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Rotating Rayleigh–Bénard convection is investigated numerically with the use of an
asymptotic model that captures the rapidly rotating, small Ekman number limit, Ek → 0.
The Prandtl number (Pr) and the asymptotically scaled Rayleigh number (R̃a = RaEk4/3,
where Ra is the typical Rayleigh number) are varied systematically. For sufficiently
vigorous convection, an inverse kinetic energy cascade leads to the formation of a pair
of large-scale vortices of opposite polarity, in agreement with previous studies of rapidly
rotating convection. With respect to the kinetic energy, we find a transition from convection
dominated states to a state dominated by large-scale vortices at an asymptotically reduced
(small-scale) Reynolds number of R̃e ≈ 6 (R̃e = ReEk1/3, where Re is the Reynolds
number associated with vertical flows) for all investigated values of Pr. The ratio of the
depth-averaged kinetic energy to the kinetic energy of the convection reaches a maximum
at R̃e ≈ 24, then decreases as R̃a is increased. This decrease in the relative kinetic energy
of the large-scale vortices is associated with a decrease in the convective correlations
with increasing Rayleigh number. The scaling behaviour of the convective flow speeds is
studied; although a linear scaling of the form R̃e ∼ R̃a/Pr is observed over a limited range
in Rayleigh number and Prandtl number, a clear departure from this scaling is observed
at the highest accessible values of R̃a. Calculation of the forces present in the governing
equations shows that the ratio of the viscous force to the buoyancy force is an increasing
function of R̃a, that approaches unity over the investigated range of parameters.
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1. Introduction

Convection is common in the fluid regions of planets and stars. In particular, convection is
the primary energy source for the generation of large-scale planetary and stellar magnetic
fields (Jones 2011; Gastine et al. 2014; Aurnou et al. 2015), and it is thought to be a
source of energy for the observed zonal flows in the atmospheres of the giant planets
(e.g. Heimpel, Gastine & Wicht 2016). The flows in many of these natural systems are
considered turbulent and strongly influenced by rotation; previous studies have shown that
the combination of these physical ingredients can lead to an inverse kinetic energy cascade
(e.g. Smith & Waleffe 1999; Seshasayanan & Alexakis 2018). The inverse cascade transfers
kinetic energy from small-scale convection up to domain-scale flows, and, in a planar
geometry of square cross-section, results in the formation of large-scale vortices (LSVs).
(Julien et al. 2012b; Favier, Silvers & Proctor 2014; Guervilly, Hughes & Jones 2014; Rubio
et al. 2014; Stellmach et al. 2014). Such vortices have a high degree of vertical invariance,
tend to be characterised by flow speeds that are significantly larger than the underlying
convection and can have an influence on heat transport and magnetic field generation
(Guervilly et al. 2014; Guervilly, Hughes & Jones 2015). However, the convective vigour
required to excite LSVs, how fluid properties (via the thermal Prandtl number) influence
their formation and the scaling of their saturated amplitude with buoyancy forcing still
remain poorly understood.

In planetary and astrophysical fluid systems, rapid rotation is thought to play an essential
role in shaping the dynamics of convection. The importance of rotation for the dynamics
of such systems is quantified by the Ekman and Rossby numbers, respectively defined as

Ek = ν

2ΩH2 , Ro = U
2ΩH

, (1.1a,b)

where ν is the kinematic viscosity, Ω is the rate of rotation, H is the spatial scale of the
system (i.e. the depth of the fluid region) and U is a characteristic flow speed; Ek and
Ro quantify, respectively, the ratio of viscous forces to the Coriolis force, and the ratio of
inertia to the Coriolis force. Systems in which (Ek,Ro) � 1 are said to be rapidly rotating
and rotationally constrained. For the Earth’s outer core, for instance, estimates suggest that
Ek � 10−15 and Ro � 10−5 (de Wijs et al. 1998; Rutter et al. 2002; Finlay & Amit 2011). It
is currently impossible to use such extreme values of the governing parameters with direct
numerical simulation (DNS). Quasi-geostrophic (QG) models have helped to overcome
this deficiency, and have been critical for elucidating several convective phenomena that
are thought to be of significant interest for planets, including identification of the primary
flow regimes of rotating convection, heat transport behaviour and the convection-driven
inverse cascade (Julien et al. 2012b; Rubio et al. 2014). QG models accurately capture the
leading-order dynamics in systems characterised by small values of Ek and Ro.

Previous work has shown that the structure of LSVs is dependent on the relative
importance of rotation: for sufficiently small values of Ek and Ro the large-scale structure
is a pair of cyclonic and anticyclonic vortices (hereafter referred to as dipolar LSVs) with
zero net (spatially averaged) vorticity (Julien et al. 2012b; Rubio et al. 2014; Stellmach
et al. 2014); whereas for larger values of Ro the cyclonic vortex dominates over the
anticyclonic one, leading to a net vorticity that is parallel to the rotation axis (Chan & Mayr
2013; Favier et al. 2014; Guervilly et al. 2014). QG models find only a pair of vortices
of opposite polarity (dipolar LSVs), since they capture asymptotically small values of
Ek and Ro only, in which there is no preferred sign for the vorticity. DNS studies have
found dipolar LSVs when Ek ≈ 10−7 (Stellmach et al. 2014), and a dominantly cyclonic
LSV when Ek � 10−6 (Chan & Mayr 2013; Favier et al. 2014; Guervilly et al. 2014).
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Inverse cascade and flow speeds

This distinction in the LSV structure may have consequences on how heat transport and
flow speeds are influenced by the inverse cascade. Moreover, for Ro = O(1), the presence
of a LSV appears to be dependent upon the initial condition used in the simulations (Favier,
Guervilly & Knobloch 2019). In contrast, for the rapidly rotating regime studied here, we
find that the formation of dipolar LSVs is not dependent upon initial conditions (see § 3.3
for details).

Natural systems are characterised by a broad range of fluid properties and, as a result,
the Prandtl number Pr = ν/κ (where κ is the thermal diffusivity) can take on a wide
range of values, ranging from Pr = O(10−6) in stellar interiors (Ossendrijver 2003) to
Pr = O(10−2) for the liquid metals characteristic of planetary interiors (Pozzo et al. 2013).
More generally, the density heterogeneities that lead to buoyancy-driven convection can
also result from compositional differences, as is expected to be the case within terrestrial
planetary interiors, for instance; under such circumstances the thermal Prandtl number
in the governing equations is replaced by the compositional Schmidt number Sc = ν/D,
where D is a chemical diffusivity. For the Earth’s outer core, studies suggest Sc = O(100)
for representative chemical species (e.g. Pozzo et al. 2013). This wide range of diffusivities
that characterise geophysical and astrophysical fluids motivates the need for additional
investigations that explore the influence of the Prandtl number on the dynamics, since all
previous numerical calculations investigating the inverse cascade have focussed on fluids
with Pr = 1. QG simulations (Julien et al. 2012b) have characterised the flow regimes that
occur when Pr � 1. In general, it is found that low Pr fluids reach turbulent regimes for a
lower value of the thermal forcing (as measured by the Rayleigh number Ra) than higher
Pr fluids. More turbulent flows can be characterised by an increase in the Reynolds number

Re = UH/ν, (1.2)

which is a fundamental output parameter for convection studies. Many of the results found
in QG studies have been confirmed by DNS calculations (Stellmach et al. 2014). In both
approaches, the formation of LSVs has been tied to the geostrophic turbulence regime,
which, prior to the present work, has not been observed for Pr > 3.

Laboratory experiments are an important tool for exploring the dynamics of rapidly
rotating convection (e.g. Vorobieff & Ecke 2002; King et al. 2009; Kunnen, Geurts &
Clercx 2010; Ecke & Niemela 2014; Stellmach et al. 2014) and, much like natural systems,
can access a wide range of Pr values. Liquid metals (Pr ≈ 0.025) (Aurnou & Olson 2001;
Aubert et al. 2001; King & Aurnou 2013; Zimmerman et al. 2014; Adams et al. 2015;
Aurnou et al. 2018; Vogt et al. 2018), water (Pr ≈ 7) (Sumita & Olson 2002; Vorobieff &
Ecke 2002; King et al. 2009; Cheng et al. 2015) and gases (Pr ≈ 1) (Niemela, Babuin
& Sreenivasan 2010; Ecke & Niemela 2014) have all been utilised. As for numerical
calculations, fluids with smaller values of Pr reach higher values of Re than higher Pr
fluids for equivalent Ra. From this perspective, such fluids are of significant interest for
exploring the geostrophic turbulence regime of rapidly rotating convection (e.g. Julien
et al. 2012a). However, the use of such low Pr fluids is not always practical and can reduce
or eliminate flow visualisation opportunities. Furthermore, whereas small Pr fluids can
lead to more turbulent flows, lower Ekman numbers must be used to provide a sufficiently
large parameter regime over which the fluid remains rotationally constrained (e.g. King &
Aurnou 2013). It would therefore be of use to identify the general dynamical requirements
for observing inverse-cascade-generated LSVs for a variety of fluid properties.

One of the basic goals in convection studies is to determine the functional dependence
of Re on the input parameters, namely, determination of the functional form Re =
f (Ra,Pr). Power-law scalings of the form Re = c1Rac2Prc3 are often sought, where
each ci is a constant. A well-known example is the so-called ‘free-fall’ scaling of the
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form Re ∼ (Ra/Pr)1/2 observed in non-rotating convection (e.g. Ahlers, Grossmann &
Lohse 2009; Orvedahl et al. 2018). The free-fall scaling arises from a balance between
nonlinear advection and the buoyancy force in the momentum equation, and represents
a ‘diffusion-free’ scaling in the sense that the flow speeds are independent of both the
thermal and viscous diffusion coefficients. Motivated by this free-fall form of the scaling,
and the assumption that natural systems are expected to be highly turbulent in the sense
that Re � 1, rotating convection studies have also sought to find diffusion-free scalings
for the flow speeds. For instance, the recent work of Guervilly, Cardin & Schaeffer
(2019) observed Re ∼ RaEk/Pr in spherical convection simulations, which is also a
diffusion-free scaling for the flow speeds. In the present work we show that this scaling
is equivalent to R̃e ∼ R̃a/Pr, where R̃e = Ek1/3Re and R̃a = Ek4/3Ra are, respectively,
a Reynolds number and a Rayleigh based on the small convective scale �. The Re ∼
RaEk/Pr scaling appears to be present for our larger Pr cases over a finite range in R̃a; as
R̃a is increased a significant departure in this scaling is observed.

In the present work we investigate the properties of the inverse cascade for varying R̃a
and Pr in the rapidly rotating asymptotic (QG) limit for thermal convection in a plane-layer
geometry (rotating Rayleigh–Bénard convection). This choice allows for comparison with
previous results from QG (Sprague et al. 2006; Julien et al. 2012b; Rubio et al. 2014) and
DNS (Guervilly et al. 2014; Stellmach et al. 2014) plane-layer calculations. By exploring
a parameter regime wider than previous studies we are able to characterise the formation
of LSVs in greater detail. In particular, we derive a criterion, based on the ratio R̃a/Pr,
that describes the transition to regimes where the barotropic energy is dominant over the
wide range of Prandtl numbers considered here. Furthermore, we find evidence, for the
first time to our knowledge, of very-high-R̃e regimes, previously unexplored, that show
unexpected energetic and dynamic behaviours. The presence of these regimes prevents us
from deriving scaling laws that are valid over the entire range of parameters considered
here. The paper is organised as follows: in § 2 we describe the governing equations and
diagnostic quantities; in § 3 the results of the simulations are presented and analysed; and
a discussion is given in § 4.

2. Methodology

2.1. Governing equations
We consider rotating Rayleigh–Bénard convection in a plane-layer Cartesian geometry
of depth H, with constant gravity vector g = −gẑ pointing vertically downward,
perpendicular to the planar boundaries. The fluid is Boussinesq with thermal expansion
coefficient α. The top boundary is held at constant temperature T1 and the bottom
boundary is held at constant temperature T2 such that �T = T2 − T1 > 0. The system
rotates about the vertical with rotation vector Ω = Ω ẑ. In the limit of strong rotational
constraint (i.e. small Rossby and Ekman numbers), the governing equations, can be
reduced to the following set of equations (Julien et al. 2006; Sprague et al. 2006)

∂tζ + J[ψ, ζ ] − ∂Zw = ∇2
⊥ζ, (2.1)

∂tw + J[ψ,w] + ∂Zψ = R̃a
Pr
ϑ + ∇2

⊥w, (2.2)

∂tϑ + J[ψ, ϑ] + w∂ZΘ̄ = 1
Pr

∇2
⊥ϑ, (2.3)

∂Z(wϑ) = 1
Pr
∂2

ZΘ̄, (2.4)
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Inverse cascade and flow speeds

where ζ is the vertical component of the vorticity, ψ is the dynamic pressure and
also the geostrophic streamfunction and w is the vertical component of the velocity.
The vertical component of vorticity and the streamfunction are related via ζ = ∇2

⊥ψ ,
where ∇2

⊥ = ∂x
2 + ∂y

2. The non-dimensional temperature θ is decomposed into mean and
fluctuating components Θ̄ and ϑ , respectively, such that θ = Θ̄ + Ek1/3ϑ . Here the mean
is defined as an average over the small spatial (x, y, z) and the fast temporal (t) scales.
The Jacobian operator J[ψ, f ] = ∂xψ∂yf − ∂yψ∂xf = u⊥ · ∇⊥f describes advection of the
generic scalar field f by the horizontal velocity field u⊥ = (u, v, 0) = (−∂yψ, ∂xψ, 0). The
reduced Rayleigh number R̃a is defined by

R̃a = Ek4/3Ra, (2.5)

where the standard Rayleigh number is

Ra = gα�TH3

νκ
. (2.6)

Equations (2.1)–(2.4) have been non-dimensionalised by the small-scale viscous diffusion
time �2/ν, where the small horizontal convective length scale is � = HEk1/3. The
derivation of the reduced system relies on the assumption that the Coriolis force and
pressure gradient force are balanced at leading order, i.e. geostrophic with ẑ × u =
−∇⊥ψ . This force balance implies the Taylor–Proudman constraint is satisfied on small
vertical scales such that ∂z(u, ψ) = 0 (e.g. Stewartson & Cheng 1979). Therefore, along
the vertical direction all fluid variables vary on an O(H) dimensional scale associated with
the coordinate Z = Ek1/3z. As a result, fast inertial waves with dimensional frequency
O(Ω) are filtered from the above equations, allowing for substantial computational
savings. However, slow, geostrophically balanced inertial waves are retained (Julien et al.
2012b).

The mean temperature Θ̄ evolves on the slow time scale τ = Ek2/3t associated with the
vertical diffusion time H2/ν. However, Julien, Knobloch & Werne (1998) and Plumley
et al. (2018) found that spatial averaging over a sufficient number of convective elements
on the small scales is sufficiently accurate to (i) omit fast-time averaging and (ii) assume a
statistically stationary state where the slow evolution term ∂τ Θ̄ that would appear in (2.4)
is omitted.

Finally, we note that three-dimensional incompressibility is invoked through the
solenoidal condition for the ageostrophic, sub-dominant horizontal velocity,

∇⊥ · uag
⊥ + ∂Zw = 0, (2.7)

where uag
⊥ = O(Ek1/3u⊥).

The equations are solved using impenetrable, stress-free mechanical boundary
conditions, and constant temperature boundary conditions. However, it should be noted
that the specific form of the thermal boundary conditions is unimportant in the limit of
rapid rotation (Calkins et al. 2015), and the present model can be generalised to no-slip
mechanical boundary conditions (Julien et al. 2016). Each variable is represented with
a spectral expansion consisting of Chebyshev polynomials in the vertical (Z) dimension,
and Fourier series in the horizontal (x, y) dimensions. The resulting set of equations are
truncated and solved numerically with a pseudo-spectral algorithm that uses a third-order
implicit/explicit Runge–Kutta time-stepping scheme (Spalart, Moser & Rogers 1991). The
code has been benchmarked successfully and used in many previous investigations (Marti,
Calkins & Julien 2016; Maffei et al. 2019; Yan et al. 2019).
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Spatial and temporal resolutions of the simulations performed for this study are given
in table 1. The horizontal dimensions of the domain are periodic and scaled by the
critical horizontal wavelength λc = 2π/kc ≈ 4.8154, measured in small-scale units �.
Most of the simulations use horizontal dimensions of 10λc × 10λc, although some
additional simulations with different domain sizes were also carried out to quantify the
influence of the geometry. We find that a domain size of 10λc × 10λc is sufficient for
accurate computation of statistical quantities, though the role of LSVs appears to become
increasingly important with increasing domain size; we discuss this effect in our results.

2.2. Depth-averaged dynamics and energetics
For the purpose of investigating the inverse energy cascade, we decompose the vertical
vorticity into a depth-averaged (barotropic) component, 〈ζ 〉, and a fluctuating (baroclinic)
component, ζ ′, such that

ζ = 〈ζ 〉 + ζ ′, (2.8)

where, by definition, 〈ζ ′〉 = 0. The depth-averaged (barotropic) vorticity equation is then
found by vertically averaging equation (2.1), and is given by

∂t〈ζ 〉 + J[〈ψ〉, 〈ζ 〉] = −〈J[ψ ′, ζ ′]〉 + ∇2
⊥〈ζ 〉. (2.9)

Thus, the barotropic dynamics are governed by a two-dimensional vorticity equation in
which the sole forcing comes from the convective dynamics, represented by the first term
on the right-hand side of the above equation.

The barotropic, time-dependent kinetic energy density is defined as follows:

Kbt(t) = 1
2

(
〈u〉2 + 〈v〉2V

)
= 1

2 |∇⊥〈ψ〉|2V , (2.10)

where ·̄ V indicates an average over the small, horizontal spatial scales, consistent with the
notation employed in Plumley et al. (2018). In Fourier space, the barotropic kinetic energy
equation is derived by multiplying the Fourier representation of (2.9) by the complex
conjugate of −〈ψ〉k exp (ik · x), the spectral representation of 〈ψ〉, and integrating over
physical space to obtain

∂tKbt(k) = Tk + Fk + Dk, (2.11)

where the box-normalised horizontal wavenumber vector is k = (kx, ky, 0), and k = |k|.
This equation describes the evolution of the kinetic energy contained in the barotropic
mode of wavenumber k that is due to (i) the interaction with the other barotropic modes,

Tk =
∑
|k|=k

Re{〈ψ〉∗k ◦ Fk[J[〈ψ〉 , 〈ζ 〉]]}; (2.12)

(ii) the interaction with the baroclinic, convective modes,

Fk =
∑
|k|=k

Re{〈ψ〉∗k ◦ Fk[〈J[ψ ′, ζ ′]〉]}; (2.13)

and (iii) the viscous dissipation of the barotropic mode,

Dk =
∑
|k|=k

Re{|k|2 〈ψ〉∗k ◦ 〈ζ 〉k}. (2.14)

In the above definitions, the superscript ∗ denotes a complex conjugate, Fk[·] indicates the
horizontal Fourier transform of the argument in square brackets, the symbol ◦ indicates a
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Inverse cascade and flow speeds

Hadamard (element-wise) product, Re{·} is the real part of the argument in curly brackets
and the sum is taken over all horizontal wavenumbers. The barotropic-to-barotropic and
baroclinic-to-barotropic transfer functions Tk and Fk can be explicitly expressed in terms
of a triadic interaction due to the Jacobian (i.e. nonlinear) terms (Rubio et al. 2014).
The formation of LSVs is due to a positive contribution from Tk and Fk in (2.11) at the
domain-scale wavenumber k = 1. As LSVs form, the kinetic energy grows in time until
dissipation balances the positive transfer at k = 1. Eventually, a statistically stationary
state is reached where D̄k ≈ −(T̄k + F̄k), where we notice that, for these quantities, ·̄ is
equivalent to an average over the fast temporal scale only; in contrast with previous work,
all of the simulations presented here have reached this stationary state. Hereafter, in order
to simplify notation we omit the averaging operator and refer only to the time-averaged
values of Kbt, Tk, Fk and Dk, unless otherwise stated.

2.3. Diagnostic quantities
Here, we define several diagnostic quantities that will be used to characterise the
dynamical state of the convective system. The heat transfer across the fluid layer is
quantified by the non-dimensional Nusselt number

Nu = 1 + Pr〈wθ〉. (2.15)

In the present study the small-scale, or convective, Reynolds number is defined as
characterising

R̃e = 〈Wrms〉 �
ν

= 〈wrms〉 , (2.16)

where Wrms = (W̄2)1/2 and wrms = (W̄2)1/2 are the root-mean-square (r.m.s.) values of
the dimensional and non-dimensional vertical velocity component, respectively. The above
definition is particularly useful for characterising the amplitude of the convective motions,
rather than the large-amplitude horizontal motions that occur in the presence of a strong
inverse cascade. We also find it useful to refer to instantaneous values of the Nusselt and
Reynolds number, and denote these by Nu(t) and R̃e(t), respectively.

Together with the barotropic kinetic energy (2.10) we will also consider the
time-averaged baroclinic, vertical and total kinetic energy densities, respectively defined
as

Kbc = 1
2 〈(u′)2 + (v)′2〉 = 1

2 〈|∇⊥ψ ′|2〉; (2.17)

Kz = 1
2 〈w̄2〉, (2.18)

K = 1
2 〈u2 + v2 + w2〉 = 1

2 〈|∇⊥ψ |2〉 + Kz. (2.19)

With the above definitions, the Reynolds number can be expressed as R̃e = √
2Kz. As for

Nu and R̃e, we find it useful to refer to the instantaneous values of the total kinetic energy
density as K(t).

2.4. Domain of validity of the QG equations and comparison with DNS
The asymptotic equations (2.1)–(2.4) are valid for low Rossby number convection only;
this constraint implies that R̃a � O(Ek−1/3) and Pr � O(Ek1/4) (Julien et al. 2012b). The
violation of these conditions signifies the weakening of the dominant geostrophic balance
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and a loss of rotational constraint. As a relevant natural example, for the Earth’s outer
core these conditions are R̃a � O(105) and Pr � O(10−3.75). The former is most likely
satisfied, although large uncertainties remain concerning the estimation of R̃a for the
core (see Cheng et al. (2015) for a discussion); the latter is satisfied since Pr = O(10−2)
for liquid metals. For recent DNS, for which Ek = O(10−7) (Stellmach et al. 2014), the
rapidly rotating regime is bounded by R̃a � O(102.5) and Pr � O(10−1.75); although the
latter is typically satisfied since Pr = O(1) in numerical studies, the former is within
reach in the present study. Note that the R̃a � O(Ek−1/3) constraint does not limit the
QG equation to low-Ra regimes. However, it does limit the range of Ra for which the QG
approximation is valid given the Ek of the unscaled convective system. The smaller the Ek
of the unscaled system, the larger the range of Ra for which the convective flows can be
considered rotationally constrained, and for which the reduced equations (2.1)–(2.4) can
be used (King, Stellmach & Aurnou 2012; Gastine, Wicht & Aubert 2016; Plumley &
Julien 2019). As R̃a � O(Ek−1/3) the physical system under consideration should
be studied with DNS, since the QG model only captures rotationally constrained
dynamics.

The asymptotic model (2.1)–(2.4) has been tested against stress-free DNS calculations
in rapidly rotating regimes satisfying the above bounds, with excellent agreement between
the two approaches (Stellmach et al. 2014). The effect of no-slip boundaries can be
included in the asymptotic equations (2.1)–(2.4) by parametrising the effect of the
Ekman layers on the interior flow (Julien et al. 2016). Results from the asymptotic
equations can then be compared with no-slip DNS and laboratory experiments, again with
excellent agreement (Plumley et al. 2016). In particular, heat transport data (Nu) were
successfully compared with DNS with Ek = 10−7 and 1 � Pr � 7 (Stellmach et al. 2014;
Plumley et al. 2016), and with laboratory experiments with water (Cheng et al. 2015), for
2 × 10−8 � Ek � 3 × 10−6 (Plumley et al. 2016). Furthermore, the same morphological
differences in the flow regimes obtained with increasing R̃a (see Sprague et al. (2006),
Julien et al. (2012b), Cheng et al. (2015) and § 3) were found in both numerical (DNS
and asymptotic) and laboratory experiments. Of particular interest to the present study,
LSV formation has been observed in both DNS and asymptotic calculations for Pr = 1
(Sprague et al. 2006; Julien et al. 2012b; Favier et al. 2014; Guervilly et al. 2014;
Rubio et al. 2014; Stellmach et al. 2014), for R̃a � 3R̃ac, where R̃ac is the critical
value for the onset of thermal convection. However, as mentioned in § 1, the LSVs in
DNS are predominantly cyclonic due to a local reduction of the rotational constraint in
the anticyclonic component (Guervilly et al. 2014). On the contrary, the LSVs in QG
calculations are always dipolar in structure due to the limit of asymptotically small of Ro.
This is guaranteed by a known reflection symmetry in this limit (Hakim, Snyder & Muraki
2002; Sprague et al. 2006). Furthermore, as the thermal driving is increased and the
condition R̃a � O(Ek−1/3) is violated, the system transitions towards three-dimensional,
isotropic turbulence and LSV formation is gradually lost in DNS (Guervilly et al. 2014).
This transition also makes subcritical sustenance of the LSVs possible (Favier et al. 2019):
an artificially injected, highly energetic, cyclonic LSV is stable in the transition regimes
for which domain-scale, barotropic vortices would not spontaneously form. This rich
phenomenology is characteristic of regimes for which R̃a � O(Ek−1/3) in which Ro =
O(1) and so it is not observed in QG simulations, for which Ro and Ek are asymptotically
small and the leading-order geostrophic balance is explicitly enforced. Therefore, no LSV
subcritical behaviour is observed in asymptotic calculations (see § 3.3), and no upper
limit to R̃a for LSV formation can be achieved as a consequence of the loss of rotational
constraint.
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Inverse cascade and flow speeds

3. Results

3.1. Flow morphology: two-scale flows
The details of the simulations performed for this study are given in table 1. The choice
of parameters allows us to refine the results of previous QG calculations (Julien et al.
2012b) in the range 1 � Pr � 3 and for Pr = 7, of particular relevance for laboratory
experiments. The temporally averaged values of R̃e and Nu displayed in table 1 are
calculated over a temporal window in which the system reached a statistically stationary
state. If LSVs are present in the domain, R̃e and Nu might reach stationary values only
when the barotropic kinetic energy has saturated, in accordance with previous studies
(Julien et al. 2012b; Favier et al. 2014; Guervilly et al. 2014; Rubio et al. 2014) where
Nu has been shown to evolve over the time needed for the total kinetic energy to saturate.
The interested reader is directed to supplementary figure 1 available at https://doi.org/10.
1017/jfm.2020.1058 for an example of this behaviour. Figures 1(a) and 1(c) shows R̃e and
Nu as functions of R̃a and Pr. The continuous lines in figure 1(a) indicate the least-square
fit to a power law of the kind R̃e = αr(R̃a − R̃ac)

βr Prγr with αr = 0.1883, βr = 1.1512
and γr =-1.2172. In figure 1(b) we illustrate the collapse of the R̃e data points to the law
R̃e ∼ (R̃a − R̃ac)Pr−1, empirically found and consistent with the coefficients βr and
γr. Figure 1(b) suggests that the reduced Grashof number, R̃aPr−1 plays a key role in
controlling the dynamics. Figure 1(d) shows the collapse of the Nu data points to a
power law of the kind Nu ∼ (R̃a − R̃ac)

3/2Pr−1/2, distinctive of the ultimate regime of
thermal convection. Inspection of figures 1(c) and 1(d) reveals the complex nature of
the scaling behaviour of Nu with respect to the input parameters, in agreement with
previous studies (Julien et al. 2012b). In particular we note that the Pr-dependence does
not trivially separate the original data when displayed as a function of R̃a (as opposed
as to the R̃e data in figure 1a). Further details concerning power-law fits are given
in § 3.5.

Following Julien et al. (2012b), inspection of volumetric renderings of the fluctuating
temperature (figure 2) suggests that we can qualitatively classify the flows into: the cellular
regime (C); the convective Taylor column regime (CTC); the plume regime (P); and
the geostrophic turbulence regime (G). Regime C is only obtained close to the onset
of thermal convection, i.e. for Rayleigh numbers not much larger than the critical value
of R̃ac � 8.7; the CTC regime is characterised by columns that stretch across the fluid
layer, surrounded by ‘sleeves’ of oppositely signed vorticity (also visible in the fluctuating
temperature) that prevent columns from interacting with each other; in the P regime the
insulation mechanism weakens and column–column interaction shortens these structures,
transforming them into plumes; finally, geostrophic turbulence prevails at sufficiently large
Rayleigh numbers where no obvious coherence in the fluctuating temperature field is
observed. Although distinct transitions in the flow statistics can sometimes be used to
separate these flow regimes (Nieves, Rubio & Julien 2014), an obvious distinction cannot
always be made, e.g. cases (R̃a = 40,Pr = 2) and (R̃a = 60,Pr = 3) shown in figure 2,
where plumes generated at each horizontal boundary seem to coexist with columns
spanning the whole vertical extension of the computational domain.

For a given value of Pr, we observe the formation of LSVs as R̃a is increased.
These dipolar LSVs are readily identified from visual inspection of the geostrophic
streamfunction ψ . Some representative cases are shown in figure 3. Crucially, we observe
LSV formation for all Pr values reported in table 1, including, for the first time to our
knowledge, Pr > 3. We find that for the LSVs to be present in the domain, convection does
not need to be in the geostrophic turbulent regime, as was previously suggested (Julien
et al. 2012b; Stellmach et al. 2014).
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Pr R̃a Nx × Ny × Nz �t R̃e ± σR̃e Nu ± σNu

1 20 128 × 128 × 64 5 × 10−3 3.5408 ± 0.0860 4.010 ± 0.130
1 30 128 × 128 × 64 5 × 10−4 7.2190 ± 0.1805 7.9603 ± 0.3688
1 40 256 × 256 × 64 5 × 10−4 10.586 ± 0.307 11.788 ± 0.569
1 60 256 × 256 × 96 1 × 10−4 16.822 ± 0.558 19.961 ± 0.953
1 80 384 × 384 × 128 5 × 10−5 24.685 ± 0.711 30.92 ± 1.25
1 120 384 × 384 × 192 5 × 10−5 41.40 ± 2.59 58.20 ± 4.32
1 160 256 × 256 × 256 1 × 10−4 59.4 ± 12.4 98.06 ± 9.95
1 200 384 × 384 × 384 5 × 10−5 84.21 ± 6.76 146.24 ± 12.38

1.5 20 128 × 128 × 96 1 × 10−3 2.2527 ± 0.0482 3.990 ± 0.108
1.5 30 128 × 128 × 96 1 × 10−3 4.366 ± 0.103 8.075 ± 0.315
1.5 40 192 × 192 × 122 5 × 10−4 6.7529 ± 0.227 12.439 ± 0.584
1.5∗ 50∗ 164 × 164 × 108 5 × 10−4 9.082 ± 0.239 16.348 ± 0.758
1.5 60 192 × 192 × 136 5 × 10−4 11.0592 ± 0.434 20.39 ± 1.01
1.5 80 244 × 244 × 136 1 × 10−4 14.772 ± 0.506 28.51 ± 0.999
1.5 120 256 × 256 × 256 1 × 10−4 23.899 ± 0.881 49.11 ± 2.32
1.5 160 256 × 256 × 256 1 × 10−4 35.39 ± 2.30 75.37 ± 4.76

2 20 128 × 128 × 72 1 × 10−3 1.6744 ± 0.0442 4.0143 ± 0.0852
2 40 192 × 192 × 122 5 × 10−4 4.9194 ± 0.0965 13.149 ± 0.427
2∗ 45∗ 192 × 192 × 128 1 × 10−4 5.812 ± 0.124 15.142 ± 0.525
2 50 192 × 192 × 128 1 × 10−4 6.803 ± 0.164 17.749 ± 0.674
2 60 192 × 192 × 136 1 × 10−4 8.361 ± 0.171 21.39 ± 1.05
2 80 192 × 192 × 136 1 × 10−4 11.342 ± 0.413 29.56 ± 1.28
2 120 404 × 404 × 256 1 × 10−4 17.186 ± 0.531 46.74 ± 1.96
2 160 224 × 224 × 256 1 × 10−4 23.57 ± 1.52 66.38 ± 2.81
2 200 256 × 256 × 256 1 × 10−4 30.4862 ± 1.66 93.80 ± 4.14

2.5 20 128 × 128 × 72 1 × 10−3 1.3277 ± 0.0276 3.994 ± 0.108
2.5 40 192 × 192 × 122 5 × 10−4 3.8869 ± 0.0903 13.863 ± 0.665
2.5∗ 55∗ 216 × 216 × 128 1 × 10−4 6.067 ± 0.134 21.286 ± 0.850
2.5∗ 60∗ 216 × 216 × 128 5 × 10−4 6.837 ± 0.168 23.50 ± 1.01
2.5 80 216 × 216 × 136 1 × 10−4 9.364 ± 0.236 31.75 ± 1.31
2.5 160 216 × 216 × 256 1 × 10−4 19.55 ± 1.35 68.3 ± 3.39
2.5 200 256 × 256 × 256 1 × 10−4 24.7205 ± 1.55 91.00 ± 5.42

3 50 288 × 288 × 128 5 × 10−4 4.290 ± 0.106 19.402 ± 0.770
3∗ 60∗ 192 × 192 × 128 1 × 10−4 5.551 ± 0.139 24.853 ± 0.943
3 70 512 × 512 × 128 1 × 10−4 6.919 ± 0.155 30.14 ± 1.26
3∗ 80∗ 256 × 256 × 128 1 × 10−4 8.060 ± 0.184 34.27 ± 1.58
3 120 216 × 216 × 186 1 × 10−4 11.226 ± 0.246 50.24 ± 1.55

7 20 (512 × 512 × 32)† 1 × 10−2 0.45662 ± 0.00387 4.0696 ± 0.0369
7 40 256 × 256 × 32 1 × 10−3 1.3293 ± 0.0179 14.761 ± 0.119
7 60 256 × 256 × 64 1 × 10−3 2.4907 ± 0.0522 32.86 ± 1.42
7 80 256 × 256 × 64 2 × 10−4 3.5423 ± 0.0792 44.73 ± 1.55
7 100 384 × 384 × 92 2 × 10−4 4.748 ± 0.108 62.39 ± 2.37
7 120 384 × 384 × 92 2 × 10−4 5.831 ± 0.122 74.46 ± 2.67
7 135 384 × 384 × 92 1 × 10−4 6.150 ± 0.133 82.32 ± 2.80
7 160 512 × 512 × 92 1 × 10−4 7.448 ± 0.138 92.51 ± 2.51

Table 1. For caption see on next page.
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Inverse cascade and flow speeds

Table 1 (cntd). Details of the numerical simulations: Pr is the Prandtl number; R̃a is the reduced Rayleigh
number; Nx, Ny and NZ are, respectively, the number of Fourier modes in the x and y directions and the
number of Chebyshev modes in the Z direction; �t is the time-step size used during the simulation; R̃e =
〈wrms〉 is the time-averaged, reduced Reynolds number based on the vertical component of the velocity; Nu
is the time-averaged Nusselt number; σR̃e and σNu are the standard deviations of R̃e and Nu, respectively.
The superscript † indicates that the horizontal box size for the simulation is taken to be 20λc × 20λc, where
λc = 2π/kc is the critical wavelength for the onset of thermal convection; for all other cases the box size is
10λc × 10λc. The superscript ∗ indicates cases for which the influence of the lack or presence of LSVs in the
initial condition on the saturated state has been checked (see § 3.3 for details).

3.2. LSV characterisation
To quantify the presence of LSVs in the domain we analysed the time-averaged
barotropic kinetic energy spectra Kbt(k). We define flows in which LSVs are energetically
dominant by the two conditions: Kbt > Kbc; and Kbt(k = 1) � Kbt(k > 1). As examples,
figure 4(a,b) shows the barotropic kinetic energy spectra for Pr = 1 and Pr = 2 over
a range in R̃a. The transition to LSV-dominant states occurs within the ranges 20 <
R̃a < 30 and 40 < R̃a < 45 for the Pr = 1 and the Pr = 2 cases, respectively. As R̃a
is further increased beyond the transition, LSVs becomes increasingly dominant, as
shown by progressively larger values of Kbt(k) for k < 3. Note that for the (R̃a = 20,
Pr = 1) case, the barotropic spectra has a maximum at k = 1. However, for this case,
the barotropic kinetic energy is not dominant, rather, we find that Kbc � 3Kbt for this case.
Therefore, there are no energetically dominant LSVs in the domain for this particular case.

Figure 4(a,b) suggests that the spectral slope at low wavenumbers saturates at the
behaviour Kbt(k) ∼ k−4 for fully developed LSVs. This suggestion can be corroborated by
inspection of the compensated spectra k4Kbt(k), shown in figure 4(c,d). Note that, while
the Pr = 2 cases do suggest a saturation of the low-k spectral slope to a Kbt(k) ∼ k−4

law, the Pr = 1 show a steeper slope (specifically between k−4.2 and k−4.3) for R̃a = 200.
Whether this is a sign that the saturation slope is Pr-dependent or that the Pr = 1 cases
have not yet reached the saturation regime, lies beyond the scope of the present work. The
scaling Kbt(k) ∼ k−3, associated with the presence of LSVs in rapidly rotating thermal
convection studies (Julien et al. 2012b; Rubio et al. 2014), two-dimensional (Smith &
Yakhot 1993, 1994; Borue 1994; Chertkov et al. 2007) and rotating three-dimensional
(Smith & Waleffe 1999) turbulence studies, is shown for comparison. Some low-Ro
calculations in triply periodic domains with a barotropic driving force (Seshasayanan &
Alexakis 2018) also suggest a low-k spectral slope steeper than k−3. However, given the
different nature of the driving force and boundary conditions it is not straightforward to
relate this previous work with the present results. Indeed, it has been shown in triply
periodic simulations of synthetically forced, rotating turbulence, that the details of the
imposed forcing (e.g. spatial scales, isotropy, net helicity) has profound consequences on
the development of the inverse energy cascade and on the low-k slope of the saturated
energy spectra (Sen et al. 2012; Pouquet et al. 2013).

The phenomenology described above for Pr = 1 and Pr = 2 is observed for all Pr
considered in the present study, although the threshold Rayleigh number for LSV-dominant
state increases with Pr. However, we observe that the LSVs become energetically
dominant provided R̃e � 6, independent of Pr. The lowest value for which LSV formation
has been observed is R̃e = 5.812 for the (R̃a = 45,Pr = 2) case. We indicate this value
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Figure 1. (a,b) Temporally averaged Reynolds number R̃e and (c,d) Nusselt number Nu for all of the
simulations: (a) R̃e versus the reduced Rayleigh number R̃a; (b) R̃e versus the rescaled quantity (R̃a − R̃ac)/Pr;
(c) Nu versus R̃a; (d) Nu versus the rescaled coordinate (R̃a − R̃ac)

3/2Pr−1/2. Continuous lines in (a) show the
best-fit, three parameter power-law scaling R̃e = αr(R̃a − R̃ac)

βr Prγr , where αr = 0.1883, βr = 1.1512 and
γr =-1.2172 (see § 3.5). Data for Pr = 10 in (a,b) are from Calkins et al. (2016). The dashed horizontal lines in
(a,b) show the Reynolds number at which the box-scale depth-averaged kinetic energy becomes dominant (see
§ 3.2).

by the horizontal dashed line in figures 1(a) and 1(b). The only exception is the (R̃a =
55,Pr = 2.5) case for which no energetically dominant LSVs are observed, although
R̃e = 6.067 ± 0.134. This discrepancy can be explained by noting that these two values
of R̃e are (considering their temporal fluctuations) consistent with each other and by
admitting that the transition to LSV-dominated regime is not abrupt. A more detailed
exploration of the parameter space around the transition could reveal other exceptions
to the threshold we identified and possibly a subtle Pr dependence.

In addition to the transition shown in the barotropic kinetic energy spectra, we also
find (with increasing R̃a) a distinct transition in the character of the three terms present
in the spectral kinetic energy equation (2.11). In figure 4(e, f ) we illustrate how the
time-averaged, barotropic energy transfer Tk + Fk evolves with R̃a for the specific case
of Pr = 2. We note that [Tk + Fk]k=1 > 0 for all of the cases investigated, indicating
that energy is always being transferred to the k = 1 mode, regardless of the value of
R̃a. However, we find that Tk + Fk changes from possessing a peak at k > 1, to then
peaking at k = 1 for a sufficiently large value of R̃a; for the Pr = 2 data shown this
transition occurs when R̃a > 50. Analysing all of our simulations shows that this transition
occurs when R̃e � 6.491, for any value of Pr. This threshold value corresponds to the
simulation (R̃a = 135,Pr = 7) and it is noted that no simulation with R̃e < 6.491 satisfies
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(e)

(b)(a) (c)

(h)(g) (i)

(d ) ( f )

Figure 2. Volumetric renderings of fluctuating temperature, ϑ , showing the different convective regimes for
increasing Rayleigh number (left to right) and increasing Prandtl number (top to bottom). The abbreviations
correspond to: convective Taylor column (CTC); plume (P); geostrophic turbulence (G). See online
supplementary material for movies illustrating the temporal evolution of the fluctuating temperature for selected
values of R̃a and Pr: (a) R̃a = 40,Pr = 2 (CTC/P); (b) R̃a = 60,Pr = 2 (P); (c) R̃a = 200,Pr = 2 (G);
(d) R̃a = 60,Pr = 3 (CTC/P); (e) R̃a = 80,Pr = 3 (P); ( f ) R̃a = 120,Pr = 3 (P); (g) R̃a = 80,Pr = 7
(CTC); (h) R̃a = 135,Pr = 7 (P); (i) R̃a = 160,Pr = 7 (P).

[Tk + Fk]k=1 > [Tk + Fk]k>1. The only exception is the case (R̃a = 40,Pr = 1.5), for
which R̃e = 6.7529 ± 0.227 and the energy transfer at k = 1 is subdominant. Again, given
the finite fluctuations in the R̃e values, we argue that a transition region may exist for which
a simple threshold rule may not always work; a more detailed exploration of the parameter
space may reveal subtle Pr dependencies in the transition into the regime for which the
barotropic energy transfer at k = 1 is dominant.
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(e)

(b)(a) (c)

(h)(g) (i)

(d ) ( f )

Figure 3. Volumetric renderings of the geostrophic streamfunction (pressure), ψ , showing the development
of large-scale vortices (LSVs) for increasing Rayleigh number (left to right) and increasing Prandtl number
(top to bottom): (a) R̃a = 40,Pr = 2; (b) R̃a = 60,Pr = 2; (c) R̃a = 200,Pr = 2; (d) R̃a = 60,Pr = 3; (e)
R̃a = 80,Pr = 3; ( f ) R̃a = 120,Pr = 3; (g) R̃a = 80,Pr = 7; (h) R̃a = 135,Pr = 7; (i) R̃a = 160,Pr = 7.

Closer inspection of Fk and Tk separately (figure 4f ) indicates that the baroclinic,
convective dynamics primarily transfers energy to the barotropic dynamics around k � 5
(notice the positive peak in Fk for k � 5). Energy transferred to the barotropic dynamics is
then transferred upscale by the barotropic nonlinear interactions, as indicated by negative
values of Tk for wavenumbers k > 4, and positive values at the largest scales. The inverse
cascade that leads to LSV formation is therefore directly driven by the barotropic nonlinear
interactions in (2.9), whereas the energy is provided by the interaction of the baroclinic
dynamics with the barotropic flows. The fact that

∑
k�0 Tk = 0 confirms that the nonlinear

barotropic interactions do not inject or extract barotropic energy and that the saturation of
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Figure 4. (a,b) Spectra of the barotropic kinetic energy Kbt(k) for select values of R̃a and for Pr = 1
and Pr = 2. The scalings Kbt(k) ∼ k−3 and Kbt(k) ∼ k−4 are shown for comparison. (c,d) Compensated
spectra k4Kbt(k) for the same cases shown in (a,b). (e) Barotropic transfer Tk + Fk for the Pr = 2 cases;
( f ) barotropic-to-barotropic (Tk) and baroclinic-to-barotropic (Fk) for the Pr = 2 case separately illustrated
in continuous and dashed lines, respectively. Colour legend for (e,f ) is the same as in (b,d). A black vertical
line is drawn in correspondence of Tk,Fk = 0. The insets highlight the behaviour for R̃a � 50. All quantities
have been time averaged over a statistically stationary state for which Tk + Fk ≈ −Dk.

Kbt is controlled by the balance between energy injected from the baroclinic dynamics and
energy dissipated through viscosity

0 ≈
∑
k�0

Fk +
∑
k�0

Dk. (3.1)
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Figure 5. Time-averaged, barotropic transfer functions showing the change in energy transfer behaviour as the
inverse cascade becomes more prominent. All cases use R̃a = 60 and Prandtl numbers (a) Pr = 7 (R̃e ≈ 2.5),
(b) Pr = 2.5 (R̃e ≈ 6.8) and (c) Pr = 1 (R̃e ≈ 16.8). These three cases are representative of, respectively, the
CTC/P regime, showing no LSVs in the domain and R̃e � 6; the P regime, showing LSVs in the domain and
R̃e � 6; the G regime, with robust LSVs and R̃e � 6.

This mechanism is in agreement with the formation of large-scale condensates in
two-dimensional (2-D) calculations (Borue 1994; Smith & Yakhot 1994; Chertkov et al.
2007; Laurie et al. 2014) where the transfer of energy is due to the nonlinear interactions
between different scales of the 2-D flow (equivalent to the barotropic-to-barotropic energy
transfer described by Tk). This view is also confirmed by recent 3-D studies (Buzzicotti
et al. 2018).

As mentioned in § 2.2, in the saturated state Dk ≈ −(Tk + Fk). Examples are shown in
figure 5 for R̃a = 60 and Pr = 7, Pr = 2.5 and Pr = 1. These cases are representative of,
respectively, a low-turbulence case at the edge of the CTC and P regimes where R̃e � 6
and, consequently, an inverse cascade that is not strong enough to drive LSV formation; a
case in the P regime with R̃e � 6, slightly above the critical value for LSV formation and
an inverse cascade; and a case in the G regime, with a robust inverse cascade possessing
a strong peak at k = 1 driving energetically dominant LSVs. This figure illustrate how the
pattern observed in figure 4(e, f ) for fixed Pr and increasing R̃a can be discerned for fixed
R̃a and decreasing Pr.

Following Guervilly et al. (2014), we can characterise the kinetic energy of the
barotropic flow using the ratio of total kinetic energy to vertical kinetic energy,

Γ = K/(3Kz). (3.2)

The factor of 3 in the denominator ensures that Γ → 1 if the kinetic energy
is equipartitioned between the horizontal and vertical components of the velocity.
Conversely, when the barotropic kinetic energy dominates, we expect this ratio to become
significantly larger than unity. Figures 6(a) and 6(b) show Γ for all of the simulations
as a function of R̃a and R̃e, respectively. In agreement with the DNS calculations of
Guervilly et al. (2014), Γ ≈ 1 for small values of R̃a, then increases rapidly once
LSVs begin to form. We find that Γ reaches a maximum of Γmax ≈ 5.5, that appears
to be independent of the particular value of Pr, though only the Pr = 1 and Pr = 1.5
simulations show a maximum value. For Pr = 1, Γ reaches a maximum value at R̃a = 80,
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Figure 6. Scaling behaviour of the kinetic energy for all of the simulations. (a) Ratio of the total kinetic
energy to the vertical kinetic energy (Γ ) versus R̃a; (b) Γ versus R̃e; (c) barotropic kinetic energy Kbt versus
R̃a; (d) Kbt versus R̃e. The vertical dashed line at R̃e = 5.812 in (b,d) demarcates the onset of LSV-dominant
behaviour. Slopes in (b,d) are shown for reference.

whereas for Pr = 1.5, Γmax occurs at R̃a = 120, suggesting that the value of R̃a at which
Γmax is observed increases rapidly with Prandtl number.

Since the value of R̃a at which LSVs begin to form is Pr-dependent, Γ is also plotted
as a function of R̃e in figure 6(b). The data suggest that the evolution of Γ is uniquely
determined by R̃e (or (R̃a − R̃ac)Pr−1 according to figure 1b) since all curves show
self-similar behaviour, independent of the particular value of Pr. The dashed vertical line
indicates R̃e = 5.812, the lowest value at which the (k = 1) LSVs have been observed to
become dominant. For cases in which R̃e is below this threshold value, Γ is close to 1
for all values of Pr, and the convective pattern, or flow regime, for all of these cases can
be qualitatively classified as cellular or convective Taylor columns. Above this threshold
value of the Reynolds number, we find both plumes and eventually geostrophic turbulence
as R̃e grows. For both the Pr = 1 and Pr = 1.5 cases, Γmax is reached for R̃e � 24.

We emphasise that since all of the calculations in the present work were carried out
with the QG model, the observed decrease of Γ for large values R̃a is not due to a loss
of rotational constraint. Although the DNS study of Guervilly et al. (2014) also report a
decrease in Γ for sufficiently large forcing, their observed decrease might be caused by an
increase in the Rossby number with increasing forcing. In the present study, Ro remains
asymptotically small, regardless of the thermal forcing. Also, as pointed out previously, the
LSVs observed in Guervilly et al. (2014) are predominantly cyclonic, whereas the LSVs
observed in the present simulations are dipolar.

Figures 6(c) and 6(d) show the barotropic kinetic energy versus R̃a and R̃e, respectively.
In figure 6(d), slopes of R̃e7/2 and R̃e3/2 (found empirically) are shown as reference, along
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with the vertical dashed line denoting the threshold Reynolds number R̃e = 5.812. The
‘s-shaped’ behaviour of the data, along with Γ , suggests that the barotropic mode is
growing at an ever-decreasing rate as R̃a is increased. Taking the barotropic kinetic energy
Kbt scaling with R̃e as illustrated in figure 6(d) and with Kbc ∼ R̃e2 (found empirically
and consistent with the expectation Kbc ∼ Kz ∼ R̃e2; see supplementary figure 2), we can
derive the expected evolution of Γ in the growing (6 � R̃e � 24) and decaying (R̃e > 24)
regimes. In the former, under the assumption that Kbt � Kbc,Kz, we obtain Γ ∼ R̃e3/2;
in the latter, taking R̃e → ∞, we obtain Γ ∼ R̃e−1/2. These slopes are illustrated in
figure 6(b), for reference.

To better understand the change in scaling behaviour of the barotropic kinetic energy
with increasing Rayleigh number, we examine the nonlinear convective forcing term in
the barotropic vorticity equation (2.9). In particular, the nonlinear baroclinic term can be
written as

〈J[ψ ′, ζ ′]〉 = ∇⊥ · 〈u′ζ ′〉, (3.3)

which suggests that the decreased efficiency of the barotropic mode is due to a drop in
correlations between the baroclinic velocity and baroclinic vorticity. We calculated the
cross-correlation coefficient for the x-component of the baroclinic velocity vector and
baroclinic vorticity, defined as

C(u′, ζ ′) = 〈(ζ ′u′)2〉√
〈(ζ ′ζ ′)2〉〈(u′u′)2〉

, (3.4)

and analogously for the cross-correlation for the y-component of the baroclinic velocity
field and the baroclinic vorticity, C(v′, ζ ′). We note that this definition leads to C = 0.5
for perfect correlation between one component of the baroclinic velocity vector and
the baroclinic vorticity, since the statistics are isotropic in the horizontal plane when
sufficiently time averaged. The coefficients were computed over the entire investigated
range of R̃a for the case Pr = 1. Figure 7 shows the average value

C(u′, ζ ′) = C(u′, ζ ′)+ C(v′, ζ ′)
2

. (3.5)

The vertical dashed lines in the figure indicate the R̃a values that correspond to the
transition to LSV-forming regimes and to the maximum value of Γ . We observe that
C(u′, ζ ′) decays as R̃a is increased from R̃a > 20, suggesting one possible reason for
the reduced rate of growth of the barotropic kinetic energy with increasing Rayleigh
number. We also observe a change in slope as R̃a > 80 (the value for which Γ reaches
the maximum value for Pr = 1), suggesting a complex interaction between the barotropic
and baroclinic flows.

3.3. The influence of initial conditions
For the cases indicated by the superscript ∗ in table 1, additional simulations were carried
out to test the influence of initial conditions on the occurrence of LSVs. In particular,
for cases capable of forming LSVs (R̃e > 6), we checked that the kinetic energy of the
saturated state is independent of the presence of LSVs in the initial condition. Our results
indicate that both baroclinic (or convective) amplitude (measured by R̃e) and the barotropic
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Figure 7. Correlation coefficient between the baroclinic vorticity and the horizontal components of the
baroclinic velocity as a function of the Rayleigh number R̃a. The Prandtl number is fixed at Pr = 1. A
value of C = 0.5 is perfect correlation for one component of the velocity vector. The vertical lines annotated
with R̃e = 6 and R̃e = 24 indicate the approximate R̃a values at which the flow becomes LSV dominant and
convection dominant, respectively (see figure 6a).

kinetic energy in the saturated state do not depend on the initial condition, but only depend
on Pr and R̃a. As an example, in figure 8 we show this by illustrating the time evolution
of the kinetic energy per unit volume, K(t), and the vertical Reynolds number, R̃e(t), for
the case (R̃a = 50,Pr = 1.5). Two simulations were run for this case: one started from a
random initial condition that does not contain pre-existing LSVs (labelled as ‘random
IC’ in figure 8), and one started from an initial condition with LSVs already present
in the domain, given from the saturated state of the (R̃a = 40,Pr = 1) case (labelled
as ‘LSVs IC’). In the former case, the initial growth of kinetic energy is due to the
formation of the LSVs caused by the imbalance Tk + Fk > |Dk| for k = 1. In the latter
case, the LSVs initially present in the system were formed at a higher R̃e and due to
a stronger inverse cascade than the one developed for (R̃a = 50,Pr = 1.5). Therefore,
initially the imbalance Tk + Fk < |Dk| leads to a kinetic energy decay as the LSVs cannot
be energetically sustained. For both cases, a new state is eventually reached for which,
statistically speaking |Dk| = Tk + Fk.

Similarly, we also found that for cases in which R̃e � 6, LSVs would eventually decay if
present in the initial conditions. This result is in apparent contrast with DNS calculations
where a large-intensity, domain-scale cyclonic vortex appears to be long lived when
injected in a convective system characterised by Ro = O(1), in which large-scale structure
would not spontaneously form (Favier et al. 2019). Note, however, that in Favier et al.
(2019) the subcritical sustenance of a LSV is only obtained in regimes for which R̃a
is large enough for the dynamics to be in a transition regime between states that are
rotationally constrained and regimes for which the geostrophic balance is no longer valid
at leading order. In the asymptotic QG model employed here, the latter is unattainable by
definition (see § 2) and the subcritical formation of LSVs cannot be investigated in the
present study. For simulations with Ro � 1 and R̃a smaller than the threshold value for
LSV formation, Favier et al. (2019) found that the final state is independent of the initial
condition, in line with our results.
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Figure 8. Influence of initial conditions on LSV formation. Kinetic energy (a) and reduced vertical Reynolds
number (b) for the parameters Pr = 1.5 and R̃a = 50 from two different initial conditions: the case marked as
‘random IC’ has a random initial condition with no initial LSVs present; ‘LSVs IC’ marks an initial condition
with well-developed LSVs in the system.

3.4. The influence of box dimensions
The horizontal dimensions of the simulation domain are represented in terms of
integer multiples of the critical wavelength λc. We indicate the horizontal size of the
computational domain by ncλc × ncλc, with nc being an integer. Most of the simulations
were carried out with horizontal dimensions of 10λc × 10λc (i.e. nc = 10), which
represents a trade-off between using a box size that is large enough to allow for computing
converged statistics, and using a horizontal spatial resolution that is computationally
feasible for an extensive exploration of the parameter space. Previous work has used values
up to nc = 20, but, to our knowledge, no systematic investigations of the box size on
key quantities such as the Nusselt number and Reynolds number have been reported for
rotating convection. For non-rotating convection, however, Stevens et al. (2018) showed
that surprisingly large box dimensions are needed to obtain convergence in all statistical
quantities; in contrast, the same authors found that globally averaged quantities such as the
Nusselt number converged with relatively small box dimensions. For the present work we
have carried out simulations for fixed Rayleigh number and Prandtl number of R̃a = 40
and Pr = 1. Robust LSVs are present with this parameter combination. Time series of
these simulations are available in the supplementary material (see supplementary figure 1).

Figure 9 shows the convective Reynolds number and Nusselt number, and the barotropic
and baroclinic kinetic energy for a range of box sizes. The solid lines in figure 9(a) show
the Nusselt and Reynolds number for a simulation in which the barotropic mode was
set to zero at each time step. We observe a nearly 23 % increase in the heat transport
when the barotropic mode is not present. This result might be interpreted in terms of the
horizontal mixing that is induced by the barotropic mode; the vertical transport of heat
is reduced when horizontal motions sweep heat laterally. In addition, we find that the
Reynolds number is reduced by ≈4.4 % with respect to the nc = 20 case. This observation
suggests that the inverse cascade plays a relatively small role in influencing the amplitude
of the convective flow speeds.

An estimate for the intensity of LSVs based on the domain size can be made from
the following simple argument. When well-developed LSVs are present, the dominant
component of the kinetic energy spectra (k � 5) scales approximately as Kbt(k∗) ∼ k∗−3

(Kraichnan 1967; Smith & Waleffe 1999; Rubio et al. 2014), where k∗ = kk̃box, with k̃box =
2πL−1

box and Lbox = ncλc, is the dimensional box-scale wavenumber. Calculating the total
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Figure 9. Influence of the horizontal dimensions of the simulation domain on various quantities. Results for
simulations with different horizontal dimensions, as characterised by ncλc × ncλc, where nc is an integer and λc
is the critical horizontal wavelength. (a) Time-averaged Reynolds number R̃e and Nusselt number Nu versus nc;
(b) normalised barotropic kinetic energy Kbtn−2

c and baroclinic kinetic energy Kbc. For all simulations shown
here Pr = 1 and R̃a = 40. The horizontal solid blue and red lines labelled ‘bc’ represent the average values of
R̃e and Nu, respectively, calculated for a simulation with nc = 10 in which the barotropic flow is set to zero.
The horizontal dashed lines indicate the nc = 20 values for comparison with the baroclinic case.

kinetic energy we obtain

Kbt =
∫

Kbt(k∗) dk∗ ∼ k∗−2 ∼ L2
box, (3.6)

where Kbt � Kbt(k∗ = k̃box) when robust LSVs are observed in the system. In particular,
by doubling the linear size of the (squared) domain the kinetic energy of LSVs is allowed
to quadruple in magnitude. The DNS study of Favier et al. (2014) also observed an increase
in the barotropic kinetic energy with increasing box size. Our QG data shown in figure 9(b)
are supportive of this quadratic dependence on box size.

3.5. Scaling laws for the baroclinic dynamics
Here, we discuss least-squares fits to the baroclinic quantities R̃e and Nu. Power-law
scalings were computed from all data collected in this study (see table 1 and figure 1a)
for various subsets of R̃a and Pr. For R̃e with varying Pr, we used power-law fits of the
form

R̃e = αr(R̃a − R̃ac)
βr Prγr , (3.7)

where αr, βr and γr are all numerically computed constants. For constant Pr, we used

R̃e = αr(R̃a − R̃ac)
βr . (3.8)

The numerically computed constants are denoted by αr, βr and γr and given in table 2.
Fitting to all available data reported in this study (including the Pr = 10 dataset from

Calkins et al. 2016) we obtain (αr, βr, γr) = (0.1883, 1.1512,−1.2172). We notice that
these values are not too different from a linear scaling of the form R̃e ∼ R̃aPr−1, again
suggesting that the reduced Grashof number plays a key role in controlling the dynamics.
For many of the cases we find that βr is closer to unity when a single value of Pr is
used. Figure 10(a) shows the compensated Reynolds number R̃ePr/R̃a, where we see
that there is a range of R̃a values over which this scaling provides a reasonably good
fit. However, significant departure from this linear Grashof number scaling is observed for
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Pr R̃a αr βr γr

[1, 10] [20, 200] 0.1883 1.1512 −1.2172
[1, 7] [20, 200] 0.1899 1.1502 −1.2376
1 [20, 200] 0.1354 1.2198 —
1.5 [20, 160] 0.1567 1.0758 —
2 [20, 200] 0.1330 1.0399 —
2.5 [20, 200] 0.1375 0.9864 —
3 [20, 120] 0.1638 0.9007 —
7 [20, 160] 0.0522 0.9912 —
10 [20, 120] 0.0245 1.0792 —

Table 2. Least-squares fits to the Reynolds number, R̃e = αr(R̃a − R̃ac)
βr Prγr (for data encompassing

multiple Pr) or R̃e = αr(R̃a − R̃ac)
βr (when a single Pr is considered).

(a) (b)
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Pr = 2.5
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Pr = 7
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Figure 10. Scaling of the Reynolds number with R̃a. (a) Compensated R̃e calculated according to
R̃e ∼ R̃aPr−1. (b) Compensated R̃e calculated according to the law (3.7) and with values of αr, βr and γr
reported in table 2 for Pr ∈ [1, 10] and R̃a ∈ [20, 200] (i.e. all available R̃e data).

the lower values of Pr, i.e. those simulations that are characterised by the largest values
of R̃e. Interestingly, this departure seems to be correlated with the behaviour of the kinetic
energy ratio Γ ; the largest departures from the linear Grashof number scaling are observed
for cases that possess the peak Γmax, i.e. those cases in which R̃e � 24.

We note that because the QG model employed here is asymptotically reduced, the
Ekman number does not appear explicitly in the governing equations. However, we can
relate our small-scale Reynolds number to the large-scale Reynolds number typically
employed in DNS studies by noting that the convective length scale and fluid depth are
related by � = HEk1/3. Thus,

R̃e = 〈Wrms〉 �
ν

=
( 〈Wrms〉 H

ν

) (
�

H

)
= ReEk1/3. (3.9)

Substituting the definition of the reduced Rayleigh number into the linear scaling R̃e ∼
R̃a/Pr we have

R̃e ∼ R̃a
Pr

= RaEk4/3

Pr
. (3.10)
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Pr R̃a αn βn γn

[1, 7] [20, 200] 0.2169 1.1791 0.0481
[1, 2] [20, 200] 0.0993 1.3776 −0.5276
[1, 7] R̃a(R̃e > 24) 0.0231 1.6643 −0.5493
[1, 7] R̃a(1.5 < R̃e < 24) 0.3616 0.9899 0.3194
1 [20, 200] 0.0372 1.5725 —
1 [120, 200] 0.0194 1.6989 —
1.5 [20, 160] 0.1781 1.2011 —
2 [20, 200] 0.2196 1.1504 —
2.5 [20, 200] 0.3798 1.0402 —
3 [20, 120] 0.6799 0.9147 —
7 [20, 160] 0.6495 0.9957 —

Table 3. Least-squares fits to Nu = αn(R̃a − R̃ac)
βn Prγn (for data encompassing multiple Pr) or Nu =

αn(R̃a − R̃ac)
βn (when a single value of Pr is considered). The third and fourth rows indicate calculations

for the cases for which, respectively, R̃e > 24 and 1.5 < R̃e < 24. For R̃e = 24 the maximum value of Γ is
reached (see figure 6b) and data points for which R̃e < 1.5 are excluded as they exhibit transitional behaviour
(see figure 11).

Upon dividing through by Ek1/3 and using (3.9) we have the relationship

Re ∼ RaEk
Pr

. (3.11)

The above scaling is consistent with the recent spherical convection study of Guervilly
et al. (2019). However, we note that although the above large-scale Reynolds number
scaling is diffusion free, the corresponding small-scale scaling is not.

Analogous least-squares fits to the Nusselt number (Nu) are given by

Nu = αn(R̃a − R̃ac)
βnPrγn, (3.12)

or
Nu = αn(R̃a − R̃ac)

βn, (3.13)

for fixed values of Prandtl number. Results for various subsets of the explored parameters
space are given in table 3. Figure 11(b) shows the compensated Nu according to (3.12)
using all available data from the present study. From table 3 we see that the same fit using
only the 1 � Pr � 2 cases suggests a fit that is roughly consistent with the ultimate scaling

Nu ∼ R̃a3/2Pr−1/2, (3.14)

in agreement with Julien et al. (2012b). Cases characterised by a lower R̃e (e.g. Pr � 3)
lead to a lower value for the exponent βn while using only the highest R̃e cases (Pr = 1,
R̃a � 120) leads to a higher value of βn. Compensated Nu values, based on the ultimate
scaling (3.14), are illustrated in figure 11(a). This plot and the scaling coefficients reported
in table 3 show the different scaling behaviours for cases characterised by values of R̃e
below and above the value of R̃e = 24 for which Γ reaches its maximum value (see
figure 6b). The former exhibit a Nu scaling with R̃a less steep than the ultimate scaling
(3.14), while above the transition the R̃a exponent is higher. We also notice that the
exponent γn is, respectively, negative and positive, indicating a complex behaviour of Nu
in the input parameters R̃a and Pr.
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Figure 11. Scaling behaviour of the heat transport with R̃a. (a) Compensated Nu calculated according to Nu ∼
R̃a3/2Pr−1/2. (b) Compensated Nu calculated according to the law (3.7), and with values of αn, βn and γn
reported in table 3 for Pr ∈ [1, 7] and R̃a ∈ [20, 200] (i.e. all available Nu data).

3.6. Balances
Vertical profiles of the horizontal r.m.s. of each term present in the baroclinic vertical
vorticity, vertical momentum and fluctuating heat equations are shown in figures 12(a),
12(b) and 12(c), respectively, for the most extreme calculation of R̃a = 200 and Pr = 1
(R̃e ≈ 84). All of the quantities shown have been time averaged. As shown previously
(Julien et al. 2012b), within this high-R̃a regime, the dominant terms in the governing
equations are given by

∂tζ
′ + J[ψ, ζ ] − 〈J[ψ, ζ ]〉 ≈ 0, (3.15)

∂tw + J[ψ,w] ≈ 0, (3.16)

∂tθ + J[ψ, θ ] ≈ 0, (3.17)

which shows that horizontal advection of all these quantities is a key characteristic
of this regime. Close inspection of the first of these balances reveals that, as R̃e
grows, the advection of vorticity is increasingly dominated by the advection due
to the barotropic flow, i.e. J[〈ψ〉, ζ ] � J[ψ ′, ζ ] for R̃e � 0.

On their own, the ‘balances’ given above reveal little about the resulting dynamics.
Higher-order, or subdominant, effects are necessary in the dynamics, especially with
regard to heat transport. Figure 12(b) suggests that small differences between the r.m.s.
values of ∂tw and J[ψ,w] are necessary to balance the vertical pressure gradient, ∂Zψ .
This perturbative effect repeats again at even higher order, as figure 12(b) shows that the
buoyancy force and vertical viscous force are approximately balanced, i.e.

R̃a
Pr
ϑ ≈ ∇2

⊥w. (3.18)

Moreover, we find a subdominant balance in the fluctuating heat equation between the
advection of the mean temperature and horizontal thermal diffusion,

w∂ZΘ̄ ≈ ∇2
⊥θ. (3.19)

To better understand the role of the subdominant balance between viscosity and
buoyancy, we show in figure 13 the ratio of the vertical components of the r.m.s. viscous
force, Fv,z = ∇2

⊥w, to the r.m.s. buoyancy force, Fb,z = R̃aPr−1ϑ , as a function R̃e. All
of the different Prandtl number cases appear to show qualitatively similar behaviour, and,
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Figure 12. Vertical profiles of r.m.s. terms in: (a) the baroclinic vorticity equation (obtained by subtracting
(2.9) from (2.1)); (b) the vertical momentum equation (2.2); and (c) the fluctuating heat equation (2.3). Profiles
have been calculated as temporal averages for the case R̃a = 200, Pr = 1 and are characteristic of all cases in
the geostrophic turbulence regime, where LSV formation is robust.
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Figure 13. Ratio of the vertical components of the r.m.s. viscous force, Fv,z = ∇2

⊥w, to the r.m.s. buoyancy
force, Fb,z = R̃aPr−1ϑ , as a function of R̃e.

as figure 13 shows, a reasonable collapse of the data can be obtained when the force ratio
is plotted versus the Reynolds number. Surprisingly, this ratio is an increasing function
of R̃e. This result is in stark contrast to non-rotating convection in which viscous forces
become ever smaller (relative to other forces) with increasing Rayleigh number. Indeed, the
so-called ‘free-fall’ scaling for convective flow speeds, characterised by a balance between
buoyancy and inertia, relies on the influence of viscosity being weak (e.g. see Yan et al.
2019).

4. Discussion and conclusions

A systematic investigation of rapidly rotating convection was carried out to determine
the necessary conditions under which large-scale vortices (LSVs) form, and how the
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amplitude of such vortices and associated convective flow speeds scale with the input
parameters. To achieve the extreme parameter regimes that are thought to be representative
of natural systems such as planetary and stellar interiors, we have made use of an
asymptotic description of the governing equations that rely on the assumption of a
leading-order geostrophic balance. Varying the thermal Prandtl number has allowed us
to determine the influence of fluid properties on the convective dynamics, and has
also allowed for a more detailed control of the convective Reynolds numbers over our
investigated range of Rayleigh numbers.

The LSVs form as a consequence of an inverse cascade that transports kinetic energy
from small-scale, convective motions up to the system-wide scale, characterised by a
box-normalised wavenumber of k = 1. These LSVs grow in time until the energy input
from the convection is balanced by large-scale viscous dissipation. All of the simulations
presented show evidence of this equilibration process, regardless of the particular values
of Pr and R̃a. We find that LSV-dominant convection can be characterised by a critical
convective Reynolds number R̃e ≈ 6 across the range of investigated Prandtl numbers, in
satisfactory agreement with low-Ek DNS simulations performed at Pr = 1 (Favier et al.
2014; Guervilly et al. 2014). Although an increase in Pr leads to a concomitant increase in
viscous dissipation for a fixed value of R̃a, we find, for the first time to our knowledge in the
asymptotic regime of rapid rotation, evidence of LSV-dominant convection in the ‘plume’
regime. This finding is in agreement with DNS calculations presented in Guervilly et al.
(2014), showing the presence of asymmetric LSVs for Pr = 1 for R̃a � 20. Whether the
emergence of LSVs at lower R̃a values is related to their asymmetric nature in finite Ro
calculations will be the subject of future studies.

In particular we observed the formation of barotropic vortices with a Prandtl number
as high as Pr = 7, a value that is representative of water at typical laboratory conditions.
This finding suggests that LSVs may be detectable in laboratory experiments that use
water as the working fluid. From the data reported in this study we can estimate a
threshold value of R̃at � 120 for the LSVs to form at Pr = 7 which can be translated
into large-scale Rat for a given Ek via (2.5). State-of-the-art laboratory experiments
can reach Ek = 10−8 (Cheng et al. 2015, 2019) giving Rat � 5.6 × 1012, a value for
which heat transfer data suggest convection to be in a transitional regime between
rotationally dominated and a non-rotating dynamics. We note that the presence of no-slip
boundaries (not used in the present study) has been shown to partially suppress LSV
formation (Plumley et al. 2016). By extension, we might expect rotating convection
calculations in triply periodic domains, such as those used in the referenced turbulence
studies (Smith & Waleffe 1999; Sen et al. 2012; Pouquet et al. 2013; Buzzicotti
et al. 2018; Seshasayanan & Alexakis 2018) to facilitate the formation of vertically
invariant, domain-filling vortices when compared to studies in the presence of horizontal
boundaries. Note, however, that cases for which Kbt(k = 1) > Kbt(k > 1) are found in
presence of no-slip boundaries as well, suggesting that robust LSVs can be found in
realistic settings. Indeed, recent DNS investigations (Guzmán et al. 2020) confirmed the
formation of LSVs in presence of no-slip boundaries. In fact, heat transfer data show
that the baroclinic dynamics is enhanced in presence of realistic boundary conditions
(Stellmach et al. 2014; Plumley et al. 2016). Given these competing effects, additional
studies are needed to determine the threshold for LSV-dominant convection with no-slip
boundaries.

Several properties of LSVs have been studied. In agreement with the DNS study of
Guervilly et al. (2014), we find that the relative size of the kinetic energy of the barotropic
flow to that of the convection reaches a maximum value at a particular value of the
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Rayleigh number. However, with DNS studies, there is a corresponding increase in the
Rossby number with increasing Rayleigh number. In contrast, the asymptotic model used
here only captures the asymptotically small Rossby number limit, showing that this change
in the growth of the LSVs must be present in the rapidly rotating regime. When data
from the entire range of Pr is plotted as a function of Reynolds number, the peak in the
barotropic kinetic energy occurs near R̃e ≈ 24. Therefore, the growth of the barotropic
kinetic energy slows as the Rayleigh number is increased, suggesting that there is an
optimum forcing level. We find that this change in behaviour is related to a decrease in
the velocity and vorticity correlations that are necessary to drive the inverse cascade.
Our findings suggest that additional regimes, beyond the accessible limits of the present
investigation, may be present in the convective dynamics as the Rayleigh number is
increased further.

The horizontal dimensions of the simulation domain are shown to have a direct influence
on the energy present in the LSVs. It is found that the energy associated with the LSVs
grows quadratically with the horizontal dimension of the simulation domain (assuming
domains of square cross-section), in agreement with DNS calculations (Favier et al. 2014).
This finding is likely linked to the total available convective kinetic energy, which also
grows quadratically with the horizontal dimensions of the simulation domain. Although a
detailed investigation of the dynamical effect of this scaling was beyond the scope of the
present investigation, this geometry-dependent effect may nevertheless have implications
on the resulting dynamics.

The simulations suggest that there is no obvious scaling regime in the convective
flow speeds with increasing Rayleigh number. A linear scaling of the form R̃e ∼ R̃a/Pr
appears to collapse the data over a limited range in R̃a, but the highest R̃e cases diverge
from this scaling at the highest accessible values of R̃a. We note that this linear scaling
can be translated to an equivalent large-scale Reynolds number scaling of the form
Re ∼ EkRa/Pr, which has been noted in previous studies of rotating convection (Guervilly
et al. 2019). Although this scaling is independent of the diffusion coefficients ν and κ
when viewed on the largest scales of the system, the small scales remain influenced by
viscosity. Indeed, the simulations have revealed that the ratio of the r.m.s. viscous force
to the r.m.s. buoyancy force in the vertical component of the momentum equation is an
increasing function of R̃a (or equivalently Ra). This observation may simply be a result of
the energetics of the Boussinesq system that requires the net heat transport to be balanced
by viscous dissipation. In this regard, it might be argued that viscosity is fundamental to
rotating convective dynamics.

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2020.1058.
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