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Abstract

The problem of detecting an abrupt change in the distribution of an arbitrary, sequentially
observed, continuous-path stochastic process is considered and the optimality of the
CUSUM test is established with respect to a modified version of Lorden’s criterion.
We apply this result to the case that a random drift emerges in a fractional Brownian
motion and we show that the CUSUM test optimizes Lorden’s original criterion when
a fractional Brownian motion with Hurst index H adopts a polynomial drift term with
exponent H + 1

2 .
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1. Introduction

The quick detection of an abrupt change in the behavior of a stochastic system is an
important problem in many application areas, such as quality control, target tracking, navigation,
seismology, biosurveillance, and computer security. Specifically, the problem is to find a
detection rule that raises an alarm as soon as possible after the change has occurred based on
sequential observations of the system. Thus, a good detection rule should have small detection
delay, but also low frequency of false alarms in its repeated applications.

There are three main formulations that balance the trade-off between these two antithetic
goals. A Bayesian approach, developed by Shiryaev [29], where the change point is modeled
as a random variable, and two minimax approaches, due to Lorden [14] and Pollak [23], where
the change point is considered to be unknown, but deterministic. For a comparison of these
formulations, we refer the reader to Moustakides [19]. For exhaustive treatments of sequential
change detection, we refer the reader to the books of Basseville and Nikiforov [1] and Hadjiliadis
and Poor [8].

Lorden’s approach has a deep connection with the cumulative sum (CUSUM) test, a
detection structure that was proposed by Page [22] and is very popular in applications (see,
for example, [9]). In particular, Lorden [14] quantified the performance of a detection rule with
its worst (with respect to the time of the change) conditional expected detection delay given
the worst possible scenario until the time of the change and suggested the minimization of this
criterion subject to an upper bound on the rate of false alarms. In the case of independent and
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30 A. CHRONOPOULOU AND G. FELLOURIS

identically distributed (i.i.d.) observations before and after the change, Lorden [14] showed
that the CUSUM test is an asymptotic solution to this problem as the rate of false alarms goes
to 0. It was later shown by Moustakides [17] (see also Ritov [27]) that the CUSUM test is an
exact solution to Lorden’s optimization problem in the case of i.i.d. observations. This exact
optimality property was extended in continuous time by Shiryaev [30] and Beibel [2] in the case
that a standard Brownian motion adopts a linear drift. Moustakides [18] generalized this result
by showing that the CUSUM procedure optimizes a modified version of Lorden’s criterion for
the problem of detecting a change in the (random) drift of a diffusion-type process.

In the present work we show that the CUSUM test is optimal with respect to the criterion
considered in [18] for detecting a change in the distribution of an arbitrary continuous-path
process. Moreover, we apply this general result to the case that a (random) drift emerges in
a fractional process of diffusion type. We show in particular that the CUSUM test is optimal
for detecting a change from a fractional Brownian motion (FBM) to a fractional Ornstein–
Uhlenbeck (FOU) process, as well as for detecting the emergence of linear drift in an FBM.
The latter optimality properties are valid for any value of the Hurst index,H , which characterizes
the pathwise and distributional properties of FBM. As a by-product, we establish the optimality
of the CUSUM test with respect to Lorden’s original criterion when an FBM with Hurst index
H adopts a polynomial drift term with exponentH+ 1

2 . In this way, we generalize the optimality
of the CUSUM for the detection of linear drift in standard Brownian motion, which corresponds
to the special case H = 1

2 .

The previous optimality properties are not in the scope of existing results, since FBM is not a
semimartingale unlessH = 1

2 , in which case it reduces to standard Brownian motion. However,
FBM is well suited for the description of phenomena that are characterized by self-similarity
and/or long memory, which explains the fact that it has been used as the basic building block
for models in a variety of fields, such as hydrology, traffic networks, finance, and economics
(see, for example, [3], [5], [6], and [11]).

These diverse applications have also triggered a great interest in the statistical inference for
processes related to FBM. In particular, Kleptsyna and Le Breton [12] studied the properties
of the maximum likelihood estimator (MLE) for the parameter in the drift of an FOU process
with Hurst indexH > 1

2 . Tudor and Viens [31] used Malliavin calculus techniques to study the
properties of the MLE for any H ∈ (0, 1) and a more general class of fractional diffusions, in
which the drift coefficient is linear with respect to the unknown parameter. For the same class
of processes, Rao [24] considered a sequential version of the MLE. The problem of sequential
testing for fractional diffusion-type processes was considered by Rao [25].

The rest of this paper is organized as follows. In Section 2 we formulate the problem and
establish the optimality of the CUSUM test for arbitrary continuous-path stochastic processes.
In Section 3 we apply this general result to the case of fractional diffusion-type processes. We
conclude in Section 4.

2. CUSUM optimality for continuous-path processes

2.1. Problem formulation

Let (�,F ) be the canonical space of continuous functions on [0,∞) that vanish at 0. We
denote by {ξt } the coordinate process on this space and by {Ft } the right-continuous version
of its natural filtration. Thus, ξt (ω) := ω(t) for every ω ∈ � and Ft := Gt+, where Gt :=
σ(ξs : 0 ≤ s ≤ t) for every t > 0.
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Optimal sequential change detection for fractional diffusion-type processes 31

Let P0 and P∞ be two completely specified probability measures on (�,F ). We assume
that P0 and P∞ are locally equivalent, i.e. they are mutually absolutely continuous on Ft for
any 0 < t < ∞, and we denote by {ut } the log-likelihood ratio process

ut := log
dP0

dP∞

∣∣∣∣
Ft

, t > 0; u0 := 1.

We assume that the distribution of {ξt }, which we denote by Pτ , changes at some unknown,
deterministic time τ ∈ [0,∞] from P∞ to P0. This means that Pτ coincides with P∞ on Ft
for t ∈ [0, τ ], whereas it is locally equivalent to P∞ on Ft for t > τ . In particular,

ut − uτ = log
dPτ

dP∞

∣∣∣∣
Ft

, t > τ.

A sequential detection rule T is an {Ft }-stopping time, at which we stop and declare that
the change has occurred. An ideal detection rule should take large values under P∞, while
minimizing detection delay in some meaningful sense for every possible change point τ ∈
[0,∞). Since this is not possible for every τ , we take a minimax approach and consider the
constrained optimization problem

inf
T

JM [T ] when 1
2 E∞[〈u〉T ] ≥ γ,

where JM [T ] := sup
τ≥0

esssup 1
2 Eτ [(〈u〉T − 〈u〉τ )+ | Fτ ], (1)

where 〈u〉t is the quadratic variation of ut and x+ := max{x, 0}. When the observed process
is of diffusion type, (1) reduces to the optimization problem considered in [18]. When 〈u〉t is
proportional to t , (1) is equivalent to Lorden’s optimization problem:

inf
T

JL[T ] when E∞[T ] ≥ γ,

where JL[T ] := sup
τ≥0

esssup Eτ [(T − τ)+ | Fτ ]. (2)

In both problems, γ is a fixed, positive number that is chosen by the designer of the scheme
depending on her tolerance to false alarms for the particular application of interest. We will
say that a detection rule is JM -optimal or JL-optimal if it solves the problem defined in (1) or,
respectively, (2) for an arbitrary value of γ .

In both formulations, the goal is to find a detection rule that minimizes the worst (with respect
to τ ) conditional expected detection delay given the worst possible history of observations up
to the time of the change subject to a lower bound, γ , on the period of false alarms. However,
detection delay and period of false alarms are measured in terms of the actual time in (2) and
in terms of the accumulated quadratic variation of the log-likelihood ratio process in (1). The
main advantage of the latter formulation is its tractability, which leads to a simple optimizer
for a large class of processes, as we will see in the next subsection where we present our main
result.

2.2. Main result

Let us first define the CUSUM stopping time

Sc := inf{t ≥ 0 : yt ≥ c}, where yt := ut − inf
0≤s≤t us, t ≥ 0,

and c is a positive constant that is chosen to satisfy the relevant false alarm constraint with
equality. Specifically, c is chosen so that E∞[〈u〉Sc ] = γ for the problem defined in (1) and
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E∞[Sc] = γ for the problem defined in (2). Then, it is known from [18] that the CUSUM test is
JM -optimal for detecting a change in the random drift of a diffusion-type process that satisfies
a ‘full-energy’ condition. If, additionally, the observed diffusion-type process has constant
‘signal-to-noise ratio’ before and after the change, as is the case when a linear drift emerges
in a standard Brownian motion, then the CUSUM test is also JL-optimal. With the following
theorem we extend these optimality properties to a larger class of dynamics.

Theorem 1. The CUSUM test is JM -optimal if

lim
t→∞〈u〉t = ∞ P0,P∞-almost surely. (3)

When, in particular, 〈u〉t is proportional to t , the CUSUM test is also JL-optimal.

The proof of this theorem relies on the technique introduced in [18] and the following lemma,
which reveals the structure of the log-likelihood ratio process {ut }.
Lemma 1. There exist continuous processes {X̃t } and {Xt }, which are local martingales
(vanishing at 0) with respect to P∞ and P0, respectively, so that

ut = X̃t − 1
2 〈u〉t = −Xt + 1

2 〈u〉t , t ≥ 0.

Proof. Since the likelihood ratios {eut } and {e−ut } are continuous martingales with respect
to P∞ and P0, respectively, it is well known (see, for example, Proposition 1.6 of [26, p. 328])
that there exist unique, continuous, local martingales {X̃t } and {Xt } with respect to P∞ and P0,
respectively, so that

eut = exp
{
X̃t − 1

2 〈X̃〉t
}
, e−ut = exp

{
Xt − 1

2 〈X〉t
}
,

where X0 = X̃0 = 0. Taking logarithms we obtain

ut = X̃t − 1
2 〈X̃〉t = −Xt + 1

2 〈X〉t ,
and, consequently, 〈u〉t = 〈X̃〉t = 〈X〉t , which completes the proof.

This lemma has some important ramifications. First, from an application of Wald’s identity,
it follows that, for any stopping time T with Ei[〈u〉T ] < ∞ for i = 0,∞,

1

2
E∞[〈u〉T ] = E∞[−uT ] = E∞

[
log

dP∞
dP0

∣∣∣∣
FT

]

and that, on the event {T > τ },
1

2
Eτ [〈u〉T − 〈u〉τ | Fτ ] = Eτ [uT − uτ | Fτ ] = Eτ

[
log

dPτ

dP∞

∣∣∣∣
FT

∣∣∣∣ Fτ

]
,

which highlights the connection of (1) with the notion of Kullback–Leibler information and
justifies calling (as in [18]) JM [T ] the K–L detection divergence and 1

2 E∞[〈u〉T ] the K–L false
alarm divergence of T .

Second, and most importantly, Lemma 1 allows us to obtain closed-form expressions for
the performance characteristics of the CUSUM rule and establish its optimality along the lines
of [18].
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Lemma 2. Suppose that condition (3) holds. For any c > 0, τ ∈ [0,∞), and stopping time T ,

Pτ (Tc < ∞) = 1, P∞(Tc < ∞) = 1, (4)

where Tc := T ∧ Sc = min(T , Sc). Moreover, on the event {Tc > τ }, we have

1
2 Eτ [〈u〉Tc − 〈u〉τ | Fτ ] = Eτ [g(yTc )− g(yτ ) | Fτ ],

1
2 E∞[〈u〉Tc − 〈u〉τ | Fτ ] = E∞[h(yTc )− h(yτ ) | Fτ ],

(5)

where the functions g and h are defined as

g(x) := e−x + x − 1, h(x) := ex − x − 1, x ≥ 0. (6)

Proof. Let us introduce the following notation:

T nc := Tc ∧ inf{t ≥ 0 : 〈u〉t ≥ n}, n ∈ N.

From an application of Itô’s rule we have

g(yT nc )− g(yτ ) =
∫ T nc

τ

g′(ys) dys + 1

2

∫ T nc

τ

g′′(ys) d〈y〉s .

From Lemma 1 and the definition of the CUSUM statistic {yt }, we have

yt = ut −mt = −Xt + 1
2 〈u〉t −mt, where mt := inf

0≤s≤t us,

and, consequently, 〈y〉t = 〈u〉t ; therefore, we can write

g(yT nc )− g(yτ ) =
∫ T nc

τ

g′(ys)
[
− dXs + d〈u〉s

2
− dms

]
+ 1

2

∫ T nc

τ

g′′(ys) d〈u〉s .

Now, with a rearrangement of the right-hand side and using the fact that the measure dms is
carried by the set {ys = 0}, the previous relationship takes the following form:

g(yT nc )− g(yτ ) = 1

2

∫ T nc

τ

(g′ + g′′)(ys) d〈u〉s −
∫ T nc

τ

g′(ys) dXs −
∫ T nc

τ

g′(0) dms.

From (6), it is clear that g′(x)+ g′′(x) = 1 and g′(0) = 0; thus,

g(yT nc )− g(yτ ) = 1

2

∫ T nc

τ

d〈u〉s −
∫ T nc

τ

g′(ys) dXs.

Taking the conditional expectation under Pτ given Fτ on the event {Tc > τ } we have

Eτ [g(yT nc )− g(yτ ) | Fτ ] = Eτ

[
1

2

∫ T nc

τ

d〈u〉s
∣∣∣∣ Fτ

]
− Eτ

[∫ T nc

τ

g′(ys) dXs

∣∣∣∣ Fτ

]
. (7)

Since 0 ≤ ys ≤ c on {τ < s < T nc ≤ Tc} and g′ is an increasing function on [0,∞), we have
g′(ys) ≤ g′(c). Moreover, by Lemma 1 and the definition of the stopping time T nc , it is clear
that 〈X〉T nc = 〈u〉T nc ≤ n. Therefore, on {Tc > τ }, we have

∫ T nc

τ

(g′(ys))2 d〈X〉s ≤ (g′(c))2〈X〉T nc ≤ (g′(c))2n < ∞,
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which implies that the second term on the right-hand side of (7) vanishes. Consequently, on
the event {Tc > τ }, we can write

Eτ [g(yT nc )− g(yτ ) | Fτ ] = Eτ

[
1

2

∫ T nc

τ

d〈u〉s
∣∣∣∣ Fτ

]
. (8)

Since g is an increasing function on [0,∞) and yT nc ∈ [0, c], it is clear that the left-hand side of
this equality is bounded by g(c)− g(0) = g(c). Moreover, due to condition (3), T nc converges
to Tc, P0-almost surely as n → ∞. Therefore, letting n → ∞ on the right-hand side of (8),
from the monotone convergence theorem we obtain

g(c) ≥ Eτ

[
1

2

∫ Tc

τ

d〈u〉s
∣∣∣∣ Fτ

]
≥ Eτ

[
1

2
1{Tc=∞}

∫ ∞

τ

d〈u〉s
∣∣∣∣ Fτ

]
. (9)

From (3) we have P0(
∫ ∞
τ

d〈u〉s = ∞) = 1 and, consequently, Pτ (
∫ ∞
τ

d〈u〉s = ∞) = 1. Then,
from the law of the iterated expectation we obtain

Eτ

[
Pτ

(∫ ∞

τ

d〈u〉s = ∞
∣∣∣∣ Fτ

)]
= 1,

which implies that Pτ (
∫ ∞
τ

d〈u〉s = ∞ | Fτ ) = 1. Therefore, Pτ (Tc = ∞) = 0; otherwise,
the right-hand side of (9) becomes infinite due to condition (3) and this leads to a contradiction.
Finally, letting n → ∞ on both sides of (8) simultaneously, application of the bounded conver-
gence and monotone convergence theorems to the left- and right-hand sides, respectively, yield
the first relationship in (6). The second relationship in (6) and the fact that P∞(Tc = ∞) = 0
can be shown in a similar way, completing the proof.

If we set T = Sc in Lemma 2, we obtain interesting information regarding the behavior of
the CUSUM test. First, from (4) it follows that Sc terminates almost surely for any change
point τ ∈ [0,∞), as well as when the change never occurs (τ = ∞), i.e. it is almost certain
that the CUSUM test will raise a false alarm.

Furthermore, the first relationship in (5) implies that, on the event {Sc > τ }, we have

1
2 Eτ [〈u〉Sc − 〈u〉τ | Fτ ] = Eτ [g(ySc )− g(yτ ) | Fτ ] = g(c)− g(yτ ), (10)

where the last equation is due to the fact that ySc = c, which follows from the continuity of
the paths of the CUSUM process, {yt }. Therefore, since yτ ∈ [0, c) on {Sc > τ } and g is an
increasing function on [0,∞), it follows that

JM [Sc] = sup
τ≥0

esssup 1
2 Eτ [(〈u〉Sc − 〈u〉τ ) 1{Sc>τ } | Fτ ]

= sup
τ≥0

esssup Eτ [(g(c)− g(yτ )) 1{Sc>τ } | Fτ ]

= g(c)

= 1
2 E0[〈u〉Sc ]. (11)

The last equality follows by setting τ = 0 in (10) and implies that the worst-case scenario for
the CUSUM test is when the change occurs from the beginning, i.e. at τ = 0. Finally, setting
τ = 0 in the second relationship in (5) yields

1
2 E∞[〈u〉Sc ] = E∞[h(ySc )] = h(c).
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Therefore, for the CUSUM test to satisfy the false alarm constraint in (1) with equality, its
threshold c must be selected as the (unique) solution to the nonlinear equation h(c) = γ . The
following lemma states that we can actually restrict ourselves to stopping times that satisfy the
false alarm constraint with equality.

Lemma 3. Suppose that condition (3) holds. For any stopping time T such that 1
2 E∞[〈u〉T ] >

γ , there exists a c′ > 0 such that 1
2 E∞[〈u〉Tc′ ] = γ and JM [Tc′ ] ≤ JM [T ].

Proof. Consider an arbitrary stopping time T with 1
2 E∞[〈u〉T ] > γ , and define the function

ψ(c) := 1
2 E∞[〈u〉Tc ], c > 0. From the second relationship in (5), it follows that ψ(c) =

E∞[h(yTc )], which implies that ψ(c) is a continuous function. Then, since ψ(0) = 0 and
ψ(∞) = 1

2 E∞[〈u〉T ] > γ , there exists some c′ > 0 such that ψ(c′) = γ . Since Tc′ =
T ∧ Sc′ ≤ T , this implies that JM [Tc′ ] ≤ JM [T ], completing the proof.

Proof of Theorem 1. The proof is based on the fact that, for any stopping time T and c > 0,
we have the lower bound

JM [T ] ≥ E∞[eyTc g(yTc )]
E∞[eyTc ] ,

which can be shown in exactly the same way as in Theorem 2 of [18]. From (11) and the fact
that ySc = c, it follows that both sides of the above inequality equal g(c) when T = Sc. Due
to this observation and Lemma 3, it suffices to show that

g(c) = inf
T

E∞[eyTc g(yTc )]
E∞[eyTc ] when

1

2
E∞[〈u〉T ] = γ.

This can be shown in exactly the same way as in Theorem 3 of [18].

2.3. The case of diffusion-type processes

Let us now illustrate Theorem 1 in the case that {ξt } is a standard Brownian motion that
adopts a (random) drift. Specifically, let P∞ be the Wiener measure and suppose that the
post-change measure P0 is induced by the dynamics

ξt = Wt +
∫ t

0
µs ds, t ≥ 0,

where {Wt } is a standard Brownian motion under P0 and {µt } is an {Ft }-adapted process that
satisfies

P∞
(∫ t

0
µ2
s ds < ∞

)
= 1, t ≥ 0, (12)

E∞
[

exp

{∫ t

0
µs dξs − 1

2

∫ t

0
µ2
s ds

}]
= 1, t ≥ 0. (13)

These two conditions guarantee that P0 is indeed well defined and locally equivalent to the
Wiener measure, P∞. Moreover, from Girsanov’s theorem we obtain the following represen-
tation for their log-likelihood ratio:

ut =
∫ t

0
µs dξs − 1

2

∫ t

0
µ2
s ds, t ≥ 0.

It is then clear that 〈u〉t = ∫ t
0 µ

2
s ds and Theorem 1 implies that the CUSUM test is JM -optimal

if, additionally, the following condition is satisfied:∫ ∞

0
µ2
s ds = ∞ P0,P∞-almost surely. (14)
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This is exactly the result obtained in [18]. When the process {µt } reduces to a constant, 〈u〉t is
proportional to t and Theorem 1 implies that the CUSUM test is additionally JL-optimal, which
is also a known result. However, Theorem 1 is a nontrivial generalization of existing optimality
results, as there are many continuous-path processes that are not of diffusion type, not even
semimartingales. We illustrate this point in the next section, where we apply Theorem 1 in the
context of fractional diffusion-type processes.

3. The case of fractional diffusion-type processes

Let us first define FBM, the basic building block of fractional diffusion-type processes, and
present its main properties.

3.1. FBM: a quick review

A stochastic process {BHt } is an FBM with Hurst index H ∈ (0, 1) if it is a centered,
continuous, Gaussian process with covariance structure

E[BHt BHs ] = 1
2 (t

2H + s2H − |t − s|2H ), t, s ≥ 0,

where E[·] refers to the expectation with respect to the underlying probability measure. As a
consequence of its definition, the following properties of FBM hold.

(i) FBM is H -self-similar, in the sense that {BHt }t≥0 has the same finite-dimensional
distributions as {c−HBHct }t≥0 for every c > 0.

(ii) FBM has stationary increments, which are independent only whenH = 1
2 . WhenH < 1

2 ,
they are negatively correlated and the process exhibits short-range dependence, in the
sense that ∞∑

n=1

E[(BHn − BHn−1)B
H
1 ] < ∞;

when H > 1
2 , they are positively correlated and the process exhibits long-range

dependence, in the sense that

∞∑
n=1

E[(BHn − BHn−1)B
H
1 ] = ∞.

(iii) FBM has Hölder continuous paths of order H − ε for every 0 < ε < H .

(iv) FBM has finite 1/H -variation (in an L1 sense) that is equal to c′H t on any finite interval
[0, t], where

c′H :=
∫

R

|x|1/Hφ(x) dx, φ(x) := 1√
2π

e−x2/2.

(v) FBM is not a semimartingale, i.e. it does not admit a decomposition as the sum of a
local martingale and a term of finite variation (see, for example, [28]). However, the
transformed process

MH
t :=

∫ t

0
kH (t, s) dBHs , t ≥ 0, (15)
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is a square-integrable martingale with quadratic variation 〈MH 〉t = λ−1
H t2−2H , where

kH (t, s) := c−1
H s1/2−H (t − s)1/2−H , 0 ≤ s ≤ t,

cH and λH are positive constants defined as

cH := 2H�
( 3

2 −H
)
�

(
H + 1

2

)
, λH := 2H�(3 − 2H)�(H + 1/2)

�(3/2 −H)
,

and �(x) := ∫ ∞
0 sx−1e−s ds is the gamma function. This result was shown by Molchan

[16] and, more recently, by Norros et al. [20], where the process MH was called the
fundamental martingale associated with FBM.

For an exhaustive treatment on the properties of FBM, we refer the reader to Chapter 5
of Nualart [21]. Here, we will only add an extension of Lévy’s characterization theorem that
was recently established by Hu et al. [10] (see also Mishura and Valkeila [15]), according
to which properties (iii), (iv), and (v) characterize FBM. In particular, if Y is a continuous,
centered, square-integrable stochastic process with

(a) Hölder continuous paths of order H − ε for any ε > 0,

(b) finite 1/H -quadratic variation (in an L1 sense) that is equal to c′H t on any interval [0, t],
and

(c) the process that is defined as MH in (15) with BH replaced by Y is a martingale, whose
quadratic variation when H > 1

2 is almost surely absolutely continuous with respect to
the Lebesgue measure,

then Y is an FBM with Hurst index H .

3.2. Optimality of the CUSUM for fractional diffusion-type processes

We now return to the change detection problem and focus on the special case that the observed
process {ξt } is an FBM that adopts a random drift. Thus, in what follows we assume that {ξt }
is an FBM with Hurst index H under P∞, whereas P0 is induced by the dynamics

ξt = BHt +
∫ t

0
µs ds, t ≥ 0, (16)

where {µt } is an {Ft }-adapted process and {BHt } an FBM with Hurst indexH under P0. When
H = 1

2 , we recover the context of Subsection 2.3, where we saw that P0 is indeed well defined
and locally equivalent to P∞ when conditions (12) and (13) are satisfied and that the CUSUM
test is JM -optimal if, additionally, condition (14) holds. Our goal in this section is to obtain
analogous conditions whenH �= 1

2 , in which case {ξt } is not a semimartingale and the classical
Girsanov theorem does not apply; thus, the previous conditions are no longer appropriate.

To this end, we work with the transformed process

ζt :=
∫ t

0
kH (t, s) dξs, t ≥ 0, (17)

and assume that the paths of {µt } are sufficiently smooth so that the process

Qt := d

d〈ζ 〉t
∫ t

0
kH (t, s)µs ds, t ≥ 0, (18)
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is well defined, where the derivative is understood in the sense of absolute continuity. Note that,
since {ξt } is an FBM under P∞, from property (v) in the previous subsection, it follows that
〈ζ 〉t = λ−1

H t2−2H and that {ζt } is a square-integrable martingale under P∞. The latter property
allows us to obtain an explicit representation for the log-likelihood ratio process {ut } using
Girsanov’s theorem, although {ξt } itself is not a semimartingale. This is a well-known result
in fractional stochastic calculus (see, for example, [7] or [13]), which we now prove using the
characterization of FBM that we discussed at the end of the previous subsection.

Theorem 2. If the conditions

P∞
(∫ t

0
Q2
s d〈ζ 〉s < ∞

)
= 1, t ≥ 0,

E∞
[

exp

{∫ t

0
Qs dζs − 1

2

∫ t

0
Q2
s d〈ζ 〉s

}]
= 1, t ≥ 0,

hold, then P0 is locally equivalent to P∞ and

ut =
∫ t

0
Qs dζs − 1

2

∫ t

0
Q2
s d〈ζ 〉s , t ≥ 0. (19)

Moreover, the CUSUM test is JM -optimal in this context if, additionally,

∫ ∞

0
Q2
s d〈ζ 〉s = ∞ P0,P∞-almost surely. (20)

Proof. Owing to Theorem 1, we only need to show (19). Specifically, we need to show that
if the post-change measure P0 is defined by

dP0

dP∞

∣∣∣∣
Ft

= exp

{∫ t

0
Qs dζs − 1

2

∫ t

0
Q2
s d〈ζ 〉s

}
, t ≥ 0, (21)

then the process

BHt := ξt −
∫ t

0
µs ds, t ≥ 0,

is FBM under P0. From Hu et al. [10], it suffices to show that {BHt } satisfies properties (a), (b),
and (c). Since {BHt } is a ‘shifted’ version of {ξt }, which is FBM under P∞, it clearly satisfies
(a) and (b). It remains to show that the process {∫ t0 kH (t, s) dBHs } is a P0-martingale (with
absolutely continuous quadratic variation when H > 1

2 ). Indeed,

∫ t

0
kH (t, s) dBHs =

∫ t

0
kH (t, s)(dξs − µs ds) = ζt −

∫ t

0
Qs d〈ζ 〉s ,

where the second equality is due to (17) and (18). But, from (21) and Girsanov’s theorem,
it follows that {ζt − ∫ t

0 Qs d〈ζ 〉s} is a P0-martingale with quadratic variation equal to 〈ζ 〉t =
λ−1
H t2−2H , which completes the proof.

In what follows, we apply this result to some interesting special cases.
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3.3. The case of fractional diffusions

The conditions of Theorem 2 are satisfied for a large class of fractional diffusions and any
Hurst index H . This is the content of the following corollary, which is based on Lemma 3
of [31].

Corollary 1. The CUSUM test is JM -optimal when µt = b(ξt ) and b is a real function so
that

(i) xb(x) has a constant sign for all x > 0 and all x < 0,

(ii) |b(x)/x| = c + r(x) for all x, where r(x) → 0 as x → ∞.

These two conditions are satisfied when, for example, b(x) = c0 + c1x + (|x| ∧ 1)α with
c0, c1 ∈ R and α ∈ [0, 1). When, in particular, α = 0, {ξt } is an FOU process under the
post-change measure P0. This is the fractional analogue of the classical Ornstein–Uhlenbeck
process and has recently been used in financial modeling (see, for example, [5] and [6]). For a
study of its main properties, we refer the reader to [4].

3.4. The case of polynomial drift

When µt = tα , where α is a real constant, the post-change dynamics (16) reduce to

ξt = BHt +
∫ t

0
sα ds = BHt + tα+1

α + 1

and the process Qt takes the form

Qt = 1

cH

d

d〈ζ 〉t
∫ t

0
s1/2−H+α(t − s)1/2−H ds.

Recalling that 〈ζ 〉t = λ−1
H t2−2H , after some algebraic manipulations we obtain

Qt = dH,αt
α, where dH,α := �(3 − 2H)�(3/2 −H + α)

�(3 − 2H + α)�(3/2 −H)

2 − 2H + α

2 − 2H
,

and, consequently,
∫ t

0
Q2
s d〈ζ 〉s = vH,αt

2−2H+2α, where vH,α := (dH,α)
2

λH

1 −H

1 −H + α
. (22)

This expression is the basis for the following corollary.

Corollary 2. If µt = tα with α + 1 > H then the CUSUM test is JM -optimal. When, in
particular, α + 1 = H + 1

2 , the CUSUM test is also JL-optimal.

Proof. From (22), it follows that condition (20) is satisfied when 2 − 2H + 2α > 0 and
that 〈u〉t is proportional to t when 2 − 2H + 2α = 1. It is now clear that the first claim is a
consequence of Theorem 2, whereas the second claim is a consequence of Theorem 1.

Corollary 2 implies that the CUSUM test is JM -optimal when a linear drift (α = 0) emerges
in FBM for any value of the Hurst index,H ∈ (0, 1). Moreover, it provides a class of processes
for which the CUSUM test optimizes Lorden’s original criterion. To our knowledge, such an
optimality property has been established only for diffusion-type processes (see the discussion on
page 313 of [18]). SettingH = 1

2 we recover the well-known JL-optimality of the CUSUM for
the detection of linear drift in a standard Brownian motion; thus, Corollary 2 is a generalization
of this classical result.
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3.5. Extensions

It is possible to generalize Theorem 2 so that the prechange measure P∞ is induced by the
dynamics

ξt =
∫ t

0
σ(s) dB̃Hs , t ≥ 0, (23)

where B̃H is an FBM and σ : R+ → R+ is a nonvanishing real function with δ-Hölder
continuous paths for some δ > 1 −H . This smoothness condition guarantees that the integral
in (23) can be defined in a Young sense (see [32]). Then, the proof of Theorem 2 carries over
as long as we modify the definitions of ζ and Q in (17) and (18), respectively, as

ζt =
∫ t

0
kH (t, s)

1

σ(s)
dξs, Qt =

∫ t

0
kH (t, s)

µs

σ (s)
ds, t ≥ 0.

Note that, when σ is a stochastic process, the integral in (23) cannot be defined in an Itô sense,
since FBM is not a semimartingale.

4. Conclusions

In this work, the optimality of the CUSUM procedure was established with respect to a
modified version of Lorden’s criterion for the problem of detecting a change in the distribution
of an arbitrary continuous-path process, generalizing existing results that refer to processes
of diffusion type. As a consequence, it was shown that the CUSUM test is optimal when a
fractional Brownian motion turns into a fractional Ornstein–Uhlenbeck process, or it adopts a
linear drift, for any value of the Hurst index, H . Furthermore, it was shown that the CUSUM
test is optimal with respect to Lorden’s original criterion when a fractional Brownian motion
with Hurst index H adopts a polynomial drift term with exponent H + 1

2 . In this way, we
generalized the well-known optimality of the CUSUM procedure in the case that a linear drift
emerges in a standard Brownian motion (H = 1

2 ).
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