higher education, non-Hispanic ethnicity, physical
health, and mental health have been shown to be predictors of
greater computer use (Werner et al., 2011). Additionally, percep-
tual speed moderates the relationship between age and technology
ownership (Kamin & Lang, 2016). Previous work has indicated a
relationship between cognitive performance and the level of com-
puter experience (Fazeli et al., 2013; Wu et al., 2019). Since com-
puter use frequency was a significant predictor of total and fluid
composite scores, technological familiarity may play a crucial role

Table 6. Standardized coefficients for the 6-factor model

Latent factor Observed indicator Loading

Vocabulary TB picture vocabulary 0.82
WAIS-IV similarities 0.664

Reading TB oral reading 1
Episodic memory TB picture sequence memory

CVLT
Benson figure

0.533
0.703
0.413

Working memory TB list sorting 0.634
Letter-number sequence 0.503
Digit span backwards 0.648

Executive function TB DCCS
TB Flanker test
WAIS-IV matrix reasoning
Stroop interference
Trails B

−0.62
−0.585
−0.555
−0.293
0.675

Speed TB pattern comparison 0.442
WAIS-IV coding 0.72
WAIS-IV symbol search 0.807

Table 7. Inter-correlation of factors for the 6-factor model

Episodic
memory

Working
memory Speed

Executive
function Vocabulary

Working
memory

0.487

Speed 0.587 0.499
Executive
function

−0.616 −0.77 −0.811

Vocabulary 0.537 0.68 0.579 −0.715
Reading 0.157 0.494 0.238 −0.428 0.641

Figure 2. Correlations between NIH TB-CB measures and standard neuropsychologi-
cal domain average. TB = NIH TB-CB measures; green outline = within domain corre-
lation, consistent with convergent validity; black outline= outside domain correlation,
consistent with discriminant validity.
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in performance on NIH TB-CB measures. Participants who were
relatively less familiar with technology may have also experienced
increased demand on executive functioning as they had to learn
technological skills while also performing a cognitive task.
Alternatively, since adept use of computers requires cognitive abil-
ities such as executive functioning and processing speed, partici-
pants with lower cognitive abilities may tend to avoid
engagement with computers in their daily lives due to the cognitive
demands of computer use.

Additionally, there are key differences between paper-and-pen-
cil tasks and tablet-based tasks that could impact performance,
such as less ability to self-correct, less flexibility for the administra-
tor to pace the task appropriately for the participant, and less
engagement between the administrator and the participant
(Aşkar et al., 2012). Attitudes towards computers could have
resulted in a lower frequency of computer use and, therefore, a neg-
ative impact on their cognitive scores (Fazeli et al., 2013). Future
work should investigate participants’ disposition towards com-
puters and their current computer use. This could impact the
usability of the NIH TB-CB in older samples since older adults
are less likely to have familiarity with technology than younger
cohorts (Victorson et al., 2013; Werner et al., 2011). Researchers
may need to assess a participant’s technology use to determine
the appropriateness of using the NIH TB-CB. Alternatively,
composite scores could account for current and past computer
use in the calculation of standardized scores (Lee Meeuw Kjoe
et al., 2021).

Limitations

This study has limitations. We did not have a standard neuro-
psychological measure similar to the Oral Reading test available
in the dataset, so convergent validity for that factor could not be
fully tested in our study. Our sample is also mostly white and
highly educated, which limits the generalizability of this work.
We also acknowledge that in our confirmatory factor analysis,
we could not account for variability that may have occurred across
data collection sites. However, substantial efforts were made to
homogenize data collection across sites and we included site as
a covariate in our regression models (Section “Predictors of
NIH TB-CB Composite Scores”). Future work could further
describe the oldest-old cohort through comparisons of this sample
to other age cohorts who also completed the iPad version of the
NIH TB-CB.

Conclusions

The NIH TB-CB was created to solve issues of inconsistency and
difficulty of administration of neuropsychological testing in
research, focusing on those ages 3 to 85. Our findings suggest that
this test battery could be valuable for the assessment of cognitive
health in individuals over 85. Having a commonmetric on an easy-
to-use iPad tablet could enable research studies to include larger
and more representative samples of older adults, and researchers
could easily compare these scores to other studies which have
adopted the NIH TB-CB. The NIH TB-CB could also be helpful
since it can provide precise timing metrics along with cognitive
accuracy scores for use in aging studies. This work has confirmed
the construct validity and the feasibility of the NIH TB-CB in an
85þ sample, which will provide a basis for the usability of the bat-
tery in future older adult research. However, there may be limita-
tions in the NIH TB-CB’s ability to validly assess individuals with
low computer use and validly measure executive functioning,

possibly due to age-related changes in executive functioning’s rela-
tionship with other cognitive domains. This work provides a path-
way towards broadening the age span of the NIH TB-CB to 99
years of age which will allow longitudinal and cohort studies to
compare across almost the entire human lifespan (3–99).
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found at https://doi.org/10.1017/S1355617722000443
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