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All representations and characters studied in this paper are taken over the complex
numbers, and all groups considered are finite. For basic definitions concerning projective
representations see [1].

If G is a group and «a is a cocycle of G we denote by Proj(G, a)= {&,, ..., &} the
set of irreducible projective characters of G with cocycle &, where of course ¢ is the
number of a-regular conjugacy classes of G; &(1) is called the degree of §. Also as
normal, M(G) will denote the Schur multiplier of G, [a] the cohomology class of «, and
[1] the cohomology class of the trivial cocycle of G.

Our main result exactly describes the greatest common divisor of the degrees of
Proj(G, «).

MaN THEOREM. Let py,...,p, be the prime divisors of |G|, with P,...,P,
corresponding Sylow p;-subgroups of G. Let M; be a subgroup of P, of minimal index such
that (ap) = (1). Then the greatest common divisor of the degrees of Proj(G, ) is equal to

iljl (P M;].
We start by defining
5(G, a)=min{§,(1):1=<i=<1}
and
(G, a)=g.cd{E):1=i=1t).

It is obvious that if [a] = [1] then ¢(G, a) = s(G, a) = 1. Consequently we are only really
interested in non-trivial cocycles of G.
We now quote the following well-known result.

LemMA 1. Let « be a cocycle of G with o([«]) = e in M(G). Then

(i) ele(G, @);

(ii) if p is a prime number such that p|c(G, «) then p|e.

We note here that it is not true in general that ¢(G, @) = e, or indeed that, if some
integer m divides ¢(G, @), then m|e; for from [2] there exists a cocycle & of G =2* with
o([@]) =2 but ¢(G, a) =4.

We now show that to analyse ¢(G, a) we should consider the prime divisors of o([«])
and s(P, a,) for the corresponding Sylow subgroups, P, of G.

ProposiTION 1. Let ¢ = ¢(G, «); then the pth part of ¢, c,, is equal to s(P, ap) for P a
Sylow p-subgroup of G.
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Proof. Let P € Syl,(G) and Proj(P, ap) ={y1, ..., ¥,}.

Now let & € Proj(G, a) such that (§(1)), =c,; then & = Zr: b;y;, where the b; are
non-negative integers so that =1

¢, =s(P, WP)(Z b (2(29))

and hence s(P, ap)|c,.

On the other hand let y € Proj(P, ap) be such that y(1) = s(P, ap). Then y© E a;E;

for some non-negative integers a;, and so comparing the pth parts of the degrees we
obtain

s(P, ap) = cp(i a; @)

and hence ¢, |s(P, ap). B

We are thus left with the task of describing s(P, ap) = c(P, ap) for P € Syl,(G).
However, we shall actually consider a more general situation than this. Recall that
& € Proj(G, a) is called monomial if it is induced from a projective character of degree 1
of a subgroup, and G is said to be a PM-group if all its irreducible projective characters
are monomial.

ProposITION 2. Let M be a subgroup of G of minimal index such that [ay] = [1]; then

(i) s(G, a)=[G:M] and c(G, a)|[G: M];
(ii) if (G, a) =[G : M], then c(G, a) =5(G, a);
(iii) s(G, @) =[G : M| if and only if there exists a monomial character & € Proj(G, «)
with E(1) = s(G, a).

Proof. Let &' eProj(G, a) such that £'(1)=s(G, a), and A €Proj(M, a,,) with

t
A(1)=1; then A° = ¥, a;&,, for some non-negative integers a;, and so
& g 8

4
©)=16:M)=c(G, a)( £ i) = £10) 0
proving (i). Since ¢(G, a)|s(G, a) we have that (ii) is immediate from (i).

Now suppose that equality holds in (1); then we must have that A° is irreducible.
Conversely if & € Proj(G, a) is monomial and (1) =s(G, «), then by definition there
exists a subgroup L of G and u € Proj(L, ;) with u(1) =1 such that u© = &; obviously
then [&;]=[1] from Lemma 1(i). Also [G:L]=s(G, «)=<[G:M] by (i), and hence by
hypothesis [G:L]=[G:M]. N

Of course equality in Proposition 2(iii) does occur when G is a PM-group and in
particular when G is supersolvable ([1, (6.5.11)]). However if G = A,, o([a]) =2, then
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s(G, @) =c(G, ) =2; but A, has no subgroup of index 2, so that equality does not
always hold.

The proof of the main theorem is now yielded by the above remarks in conjunction
with Propositions 1 and 2.

We mention just three applications of the above results.

CorOLLARY 1. Let L be a cyclic subgroup of G; then s(G, a)=<[G:L] and
c(G, @)|[G: L] for all cocycles « of G.

Proof. Since L is cyclic M(L) is trivial and hence [a;] =[1] for all cocycles & of G;
thus the result is immediate from Proposition 2(i). B

We now show that a slightly weaker version of Proposition 2(i) gives an alternative
proof of (4.1.9) of [1].

CoROLLARY 2. Let e denote the exponent of M(G), a be a cocycle of G with o([«]) = e,
and L be a subgroup of G such that [a,] = [1]; then e|[G : L]. In particular, e divides the
index of each cyclic subgroup of G.

Proof. By Lemma 1(i) and Proposition 2(i) we have e|c(G, «)|[G:L]. B

Finally the following type of result is useful in constructing the projective repre-
sentations of a given group with specified Sylow structure.

CoroLLarY 3. Let « be a cocycle of G with 2|o([a]), and suppose that G has a
dihedral Sylow 2-subgroup; then (c(G, «)),=2.

Proof. Let P € Syl,(G). The restriction mapping from Syl,(M(G)) into M(P) is a
monomorphism; hence, since P has a cyclic subgroup of index 2, we have by Proposition
1 and Corollary 1 that (c(G, a)),=s(P, ap)=2. B

REFERENCES

1. G. Karpilovsky, Projective representations of finite groups (Monographs and textbooks in
pure and applied mathematics 94, Marcel Dekker, 1985).

2. A. O. Morris, Projective representations of abelian groups, J. London Math. Soc. (2) 7
(1973), 235-238.

DEPARTMENT OF MATHEMATICS
UNIVERSITY COLLEGE DUBLIN
BELFIELD

DusLIN 4, IRELAND

https://doi.org/10.1017/5001708950000714X Published online by Cambridge University Press


https://doi.org/10.1017/S001708950000714X

