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Abstract

Existing approaches to object encapsulation either rely on ad hoc syntactic restrictions or

require the use of specialised type systems. Syntactic restrictions are difficult to scale and

to prove correct, while specialised type systems require extensive changes to programming

languages. We demonstrate that confinement can be enforced cheaply in Featherweight

Generic Java, with no essential change to the underlying language or type system. This

result demonstrates that polymorphic type parameters can simultaneously act as ownership

parameters and should facilitate the adoption of confinement and ownership type systems in

general-purpose programming languages.

1 Introduction

Two main approaches to object instance encapsulation are under investigation in the

literature. On one hand, programming conventions, such as Islands (Hogg, 1991) and

various kinds of Confined Types (Vitek & Bokowski, 2001; Clarke et al., 2003) use

tailored restrictions on programs to provide confinement guarantees for programs

in existing programming languages. This approach was recently proven to be sound

(Zhao et al., 2006). On the other hand, ownership type systems (Clarke et al., 1998),

originating from the formalisation of Flexible Alias Protection (Noble et al., 1998),

require quite significant modifications to programming languages. In particular,

languages like Joe, Universes, Alias Java, and Safe Concurrent Java, depend upon

ownership parameterisation within the type system (Clarke & Drossopoulou, 2002;

Müller & Poetzsch-Heffter, 1999; Aldrich et al., 2002; Boyapati et al., 2003). All of

these type systems are distinct, but they only support ownership parameterisation,

not type parameters.

This article continues the efforts to provide effective object encapsulation within

practical programming languages. The key insight behind this paper is that con-

finement and ownership type systems can readily be modelled within existing
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parametric polymorphic type systems: in fact, we demonstrate that confinement

systems for object encapsulation within static protection domains can be subsumed

completely within a basic generic type system. This is achieved by using a single type

parameter space to carry both generic and ownership information. As a result, we can

enforce confinement in Featherweight Generic Java (Igarashi et al., 2001) “almost

for free” – with no change to the underlying language or type system – by addi-

tionally enforcing some simple visibility rules and constraints on program structure.

Featherweight Generic Confinement is a minimalist confinement scheme that

leverages parametrically polymorphic types to enforce static confinement. This paper

is an expanded version of Potanin et al. (2004b) presenting the final version of our

type system and incorporating manifest ownership (Clarke, 2002) to better address

compatibility with plain FGJ programs (Potanin et al., 2004). Our main goal is to

obtain a simpler formalism with few new concepts. We hope that this approach

will facilitate the adoption of confinement and ownership type systems by general-

purpose programming languages.

The next section briefly introduces the notion of encapsulation and confinement,

in particular the kind of confinement used in Confined Types (Vitek & Bokowski,

2001) – the primary topic of this article. We then present FGJ+c that reuses the type

soundness of FGJ to support a simple confinement invariant, ensuring that confined

classes may not be accessed outside a static protection domain (effectively a Java

package). We present the additional constraints required of programs in FGJ+c,

prove a confinement invariant, and conclude with a discussion of our prototype

implementation and plans for future work.

2 Confinement

Islands, confinement, and ownership are all essentially forms of object encapsulation.

All of these schemes are attempts to establish an encapsulation boundary that

protects some objects inside the boundary from direct access by other objects

outside that boundary. Where these proposals differ from earlier programming

language encapsulation and module systems is that they restrict access to objects

at runtime: that is, they constrain values of pointers or references to objects in

object-oriented systems, rather than merely accesses to field and method names.

These schemes enforce a confinement invariant which states that objects outside a

particular boundary may not access objects inside that boundary.

The differences between these systems can be observed by noting which objects

constitute the insides, the outsides, and the boundaries and how these three sets are

expressed (Noble et al., 2003). For example, in Confined Types (Vitek & Bokowski,

2001), the unit of confinement is a Java package: all the instances of public classes

within that package form the encapsulation boundary; all the instances of package-

scoped classes (known as confined classes) are inside the boundary, and instances of

classes in any other package are outside the boundary. This means that an instance

of a class may access an instance of a public class belonging to any package, but

may only access those instances of confined classes belonging to its own package.

https://doi.org/10.1017/S0956796806006125 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006125


Featherweight generic confinement 795

What confinement means in practice is that any code written in one confined

domain (say one Java package) should, when executed, never directly refer to an

instance of a class inside the boundary of another confined domain. References

stored in object fields must be restricted: a field of a class cannot hold an object

that is encapsulated inside a different package. The execution of a class’s methods

must also be restricted: methods cannot access confined classes of other packages.

Note, however, that this prohibition refers only to direct accesses: indirect access is

permitted – indeed, is encouraged. Public classes (or instances of public classes) thus

provide an interface to the private instances in their package.

Zhao et al. (2006) have formulated a confinement invariant in terms of the

expressions within methods. Basically, if an expression (or any of its subexpressions)

can possibly evaluate to some object o, that object must be visible in the context

of the method. In some more detail: if d0 is a subexpression of d, and d0 evaluates

to e (denoted d0
∗→ e), then any object denoted by e must be visible in the class

containing d.

3 Featherweight Generic Java + Confinement

In this section we present Featherweight Generic Java + Confinement (FGJ+c here-

after) which embodies our confinement scheme. After outlining the main principles

behind FGJ+c, we give a formal presentation of FGJ+c’s type system and a proof

of its confinement invariant.

3.1 Program structure

The key idea behind Generic Confinement is to use generic type parameters to

carry confinement information as well as type information. Following the traditional

approach (Clarke, 2002) we require that every pure FGJ+c class has at least one type

parameter to carry this confinement information. Following both the confinement

and ownership literature, we call this extra parameter the owner type parameter. In

the case of confinement (as in FGJ+c), the owner corresponds to the package to

which an object is confined: in the per-object ownership type systems an object’s

owner will be another object.

We use the last type parameter to record an object’s owner to promote upwards

compatibility and because our implementation will allow confinement parameters to

be elided. All FGJ+c classes descend from a new class CObject<O> (for confinable

object) that has just one parameter; all of its subclasses must invariantly preserve

this owner. The preservation of owner over subtyping lies at the foundation of

Generic Confinement.

Figure 1 shows a (functional) stack implementation in FGJ+c. Note that all class

names are prefixed by a package identifier, thus uStack is a Stack in package u.

This is a convention to indicate the package within which each class is defined. We

assume that each package is identified by a single lower case letter that prefixes every

class inside a package. Names of classes that belong to a default package start with

a capital letter. Note also that classes which extend class World are used to indicate
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// Package u (from the word util).

// Class uNode serves as a "null object" for the purposes of implementing a uStack.
class uNode<T extends Any, Owner extends World> extends CObject<Owner> {

uNode() { super(); }
}

// Class uStackNode is a simple stack node used by uStack.
class uStackNode<T extends Any, Owner extends World> extends uNode<T, Owner> {

T element; uNode<T, Owner> nextNode;
uStackNode(T element, uNode<T, Owner> nextNode) {

super(); this.element = element; this.nextNode = nextNode;
}

}

// Class uStack implements a simple functional stack.
class uStack<T extends Any, Owner extends World> extends CObject<Owner> {

uNode<T, Owner> root;
uStack(uNode<T, Owner> root) {

super(); this.root = root;
}

uStack<T, Owner> push(T element) {
return new uStack<T, Owner>(new uStackNode<T, Owner>(element, this.root));

}

uStack<T, Owner> pop() {
return new uStack<T, Owner>(((uStackNode<T, Owner>) this.root).nextNode);

}

T top() {
return ((uStackNode<T, Owner>) this.root).element;

}
}

Fig. 1. FGJ+c Stack Example. This FGJ+c code demonstrates a possible implementation of

a functional stack inside package u.

ownership. For each package we use lower case letter (e.g. u) for its name and the

same upper case letter (e.g. U) for the owner class corresponding to the package.

Each uStack has two type parameters, the first being the type of items to be

stored in the stack, and the second being the ownership of that stack instance. This

illustrates that FGJ+c provides both type polymorphism (stack can hold different

item types) and ownership polymorphism (stack can be confined to different domains).

The item type parameter of the stack is bound by class Any – this allows any subclass

of CObject<O> to be used in its place for any owner parameter. Please observe that

we cannot make uNode owned by U, since it has to be created outside of uStack.

This is easily fixed by extending the type system with an extra field initialisation

capability.

Figure 2 presents an example of utilising our stack. Package s contains two classes.

sPassword stores a secret ID, and sPasswordManager stores a stack of passwords

utilising uStack. The stack and passwords stored inside sPasswordManager are

confined to package s because their full types include the owner class S that can

only be written inside package s: uStack<sPassword<S>, S>. If we try to access

the contents of sPasswordManager’s stack in a different package (e.g. by calling

getSecretPassword in package m) we won’t be able to assign the result to anything

or cast it to an appropriate type to make use of it. Because the owner parameter S

is preserved over the subtyping hierarchy there is no way around this restriction.
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// Package s (from the word secret).

class sPassword<Owner extends World> extends CObject<Owner> {
int secretID;
sPassword(int secretID) {

super(); this.secretID = secretID;
}

}

class sPasswordManager<Owner extends World> extends CObject<Owner> {
sPasswordManager() { super(); }

uStack<sPassword<S>, S> createStack() {
return new uStack<sPassword<S>, S>(new uNode<sPassword<S>, S>())

}

uStack<sPassword<S>, S> addSecretPassword(int secretID) {
return this.createStack().push(new sPassword(secretID));

}

// This method can only be called inside the s package, since outside of
// this package we cannot write the type of the return element due to owner S
// being involved.
sPassword<S> getSecretPassword() {

return this.addSecretPassword(7).top();
}

}

// Package m (from the word main).

class mMain<Owner extends World> extends CObject<Owner> {
mMain() { super(); }

sPasswordManager<M> createPasswordManager() {
return new sPasswordManager<M>();

}

void addSecretPassword() {
this.createPasswordManager().addSecretPassword(42);

}

void getSecretPassword() {
// We cannot perform a call to the following method or assign the result
// to anything, including the super class CObject<S>, since we are not
// allowed to use owner S outside s package.
this.createPasswordManager().getSecretPassword()

}
}

Fig. 2. FGJ+c confinement violation example. This FGJ+c code demonstrates how

confinement inside package s can be enforced using owner classes. Note that although

void is not part of FGJ, it simplifies the presentation of the idea in this figure.

3.2 Packages and owner classes

In FGJ+c confinement domains are static Java packages, but we need to represent

them within the FGJ type system so that we can bind the owner parameters. For

this reason, we use parameter-less FGJ classes that form a separate class hierarchy

extending World to represent these domains. Because the classes that represent

domains (again like Java packages) are not actually part of the program, they

should not be instantiated during the execution of an FGJ+c program. We call these

types owner classes.

Confinement in FGJ+c is enforced simply by requiring that any concrete owner

(other than World) can only appear within the body of classes within its own
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uStack<T,O>

World

Object

CObject<O>

pure FGJ+c classes

manifest FGJ+c classes

owner classes

U

FGJ classes

pPublicStack<T>

Stack<T>

Fig. 3. FGJ+c Classes and Owner Classes. Pure FGJ+c classes have an explicit owner type

parameter. Manifest FGJ+c classes have an owner fixed when subclassing a pure FGJ+c class.

Owner classes lie outside the FGJ+c class hierarchy because they cannot be instantiated in

FGJ+c programs; pure FGJ+c classes use them to bind their owner type parameters (as shown

by the dashed arrow on the diagram).

package. In other words, owner S can appear within the definition of classes such as

sPassword but owner U cannot. Note that class names themselves are not restricted

per se; this is why a name like uStack can appear in package s.

3.3 Manifest ownership

We adopt the concept of manifest ownership (Clarke, 2002) to allow classes without

explicit owner type parameters (e.g., all classes in a vanilla (standard) FGJ program).

Somewhere in the subclass hierarchy, the owner is fixed and all the objects of that

class have the same owner. For example, here is how Object fits into the FGJ+c

class hierarchy:

class Object extends CObject<World> { ... }

With this definition Object and every FGJ class under it has a default owner

parameter World (thus making them publically accessible).

Figure 3 shows the relationships between owner classes and program classes in

FGJ+c. Owner classes inherit from the class World, and there is one owner class

corresponding to each FGJ+c package. The owner class hierarchy lies outside the

CObject hierarchy of pure and manifest FGJ+c classes – these are the only owners

that can occur in a FGJ+c program. Manifest FGJ+c classes have an owner class
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corresponding to their owner, which is not written out explicitly, but rather is found

among its superclasses in the FGJ+c class hierarchy. Vanilla FGJ classes form a

subset of manifest FGJ+c classes. The FGJ+c class hierarchy has two different

roots: one for all the program classes (CObject<O>) and one for uninstantiable

owner classes (World).

To demonstrate manifest ownership, consider creating a public stack as follows1:

class pPublicStack<T extends Object> extends uStack<T, World>

{ ... }

In this case, the owner of class PublicStack is World, and thus all of its instances

are owned by World, while any use of class pPublicStack requires no owner type

parameter.

Manifest ownership allows the following familiar declaration of a public Stack

object, which is indistinguishable from that of FGJ:

class Stack<T extends Object> extends Object { ... }

The important difference is that in FGJ+c, class Stack has an owner World coming

from Object’s super class CObject<World>. Figure 3 shows the examples in this

subsection as a class diagram.

Manifest ownership also allows the definition of fully confined classes, that is,

classes whose instances can never be used outside their defining package. Consider

the definition of the Link class in package l:

class lLink<T extends Any> extends CObject<L> { ... }

By the virtue of manifest ownership, Link’s owner is fixed to be L. L owner class is

only visible within package l, thus ensuring all instances of Link will be confined

within that package. Because we are declaring a class inside package l we cannot

“fix” the owner to anything other than L. The following example would be invalid:

class qC extends CObject<L> { ... }

That is, it is not possible to write owner L inside a different package q.

3.4 Any type bound

FGJ requires every type variable to be bound. To increase the expressiveness of our

system we introduce a very limited form of anonymous type parameters. The type

Any may only appear as the bound of a formal generic type parameter. Any class

with any ownership may be passed as an actual parameter if a formal parameter

is bound by Any. For example, in figure 1, uStack’s first type parameter is bound

by Any. We add the Any type bound to FGJ+c by introducing the empty class Any

above CObject<O> in the hierarchy. FGJ+c’s rules prevent the type or class being

1 Manifest ownership is not restricted to fixing the owner to be World – it can be any owner class.
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Syntax:

T ::= X | N

N ::= C<T>

L ::= class C<X � N> � N {T f; K M}
K ::= C(T f) { super(f); this.f=f; }
M ::= <X � N> T m(T x) { return e; }
e ::= x | e.f | e.m<T>(e) | new N(e) | (N)e

X ranges over the type variables and N ranges over the nonvariable types.

∆ type environment: a mapping from type variables to nonvariable types.

Γ type environment: a mapping from variables to types.

CT class table: a mapping from class names C to class declarations L.

Fig. 4. FGJ+c Syntax (Identical to FGJ Syntax from Igarashi et al).

used anywhere except as a type bound. The importance of not allowing other uses

of Any lies in the fact that Any doesn’t have an owner and thus we cannot allow it as

an FGJ+c type if we want preservation of owners through subtyping – an essential

property of FGJ+c.

This type bound does not allow any constraints on owners or types of actual

parameters. More flexible schemes (e.g. wildcards or variance (Igarashi & Viroli,

2002)) will remove these restrictions, allowing a single type parameter to be

independently bounded for type and ownership. Lacking variance or multiple

inheritance, we are unable to express such flexible bounds in a system built on

top of pure FGJ. However, this technique will be applicable in other systems.

4 FGJ+c Definition

FGJ+c can be considered a strict subset of FGJ, that is, every FGJ+c program is an

FGJ program, if we allow for a different root of the class hierarchy. FGJ+c adds some

extra restrictions that leverage FGJ’s proven type soundness to provide confinement.

Every FGJ+c program must meet the FGJ rules (Igarashi et al., 2001) along with

additional rules presented in the figures of this section. For reference, figure 4 shows

the FGJ syntax from Igarashi et al. (2001). To simplify our presentation, we assume

that owner classes are syntactically distinguishable. Owners have the syntax:

O ::= OVar | OCon

where O ranges over all owners, OVar ranges over owner variables, and OCon ranges

over concrete owners such as World and the owner classes corresponding to packages.

Pure FGJ+c types and classes are written to include an owner class as their last type

parameter or argument, which can be distinguished using the following syntax:

N ::= C<T, O>

L ::= class C<X � N, OVar � OCon> � N {T f; K M}.
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FGJ+c Judgements:

owner∆(T) Determines owner of type T.

∆ � T OK+c Type T is OK.

visible∆(O, D) Owner O is visible in class D.

visible∆(T, D) Type T is visible in class D.

∆; Γ � visible(e, D) Expression e is visible in class D.

<Y � P> T m(T x){ return e0; } FGJ+c IN C<X � N> Method m definition is OK.

class C<X � N> � N {T f; K M} FGJ+c Class C definition is OK.

Fig. 5. FGJ+c Judgements.

Bound of type (from FGJ):

bound∆(X) = ∆(X)

bound∆(N) = N

FGJ+c Owner Lookup Function:

owner∆(X) = owner∆(bound∆(X))

owner∆(C<T, O>) = O

owner∆(C<T>) = owner∆(N[T/X])

where CT (C) = class C<X � N> � N{T′ f; K M}

(FGJ+c-Owner)

FGJ+c Types:

∆ � T <: CObject<O> ∆ � O <: World

∆ � T OK+c

∆ � X <: Any

∆ � X OK+c

(FGJ+c-Type)

Fig. 6. FGJ Bound, FGJ+c Owner Lookup Function, and FGJ+c Type Rule.

4.1 FGJ+c programs

Any FGJ+c program is an FGJ program that meets the following requirement: all

classes must satisfy either FGJ+c-Class (for generic classes) or FGJ+m-Class (for

manifest classes). A corresponding rule (FGJ+c-Type) ensures that the only types

used in FGJ+c programs are subtypes of CObject<O> for some owner O.

Figure 5 shows the type judgements used in FGJ+c rules and figures 6, 7 and 8

give the rules used to constrain FGJ programs. These rules deal with three concerns:

firstly, they ensure that every type has an owner (as the owner contains information

to determine the visibility of a type, figure 6); secondly, they determine which types
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Owner Visibility:

visible∆(O, D) = O ∈ owners∆(D) ∪ {πD, World}†
(V-Owner)

where

owners∆(D) =

⎧⎪⎪⎨
⎪⎪⎩

{owner∆(N′) | N′ ∈ N, N},
if CT (D) = class D<X � N> � N{. . .}

{OVar} ∪ {owner∆(N′) | N′ ∈ N},
if CT (D) = class D<X � N, OVar � OCon> � N{. . .}

Type Visibility:

visible∆(owner∆(T), D)

visible∆(T, D)

bound∆(x) = Any

visible∆(x, D)

(V-Type)

Term Visibility:

∆; Γ � x : T visible∆(T, D)

∆; Γ � visible(x, D)

(V-Var)

∆; Γ � visible(e, D) ∆; Γ � e.fi : T visible∆(T, D)

∆; Γ � visible(e.fi, D)

(V-Field)

∆; Γ � e.m(e) : T visible∆(T, D)

∆; Γ � visible(e, D) ∆; Γ � visible(e, D)

∆; Γ � visible(e.m(e), D)

(V-Invk)

∆; Γ � visible(e, D) visible∆(N, D)

∆; Γ � visible(new N(e), D)

(V-New)

∆; Γ � visible(e, D) visible∆(N, D)

∆; Γ � visible((N) e, D)

(V-Cast)

† πD is the owner class corresponding to the package to which D belongs.

Fig. 7. FGJ+c Visibility Rules.

are visible in a given class (figure 7); and finally, they propagate and check the

desired constraints for fields and methods (figure 8).

FGJ+c Owner Lookup Function. This function in figure 6 is used by the majority

of the rules to look up an owner class corresponding to a given type. This is either

an explicit owner used as the last type parameter, or in the case of a manifest FGJ+c

class, the owner of its superclass.
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FGJ+c Methods:

∆ = {X <: N, Y <: P} ∆ � T, T, P OK+c

visible∆(T, C) visible∆(T, C) visible∆(P, C)

∆; x : T, this : C<X> � visible(e0, C)

<Y � P> T m(T x){ return e0; } FGJ+c IN C<X � N>

(FGJ+c-Method)

FGJ+c Classes:

N = C′<T′, OVar> ∆ = X <: N, OVar <: OCon

visible∆(OCon, C) ∆ � N, T OK+c

∀N′ ∈ N : N′ = Any or ∆ � N′ OK+c

M FGJ+c IN C<X � N, OVar � OCon>

visible∆(T, C) visible∆(N, C)

class C<X � N, OVar � OCon> � N {T f; K M} FGJ+c

(FGJ+c-Class)

∆ = X <: N visible∆(N, C)

∆ � N, T OK+c M FGJ+c IN C<X � N>

∀N′ ∈ N : N′ = Any or ∆ � N′ OK+c

visible∆(T, C) visible∆(N, C)

class C<X � N> � N {T f; K M} FGJ+c

(FGJ+m-Class)

Fig. 8. FGJ+c Method and Class Rules. FGJ+c program can only contain FGJ+c valid

classes. Additionally any FGJ+c program or class has to meet all of the FGJ rules.

FGJ+c Types. The first rule in figure 6 states that the only types allowed are the

subtypes of CObject<O>. These types can either be pure FGJ+c (have an explicit

owner parameter) or manifest FGJ+c (have an implicit owner fixed in a superclass

hierarchy). Note that the type variables will be classified as valid FGJ+c types by the

virtue of their bounds (using FGJ’s type well-formedness rules and the restriction that

all the nonvariable types are valid in FGJ+c). In addition, a root type CObject<O>

is also allowed. The second rule admits the type variables bound by Any.

4.2 Visibility

The visibility rules shown in figure 7 form the foundation of FGJ+c: they determine

which owners, types, and terms are visible, and thus usable, within a given class.

There are three sets of rules: those that determine owner visibility, type visibility, and

term visibility. We utilise a function πD that returns the owner class corresponding

to the package to which D belongs.

The owner visibility predicate simply checks that a given owner is either the owner

of the current class, corresponds to the class’s package (e.g. πD inside class D), is

a public owner (denoted World), or is the owner of one of the type parameters –

roughly following Zhao et al. (2006). The owner variable of a class – and any of

its type parameters – are always visible because Generic Confinement views passing
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type parameters as granting permission to access the actual argument types (see 5.1).

Method type parameters do not grant this permission.

The type visibility predicate allows the use of types when their owner parameter

is visible. As a special case, a type variable bound by Any is considered to be

always visible within the class in which it is declared. Term visibility rules are

defined inductively on the structure of FGJ terms. For each subexpression, the rules

determine whether the type of that subexpression is visible according to the type

visibility rules.

Consider the following code example, where P refers to an owner class marking

instances confined to package p.

pList<qFoo<R>, S>

This describes a list declared in package p storing items declared in package q

that are confined to package r, while list itself is confined to package s. This list

is allowed access to classes confined to p (since the code performing the access is

already inside package p), s (since the list instance is confined in that package during

the execution) and to instances confined to package r because one of the list’s type

parameters is confined in that package (i.e., is owned by R). Any classes confined to

q or any other package cannot be accessed inside the list.

Visibility is the key to Generic Confinement. It specifies the subset of valid

FGJ programs that are considered valid FGJ+c programs. Any FGJ class that

contains expressions violating visibility by accessing the types private to a different

confinement domain is declared invalid by failing one of the FGJ+c visibility rules.

4.3 Propagation of constraints in classes and methods

Figure 8 shows how visibility constraints are propagated through classes to their

fields and methods and eventually to expressions. These rules say that every type

appearing in the program, even as a subexpression, must be visible in the current

class. For classes, (FGJ+c-Class) and (FGJ+m-Class), we check that all the field types

are visible and that the bounds on the type variables are also visible to the current

class. The difference between the two class rules lies in the presence of an explicit

owner parameter in the class being declared. For pure FGJ+c classes, an owner

parameter is present and we require that its immediate superclass has the same

owner parameter. For manifest FGJ+c classes, the owner parameter is no longer

explicit, so we need to check that our superclass is visible with respect to the current

class. Finally, Any is allowed as nonvariable bound for non-owner type parameters.

The rules for classes (FGJ+c-Class) and (FGJ+m-Class) and types (FGJ+c-Type)

combine together to ensure that every class has an owner (or that its bound does,

in the case of type variables) and that this owner is preserved through subtyping.

Any is treated as a special case of a type bound allowing any type with any owner if

required. This does not break visibility rules since in generic confinement having an

additional owner as part of one of class’s type parameters gives you permission to

access classes confined to that owner. We address this issue further in our discussion

in section 5. In addition, we ensure that the all types instantiated in programs are a
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subtype of CObject<O> for some owner class O and thus also prevent owner classes

from being instantiated. We also get the restriction that only owner classes can be

used as owners.

For methods (FGJ+c-Method), we check that the argument and return types are

visible, that the method body satisfies the visibility constraint, that all subexpressions

use visible types, and again that the type variables of the method have bounds which

are visible.

An alternative design would be to use visibility checks throughout the existing

FGJ rules (as in CFJ by Zhao et al. (2006)), rather than build the appropriate

checks into the (FGJ+c-Class) and (FGJ+m-Class) rules. The advantage of our

separate approach is that we can reuse all of the FGJ rules (and proofs) and that

we demonstrate that FGJ+c doesn’t need a type system stronger than FGJ.

These rules guarantee that FGJ+c programs do not break confinement, allowing

us to prove a confinement invariant.

4.4 Confinement invariant

The confinement invariant states that types that are not visible within the current

package are not reachable. We assume that we only deal with programs for which all

classes are valid FGJ+c classes as given by the rules in figure 8. We prove that during

execution, an expression cannot result in an instance of a class that is not visible

within the current context. This result relies on the fact that the owner parameter is

preserved in the class hierarchy.

Lemma (Ownership Invariance). If ∆ � S <: T and ∆ � T <: CObject<O>, then

owner∆(S) = owner∆(T) = O.

Proof By induction on the depth of the subtype hierarchy. By FGJ+c-Class and

FGJ+m-Class a FGJ+c class has the same owner parameter as its superclass. �

Theorem (Confinement Invariant). Let ∆; Γ � e : T be a subexpression appearing in

the body of a method of a well-formed FGJ+c class C. Then: If e
∗→ new D<TD>(e),

then visible∆(D<TD>, C).

Proof Because the class is a well-formed FGJ+c class, its methods are well-formed

FGJ+c methods. This and the FGJ’s subformula property (rule inversion) imply that,

for appropriate ∆ and Γ, both ∆; Γ � e : T and ∆; Γ � visible(e, C) hold. From this

we can derive visible∆(T, C), and hence visible∆(owner∆(T), C) or bound∆(T) = Any.

By FGJ’s subject reduction property, there is a T′ such that ∆; Γ � new D<TD>(e) : T′,

where ∆ � T′ <: T. Furthermore, we have that ∆; Γ � new D<TD>(e) : D<TD>, and

hence clearly ∆ � D<TD> <: T′, and ∆ � D<TD> <: T. By the Ownership Invariance

lemma, either owner∆(D<TD>) = owner∆(T) or bound∆(T) = Any, from which we

deduce visible∆(owner∆(D<TD>), C), and hence visible∆(D<TD>, C). �

5 Discussion

On one hand, every FGJ+c program is a valid FGJ program – it type checks

and executes following FGJ’s evaluation rules, with no accesses to the confined
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instances of classes. On the other hand, every FGJ program can be mapped to

a manifest FGJ+c classes by an FGJ’s Object extending CObject<World>. Thus

all FGJ programs are FGJ+c. The special treatment that the owner classes receive

when interpreted by the additional FGJ+c rules allows us to guarantee a confinement

invariant. In this section we delve into a few of the more interesting aspects of FGJ+c.

5.1 Generic confinement

Generic confinement raises two issues that were also discussed by Zhao et al. (2006).

First, as with ownership type systems (Clarke, 2002), instantiating a class with an

actual owner parameter can be seen as giving the instances of that class permission

to access other objects owned by the actual owner parameter – in our case, confined

within the package corresponding to the actual owner parameter. This is made expli-

cit in the owner visibility rule, which explicitly checks these permissions, that is, which

ensures an owner is visible if it is the owner of any of the (actual) type parameters.

Second, if we consider the following FGJ+c expression evaluated using the FGJ

rules:

class pFoo {

...

Bar<Q> m() {

return (new uMap<Integer<World>, Bar<Q>, P>).get(new Integer(42));

}

}

then we can see that although this code could be located anywhere (in this case,

inside method m of an unrelated class Foo in some package p), inside the evaluation

of the get method objects private to the uMap’s package can be accessed (as can

objects owned by World or by the owner of the Foo class’s package P) and can

appear as intermediate results as the expression is evaluated. This breaks neither

our confinement invariant nor that of Zhao et al. (2006), since the only objects

that the Foo instance executing method m can access directly are the final results of

evaluating whole subexpressions, such as the constructor call or the get invocation.

The Map constructor or get method may well create or reference other objects that

are private to the Map, but Foo itself will not have permission to access these other

objects directly, and our system prevents such accesses.

An important observation is that we still need to ensure owner preservation over

subtyping in FGJ+c. If, for example, our language were to support full variance

(Igarashi & Viroli, 2002) rather than basic wildcards, then it would be much harder

for us to ensure that subtypes like: uStack<S> <: uStack<World> were disallowed.

Hence a full exploration of the interaction of variance with Generic Confinement

poses an open question.

5.2 Towards ownership

FGJ is a functional subset of Java that omits its imperative aspects such as

assignments, field updates, local variables, etc. We are extending FGJ with imperative
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features following Pierce (2002). We have found that we can formulate a containment

invariant comparable to that of ownership types with little substantial additions to

the visibility and preservation of owners over subtyping already present in FGJ+c.

FGJ is a sufficient platform for reasoning about confinement: the advantage of

formulating confinement as a small addition to FGJ is a clean system like FGJ+c.

Imperative FGJ with confinement and ownership (controlling access on a per

instance rather than per class level) evolves into a different type system requiring

a full soundness proof of all of the things that can be avoided when trying to

concentrate on Generic Confinement alone.

6 Related work

Object encapsulation has been recognised as a means for addressing aliasing, security,

concurrency, and memory management, with the merit of smoothly aligning with

the way many object-oriented programs are designed. Two complementary threads

of research have evolved. On one hand are expressive but weighty type systems

based on ownership types (Clarke et al., 1998; Aldrich & Chambers, 2004; Boyapati

& Rinard, 2001). On the other hand are lightweight but limited systems based on

confined types (Vitek & Bokowski, 2001).

Systems based on ownership types differ among themselves essentially in only one

characteristic, which Clarke and Wrigstad distinguish as shallow vs. deep ownership

(Clarke & Wrigstad, 2003). Deep ownership types permit only a single object as

entry point to the collection of objects it owns, whereas shallow ownership types

permit multiple entry points into the confined collection.

Clarke & Drossopoulou (2002) and Boyapati et al. (2003) describe how to exploit

the useful properties of deep ownership, but there is also a general concern about

whether it might be too restrictive in practice. Ownership types require additional

annotations to use them, raising issues about their role in programming. Some

authors argue that, with appropriate defaults, this need not be a problem in practice

(Aldrich et al., 2002; Boyapati et al., 2003).

Confined type systems have achieved their more conservative goals while keeping

the amount of annotations low. Vitek & Bokowski’s (2001) original system, which

had security as its application, required certain classes to be annotated as confined

to indicate classes confined within the present package, and certain methods to

be annotated as anonymous, to indicate that such methods do not reveal “this”.

Grothoff et al. (2001) show how type inference can be used to avoid the need for

annotation, making a system that can provide per-package encapsulation in practical

programs. Clarke et al. (2003) apply these ideas in the context of Enterprise Java

Beans, and by exploiting special architecture specific constraints, provide per-object

encapsulation without annotations or inference.

Recent work by Zhao et al. (2006) has formalised Vitek and Bokowski’s approach

to per-package confinement, with an operational semantics and a static type system

based on Featherweight Java. This work also proposes and formalises a notion of

generic confined types, allowing, for example, a collection to be confined or not,

depending upon the specifications of the contained elements.
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Our approach is essentially the opposite. Rather than starting from a language

without generic types, and then adding a special form of genericity to support

confinement, we start from a language with generic types (GJ, or rather its formal

core FGJ) and then ensure per-package confinement. This approach has led to a

simpler formal system, requiring few new concepts. We do not need to distinguish

anonymous methods, because “this” is parameterised to record its ownership.

The key to our approach is preserving the owner in types and using visibility

rules to determine where it can and cannot be used. In the approach adopted by

Zhao et al. (2006) it is necessary to (ultimately) restrict the subtype relation and

the operations which occur when using a type whose ownership isn’t known. The

advantage of Zhao et al.’s type system is that it allows a newly declared class to

become confined to a package even though all of its superclasses were declared

public. This is permitted as long as all the superclasses meet certain anonymity

conditions on their methods: the type system is then required to deal with such

anonymity constraints.

While FGJ+c cannot make a subclass of a manifest ownership public class confined

to a package, it is fully capable of making a confined subclass of a pure class, while

the pure class can also be instantiated with a public World owner. If a program’s

classes were written as pure then it is not going to be a problem. It is only in the

setting of manifest public owners that such subclassing is not going to be possible.

Banerjee and Naumann prove a per-object representation independence result for

Java (Banerjee & Naumann, 2004). They adopt a confinement discipline resembling

ownership types, except that they apply the confinement only at the point they wish

to reason about. They require that confined classes extend a special class called Rep,

and that the boundary classes extend a special class called Own. Neither Rep nor

Own can be forgotten from a type. Banerjee and Naumann’s results demonstrate

that confinement can be used to derive principles reasoning about programs.

A bit further afield, we find that the implementation of the State Monad in

Haskell (Launchbury & Peyton Jones, 1995) adopts similar mechanisms. In the State

Monad, a type variable is assigned to the encapsulated state, and an appropriate

quantification over the type (via rank-2 polymorphism) ensures that the state doesn’t

escape and thus behaves correctly. Interestingly, this design resembles an encoding

of existential types in terms of universal types, while Clarke’s thesis formalises the

confinement provided by ownership types as existential over owners (Clarke, 2002).

Finally, recent work in phantom types (Hinze, 2003; Fluet & Pucella, 2002; Leijen

& Meijer, 1999), where “phantom” type parameters only purpose is to enforce

well-formedness constraints, directly aligns with our approach.

7 Implementation

We have implemented an extension to the Java 5 implementation of the Java

Compiler (Sun Microsystems, 2005) that we call OGJ (for “Oh! Gee! Java!” (Noble

& Biddle, 2003)). OGJ programs are essentially Java 5 programs with the addition

of owner parameters that can be World, Class, Package, or This. These are real

Java interfaces defined in a package ogj.ownership. Any OGJ program will compile
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as long as the (blank) definitions of these interfaces are present in the class path,

making OGJ backwards compatible with generic Java compilers.

On the other hand, if the program is compiled using our extension to Java 5,

these four interfaces are treated specially so that any class parameterised by World

and Package behaves in a similar way to FGJ+c classes parameterised by World

and the package owner classes. Thus, a class defined as follows:

package my.util;

import ogj.ownership.*;

public class Link<Item, Owner extends Package> { ... }

will be guaranteed to have all of its instances confined within the my.util package

as long as the code is compiled using our OGJ compiler extension. While in FGJ+c

we use a separate owner class for each owner parameter corresponding to a package,

OGJ makes appropriate replacements of every occurrence of parameter Package

with an appropriate owner class. This reduces programmer load and hides the owner

classes from view.

Furthermore, we have also implemented full support for per-class confinement

similar to Class Universes (Müller & Poetzsch-Heffter, 1999) (objects can only be

used by the class within which they are declared) and for per-object ownership. In

this paper, we have formalised the part of OGJ that supports confinement. The OGJ

compiler implements the first publicly available language that has support for both

ownership and genericity (Potanin, 2005).

8 Conclusion

Generic confinement unifies two notions (genericity and confinement) that previously

appeared to be unrelated. In particular, we demonstrated that the FGJ type system,

combined with a series of visibility rules, is strong enough to provide a confinement

invariant comparable to that of Vitek and Bokowski’s Confined Types. This result

shows that confinement and generic type information can be expressed within the

same system and carried around the program as binding to the same parameters.

We proved this is possible for confinement, and plan to extend this work to more

discriminating systems such as ownership types. This may provide a lightweight

route for ownership types to become applicable in practice, with genericity carrying

ownership into popular object-oriented programming languages.
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