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A theory of mass selection has been developed for a large genetic sample and its
application for predicting the actual change of certain genetic parameters, such
as the mean value of a character in the offspring population from selected parents,
is widely made by plant and animal breeders. In this theory the amount of change
in mean yield depends upon the relative proportion of the additive genetic variance
to the total variance on the phenotypic measurements in the parental populations
and upon the intensity of selection, usually, in terms of selection differentials.

In practice of mass selection, however, the evaluation of genotypes is always
conducted with a finite number of individuals. In some cases the number is so
small that the application of the theory formulated for a large population may be-
come very erroneous. In this paper a few aspects of mass selection conduted in a
small genetic sample will be considered. More specifically, the purpose of this
paper is threefold: (1) to obtain the expression of the expected change in gene
frequency, (2) to derive an approximate variance of the gene frequency change,
and (3) to evaluate the effects of dominance on responses to mass selection, when
a small number of organisms are tested. Thus, a few concepts hitherto discussed
intuitively and qualitatively in regard to consequences of selection in a small
population can be presented more quantitatively in terms of selection intensities,
sample sizes and gene actions.

Although a single locus with two alleles is primarily considered, the basic
framework and method of the approach employed in this paper are not necessarily
limited to the situations with one locus. The results, however, may be subjected
to considerable changes, if joint effects of different genes and linkages among loci
are marked. Generalization of the findings from a single locus situation to many-
loci situations will be discussed only when genes do not exhibit epistasis and they
are in equilibrium with respect to linkage.

SCHEME OF SELECTION

Since the term mass selection is often used in a very broad sense, it appears
necessary to describe explicitly the procedure of selection to be discussed in the
present study, along with an introduction of notations to be used.
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Let N individuals be a random sample of diploid organisms taken from a large
genetic population G. The G can be a potential or conceptual population which
is sometimes called a gene pool. The gene frequency at a locus, say A-a, in G is
denoted by q for allele A, and the zygotic frequencies of types, A A, Aa and aa,
are represented by Uu U2 and U3, respectively.

The genetic sample consisting of the N random individuals is evaluated in a
performance test with respect to a certain quantitative character, of which the
value is denoted by Y. The Y's are expressed in terms of the phenotypic standard
deviation, at, of the original population G. The density distribution of the charac-
ter in G is denoted by <f>(Y) with the mean Y. Furthermore, let <j>i(Y), <f>2(Y) or
<f>3( Y) be the density distributions of Y, when the genotype at the locus in question
is given as AA, Aa or aa, respectively. Their means are symbolized as Yv Y2 and
Y3 and the deviations of the respective means from Y are written as dx, d2 and d3.
All of these distributions are assumed to be similar bell-shaped ones. The genotypic
variance of the character contributed from the locus in question is Uxd\+ U2d2 +
U3d% which in turn becomes a heritability component in broad sense. This com-
ponent is usually a small fraction for a given locus.

Now the measurements on N individuals are recorded from the performance
test. The n best performing individuals are selected according to the rank of Y's,
and will be used as parents of the following generation. The intensity of selection
in this procedure is then expressed by a fixed proportion, njN, while the point of
truncation is not fixed but varies as a random variate. Let Yo be the value of this
random variate in a particular test. Then the Fo is an order statistic and its density
distribution is

where P = J <f>( Y) dY = t ^ P x + *72P2 + Z78P8

00 00 00

and P, = J </>1(Y)dY, P 2 = j <j>2(Y)dY and P3 = j <f>3(Y)dY

EXPECTED CHANGE OF GENE FREQUENCY
The change of gene frequency after one trial of selection depends upon the

relative numbers of selected individuals having AA, Aa and aa genotypes. Let
nu n2 and n3 (i.e. n — nx — n2) be the numbers of AA, Aa and aa individuals in
the selected group, respectively. The joint distribution of nu n2 and n3 for a given
value of Yo is multinominal with

Means: n{ = nU-^P^P; n2 = nTJ2P2\P; n'3 = nU3P3/P (2)

Variances: V'Hi = nUxPx(P - U.P^/P2; V'n, = nU2P2(P - U2P2)/P
2; 1

|
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Covariances:

Cov'(%.w.2) = —nUxPiU2P2IP
2; Cov'(%.?i3) = —nU1P1UsPs/P

2;
Cov'(n2.n3) = -nU2P2U3P3IP

2 (4)
where prime (') stands for 'conditional on Yo'.

In order to obtain the means of % and n2 for all possible Yo, n[ and n'2 are to be
integrated over the distribution of Yo given in (1). Then

00

J ̂
n2 = nU2

— 00

which can be approximately written as

(5)

Wo = I
(6)

The approximation used in (6) is not good unless d1 and d2 are small enough so
that d\ and d\ are negligibly small compared with d1 and d2> respectively.

A rigorous mathematical principle to obtain the values of the integral form in (6)
is discussed by Ruben (1954) in connexion with the moment of order statistics,
but the application of his principle seems to be hopelessly complex for the present
case where n takes an arbitrary number. A rather simple argument to obtain
approximate solutions for (6) is used (see Appendix), and the results are

(7)

(8)

where Yo is the mean of the nth largest observation in a random sample of size
(IV-1); <f>(Y0), 4>"(Y0), (/>'"(Y0), etc. are the density function, <f>(Y), its second,
third, etc. derivatives, all evaluated at Yo; and u2(Y0), u3(YQ), etc. are the second,
third, etc. central moments of the ?ith largest observation in a sample of size
(N— 1) taken from the distribution, <f>(Y).

Now the change in gene frequency from a single trial of selection is

and its expectation is

(9)

(9)'
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Substituting (7) and (8) into (9)', it is found that

JE(Aq) = kiU^ + iU^) (10)

where

k = ^ ( Y Q ) + y - ' ( Y 0 ) u 2 ( Y 0 ) + ^<f>"'(Y0)u3(Y0) + ..^ (11)

In the equation (10) the values of U1 and U2 are arbitrary except that ?7X

Z73 = 1. When the parental population is in Hardy-Weinberg equilibrium, the
expression (10) becomes

E(Aq) = kq(l-q){q(Y1-Y2) + (l-q)(Y2-Y3)} (12)

This form is very similar to the well-known expression for the change of gene
frequency derived from large sample theory; i.e. the form being the additive
genetic comparison multiplied by kq(\ — q). Furthermore, if N becomes large
without changing n[N and if <f>(Y) is normal, then k is equal to N/n<f>{Y0)) because
u2( Yo), u3( Yo), etc. diminish. The k value in such a case is often written as i, and
called selection differential. The expression of k given in (11) may be called a
generalized selection differential, since it is not restricted by the size of sample and
the form of phenotypic distribution. It has been known that the selection dif-
ferential for a finite population can be computed by using the table of ranked
normal deviates (e.g. Fisher & Yates, 1953), when the phenotypic distribution is
normal. An evaluation of the expression for k in formula (11) will be made in a
later section.

VARIANCE OF CHANGE IN GENE FREQUENCY

From the formula (9) the variance of Aq is written as

= i {4F"' + F»> + 4 Cov ("i'
In order to spell out (13) in terms of genetic parameters, the variances and co-
variance of nx and n2 conditional on Yo given in (3) and (4) must be integrated
over the distribution (1). They are

FBi = nU1(l-U1) + nd1U1{l-2U1)k

Cov (nun2) = -nU1U2—nU1U2(d1 + d2)k

when the same order of approximation is permitted as in the case of % and n2.
Substituting these variances and covariance into equation (13), the variance of
A bAq becomes

When the parental population is in Hardy-Weinberg's equilibrium, i.e.,

Ux = q2 and U2 = 2q(l-q),
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the variance, (14), becomes

OT VAq =
 q-^£{l+q{l-q)pk+(l-2q)oc]c} (15)

where a. is the additive genetic comparison denned in (12) and /? is the dominance
comparison denned by [Yx+ YS — 2Y2).

A few special cases are considered:
1. N = n; when k is defined to be zero for N = n (because of the approximation

used in deriving 1c, the value of k is not exactly zero at N = n), then

2. No dominance; Yx + Y3 - 2 Y2 = 0 or Yx - Y2 = Y2 - Ys, then

3. Complete dominance; Y1 = Y2, then

The variance in (15) can be partitioned into two factors; one from pure sampling,
without selection, that is, q(l — q)l2n, and the other which reflects the effect of
selection on the variance of Aq. The latter effect can be positive or negative
depending upon the interrelation between the gene frequency, q, in the parental
population and the level of dominance measured by h=fil(Y3 — Y1). Figure 1
presents this interrelation, in which any point falling in the region surrounded by
heavily drawn boundaries (S in Fig. 1) results in F j a being less than q{\ — q)j2n,
and F j 9 is larger than q(l — q)j2n, when the point falls outside of the region S.
With no dominance (h = 0), the variance with selection for allele, A, is smaller
than that expected from the pure random drift in a population of the same size
when q is higher than | . As the level of dominance increases, the region S widens.
With complete dominance (h = 1) this relation between the two variances holds
for q> \- As h becomes larger, the upper and lower bounds for S tend to approxi-
mately q = 0-79 and q = 0-21, respectively. Thus one can expect that selection for
higher performance reduces the size of variance of Aq in comparison with the
variance due to the genetic random drift when the gene frequency ranges from
intermediate to high.

When the value of gene frequency and the intensity of selection are given, the
variance of change in gene frequency is a function of only the additive and domi-
nance comparisons. As it is easily seen in (15), the higher the degree of dominance
the larger the reduction in the variance. As to the additive effect, a larger additive
comparison results in a greater reduction in the variance, provided q > \. I t is
important to note that the magnitude of these comparisons is expressed relative
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to the size of the total phenotypic standard deviation, at. Hence, a locus with
larger comparisons in a population is subjected to less random variation than a
locus with smaller comparisons in the same population, when the gene frequencies
at the two loci are comparable in size.

10H

0-2 0-4 0-6 0-8 1 0 1-2 1-4 1-6 1-8 2 0

0 1 -

Fig. 1. The region, S, in which the variance, Vj?, from mass selection is smaller
than the variance from random genetic drift when the same number of indi-
viduals are taken from a population (see text).

q: Gene frequency
h: Dominance level

EXPECTED GAIN FROM SELECTION

The predicted gain can be defined as the expected difference between the mean
of an offspring population produced by selected individuals and the mean of a
reference population. In this paper the population in Hardy-Weinberg's equili-
brium with the same q as in G is considered as the reference population. Random
mating among n selected parents is assumed. Let Y' stand for the mean of an
offspring population, while Y is the mean of the reference population. Both
populations can be assumed to be infinitely large.

In an offspring population the gene frequency is (q + Aq), then the difference,
Y' — Y, from a single trial of selection is equal to

AY = 2Aq{q(Y1-Y2) + (l-q)(Y2-Y3j}+(Aq)2{Y1+Y3-2Y2} (16)
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when A Y is measured in terms of at. The first term in (16) is proportional to the
additive comparison, {q(Y1— Yz) + (I — q) (Y2 — Ys)}, and the second to the domin-
ance comparison, {Fj + Y3 — 2Y2}. Then, the expectation of A Y or the predicted
gain is equal to

2E(Aq)«+{E(Aq)}2p+VAiP (17)

Now each term in (17) is evaluated stepwise. The first term is equal to 2q(l — q)<x2k,
which is equal, in turn, to ko2., where a\ is the additive genetic variance (Kojima,
1959) or the heritability since the character is measured by at. This term is equiva-
lent to the expression of the conventional prediction equation, ia\, except that k
is a generalized value of i. The term, therefore, represents the expected change in
the mean of population associated with a linear (or additive) effect of genes.

The second term can be written as

According to Kojima (1959), the quantity, g-2(l—g)2/?2, is equal to the dominance
variance. Then the second term becomes

where the sign depends on the direction of dominance. When the allele A is
dominant over the allele a, i.e. Y1 — Y2 < Y2 — Y3, the sign is negative, and positive
otherwise. Then this term represents an increment, negative or positive, onto the
value of E(A Y) when there is dominance. The magnitude of this contribution
is proportional to the gain due to the linear effect of genes, (ko2), and to the degree
of dominance measured by op.

The nature of the third term Fj^jS, is quite different from that of the previous
two terms. While the previous two were directly proportional to the linear effect
of genes, the third term does not depend on the linear effect but is proportional
to the variance in the change of gene frequency. As given in formula (15), this
variance is composed of two factors. One is the sampling variance of n parents
taken from the population without selection (i.e. the variance due to the genetic
random drift), and the other is a factor which modifies the sampling variance as a
function of the genetic effects and the selection differential.

The sign of the contribution from the third term to E(Aq) depends again on the
direction of dominance as it was in case of the second term. The third term can be
written as + V^qoplq(l — q), where + is used when Y1—Y2<YZ— Y3 and — when
F2-F2>F2-F3.

Summing up all three terms in (17), the expected gain is equal to

ko2 — \{koD kog — F j g crp[q(l — q) (18)

when the heterozygote is better than the mean of the two homozygotes, and
otherwise

q) (18)'
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Roughly speaking, the first term represents an increment due to the additive
effect, the second modifies the first term according to the direction and degree of
dominance, and the third term represents the joint effect of dominance and
inbreeding due to the finiteness of sample size. When n and N become large, the
last term in (18) or (18)' tends to zero, and E(A Y) becomes a function of a\ and
ap. The gross effect of dominance on E(AY) is obvious; with /3 < 0, E{AY) is
affected downwards, and with fi > 0, upwards.

When there is no selection, i.e. k = 0 and E(Aq) = 0, the total expected gain is
equal to ± (op/2n). This is the change of mean due to the random fixation of the
locus. When the heterozygote is superior to the mean of the two homozygotes,
the change is negative. This value, — (ap/2n), is nothing but the amount of in-
breeding depression due to dominance and the finiteness of the sample. On the
other hand, with dominance such that Y1— Y%> Y2— Y3, the mean of the off-
spring population tends to increase by + (apl2n), through the increase of homo-
zygosity.

For the purpose of an illustration of the theory developed in this section, the
ratio, E(A Y)jka^, is examined as an indicator of discrepancy between the expected
gain and the gain by the usual prediction equation for one locus with complete
dominance. Substituting into (18) the expression for V^a is given in the previous
section, the ratio becomes

As an example let q = \, n = 10 and N = 50. For (Yx — Y3), which is the difference
between the two homozygotes, 0-1 may be assigned. With these specifications,
a\ = 1/800 and a\ = 1/1600 for this locus, and k = 1-37. The ratio in question is
0-28. Since the ratio has to be 1 for complete agreement between the expected
gain and the gain predicted by ka\, this ratio, 0-28, means 72 % overprediction by
the usual prediction equation. When 0-2 is assigned for (Yx — Y3), then a\ = 1/200;
aJ = 1/400 and the ratio becomes 0-63, indicating 37% overprediction.

DISCUSSION

A numerical evaluation of the selection differential derived in (11) can be made
when <j>{ Y) is normal. In Table 1 the exact values (Ys) for the selection differential
computed from the tabulated values of normal order statistics in Fisher and Yates'
Table (1953) are compared with the approximate values computed from the first
and second terms in formula (11). For the expression of u2(Y0) the asymptotic
variance of Fo is used; that is,

_2

where the Yo is the mean of the nth largest value in a sample of size N. The
discrepancies between the corresponding k and Ys are surprisingly small, even
though only the first two terms in (11) are used for the computation of k. This
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remarkably good agreement may be a peculiarity when </>( Y) is normal, but does
provide a mean for checking adequacy of formula (11). I t should be noted that the
formula for k possesses only some theoretical interests when the distribution of
phenotypes is assumed to be normal. For practical purposes the average of top
n values in Fisher and Yates' tabulation will serve a better role for the selection
differential if <£( Y) is normal. When the distribution is non-normal, the formula for
k can be used to obtain appropriate values of k by using asymptotic formulae for
Fo, «2(r0), etc.

Generalization of the findings from one-locus situations to many-loci situations
is possible to a certain extent. The expressions for the expected change of gene
frequency given in (10) and in (12) are general for any single locus in an epistatic
system, as long as Pt = P + d1<f>(Y0) and P 2 = P + d2<f>2{Y0) hold approximately.
Such is the case when <f>(Y), <f>i(Y) and <f>2(Y) are similar in shape, and d1 and d2

are small fractions. This generalization holds true for the expressions of the ex-
pected variance of gene frequency changes.

The formulae for the expected gain in (18) and (18)' are specific for one-locus
situations. When no epistasis and no linkage disequilibrium are assumed, they
can be combined over more than one locus as

i i

where a2
A is the total additive genetic variance as the fraction of of or the herita-

bility. The summation is taken over different loci. The sign is + when the
heterozygote of the locus is inferior to the mean of the two corresponding homo-
zygotes, and — when the heterozygote is superior. Main use of this combined
formula is to point out what kinds of biases are expected in the well-known
prediction equation, io\. The first and obvious bias arises from the difference
between k and i. As seen in Table 1. however, this difference is not appreciably

Table 1. Values of selection differential with various intensities of selection and
different sizes of genetic samples drawn from a normal population

n/N

N

oo
50
40
30
20
10

0-

k
1-74
1-71
1-70
1-68
1-68

(1-78)*

1

Y.
1-74
1-70
1-69
1-67
1-64
1-54

0'

k
1-40
1-37
1-36
1-35
1-33
1-27

•2
I

Y,
1-40
1-37
1-36
1-35
1-33
1-27

0

t

k
116
114
113
112
110
1-05

•3

Y.
116
114
113
113
111
107

0-4
A

k
0-96
0-95
0-95
0-94
0-93
0-89

Y.
0-96
0-95
0-95
0-94
0-93
0-90

0-
A

t

k
0-79
0-79
0-78
0-78
0-77
0-73

5
V

Y.
0-7&
0-79
0-78
0-78
0-77
0-74

k: Computed by the use of the first two terms in the formula derived in the text.
Ys: Computed by the average of scores for the ordered data given by Fisher and Yates:

(1953). .
* The value of k for n = 1 and N = 10 has a large deviation from the true value due to the>

approximations made in computations.
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large. The finiteness of sample size alone, therefore, does not become a serious
source of bias. Even for N = 10 and n = 2, the difference is less than 10%. In
the following discussion, for this reason, k is assumed to be not different from i.

With respect to the effect of dominance two extreme cases are considered. When
the directions of dominance at different loci balance out in the positives and nega-
tives, the difference between ia\ and E(A Y) should be zero or very small. Under
these circumstances the expected gain becomes estimable by ka\, although the
variance of such estimates can easily be much larger than that expected when all
loci do not exhibit dominance.

The other extreme case is given when the directions of dominance are the same
for all loci. Now the effects of dominance on E(A Y) become cumulative only in
one direction, positive or negative. In other words, the deviation of i<r\ from
E(A Y) becomes maximum. This deviation can be partitioned into two parts. One
is the deviation due to dominance effects per se and the other is the joint effects of
dominance and variance of gene frequency change at each locus. The latter is
reciprocally proportional to the number of individuals selected and used as
parents for the next generation.

Another way to interpret the two parts of the deviation is quite instructive.
The first part is the deviation due to the non-linearity of gene action with respect
to the allelic substitution at the locus. The linear contribution of gene action to
E (AY) is ka\, and the term 2 {aaa$i represents a sum of adjustments made on the

i

linear effects at each locus by the corresponding effects of dominance. It should
be repeated that this adjustment is not restricted by the sizes of genetic sample used.
Even in an infinite size selection, this term is non-zero, provided that the directions
of dominance at different loci do not cancel in ± ~£i{a^ap}i- The second part of

the deviation represents an overall effect of inbreeding when genes exhibit domi-
nance. When this term is negative, the effect is often called inbreeding depression.
Such effect is then liable to the actual number of parents selected for producing
the following generation.

In this study only one cycle of selection was treated. With the present-day
knowledge of most geneticists it is extremely difficult to extend the theories of
one-cycle truncated selection to an arbitrary number of cycles. Experimental
studies such as one by Clayton, Morris & Robertson (1957), and empirical studies
on high-speed computers by Fraser (1957, 1960), Martin & Cockerham (1960) and
some others, may give light on this difficult task.

SUMMARY
A theory of mass selection in a small population was developed, and the mean

change in gene frequencies, the variance of gene frequency changes and the ex-
pected gain in the mean phenotypic value of an offspring population were formu-
lated in terms of a generalized selection differential and the additive and dominance
effects of genes.

The magnitude of the variance of changes in gene frequency was compared with
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the magnitude of the variance expected from the genetic random drift in a popula-
tion with the same gene frequency and of the same size in absence of selection.
The former was found to be usually smaller than the latter when the gene frequency
ranged from intermediate to high and when selection was directed for a high
performance.

The usual prediction equation for gain from selection in an infinite population
was compared with the expected gain formula derived for a small population.
The size of the population did not cause a serious difference between the two ex-
pected gains when there was no dominance effect of genes. Dominance alone could
cause the usual prediction to be slightly more biased. The joint effects of the
finite size of population and dominance gene action could amount to a considerable
bias in the usual prediction equation. Such a bias can be, in the main, accounted
for by the inbreeding depression.

REFERENCES

CLAYTON, G. A., MOKEIS, J. A. & ROBERTSON, A. (1957). An experimental check on quanti-
tative genetical theory. I : Short-term responses to selection. J. Oenet. 55, 131-151.

FISHEB, R. A. & YATBS, F. (1953). Statistical Tables for Biological, Agricultural and Medical
Research. Oliver and Boyd, London.

FBASEB, A. S. (1957). Simulation of genetic systems by automatic digital computers.
I I : Effects of linkage on rates of advance under selection. Aust. J. biol. Sci. 10, 492-499.

FBASER, A. S. (1960). Simulation of genetic systems by automatic digital computers.
V: Linkage, dominance and epistasis. Biometrical Genetics, 70-83. Pergamon Press, New
York.

KOJIMA, K. (1959). Role of epistasis and overdominance in stability of equilibrium with
selection. Proc. nat. Acad. Sci., Wash., 45, 984-989.

MABTIN, F. G. & COCKEBHAM, C. C. (1960). High speed selection studies. Biometrical
Genetics, 37—45. Pergamon Press, New York.

RUBEN, H. (1954). On the moments of order statistics in samples from normal populations.
Biometrika, 41, 200-226.

APPENDIX

Approximate values of nx and n2

The integral equations in (6) can be evaluated in the following manner:
(1) Expand </>( Yo) around Yo which is the mean of the nth observation from the

largest in a sample of size (N— 1) randomly taken from the parental population.

<f,(Y0) = ^

(2) The ratio f(Y0)/P in (6) can be written as

n (n-l)\(N-n-l)r ( 1 F) H^o) - -

g( Yo) is the density function of the nth observation from the largest in a sample of
size (N— 1).
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(3) Hence Hy is a sum of the following quantities:
00

nU1jf(Y0)dY0 = nU1

g(Y0)dY0 = NUrd^Yo)

j(Yo-Yo)g(Yo)dYo = O
— 00

00

9 , - - i - i r \-*o) (Yo-Yo)
2g(Yo)dYo = —

**• J &'
— 00

00

\Y0-Y0fg(Y0)dY0 = l

— 00

00

where u2{Y0), us(Y0), and so on, represent the second, third and higher central
moments of the g( Yo) distribution.

(4) Then

(5) Similarly
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