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Iron-dominant transverse fields

In the previous two chapters, we have been discussing transverse field magnets
where the field shape is controlled by the distribution of the conductors. When
iron was present, it served mainly to enhance the strength of the field produced
by the conductors. In this chapter, we examine transverse field magnets where
the primary roles of the conductor and the iron are reversed. Here the shape of
the field is determined by the shape of the iron surface and the conductors are
used to excite the field in the iron.[1, 2] In addition, the iron reduces the
reluctance in the magnetic circuit, allowing a larger useful field for a given
number of amp-turns from the conductor. These types of magnets typically
have a maximum field less than 2 T, so that iron saturation effects do not
destroy the field quality. We will mainly be concerned with the calculation of
the magnetic fields and do not consider the many engineering considerations
necessary to actually build magnets of this type.

6.1 Ideal multipole magnets

If the permeability of the iron is very large (μr ~ 1000), it is a useful approximation
to assume that μr is infinite. In that case, the magnetic flux density B must
be perpendicular to the iron surface. The shape of the iron surface in the transverse
plane coincides with an equipotential line for the scalar potential. Then, since the
equipotential lines of the real and imaginary parts of the complex potential W
are orthogonal, the magnetic field follows from the equipotential lines for the
vector potential. Each positive pole of the magnet acts like a source of magnetic
field, while the negative poles act like a sink where the magnetic field returns back
into the iron.
The shape of the iron pole piece for an ideal 2n-multipole magnet is determined

by the complex potential for the multipole, which can be found from conformal
mapping to have the form

150

https://doi.org/10.1017/9781009291156.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291156.007


WðzÞ ¼ cnzn

¼ cn rneinθ;

where the constant cn gives the strength of the potential. The magnetic field for the
ideal multipole is given by

B	 ¼ i
dW
dz

¼ i n cnzn�1:

The simplest example of an ideal multipole is the dipole (n = 1), which has the
complex potential

W ¼ c1z
¼ c1ðxþ i yÞ:

Figure 6.1 illustrates the iron surface and the lines of magnetic field for a dipole
magnet. The dipole has two poles with opposite polarity. Taking the real and
imaginary parts of W, the vector and scalar potentials are

Az ¼ c1 x
μ0Vm ¼ c1 y:

We see that the iron surface is given by the equipotential

c1 y ¼ h;

where the constant h identifies a particular surface. The vector potential is given by
the equipotential

c1 x ¼ k;

Figure 6.1 Iron surfaces and field lines in a dipole magnet.
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where the constant k identifies a particular equipotential line. Themagnetic field for
the dipole is

By ¼ � ∂Az

∂x
¼ �c1;

which is a constant.
The iron surfaces for higher order ideal multipoles can be found in a similar

manner. The ideal quadrupole (n = 2) has

W ¼ c2z2 ¼ c2ðx2 � y2 þ 2 i x yÞ
Az ¼ c2ðx2 � y2Þ

μ0Vm ¼ 2c2x y:

The iron surface for the ideal quadrupole is the hyperbola

x y ¼ h
2c2

;

as shown in Figure 6.2. In polar coordinates, we can write the equation of the
hyperbolic surface as

r2 sin 2θ ¼ a2;

where a is the radius to the center of a pole and θ is measured from the positive
x axis. There are four poles around the perimeter of the magnet that alternate in
polarity. The surface hyperbola for a normal quadrupole has asymptotes along the
x and y axes. The field components inside the aperture are

Bx ¼ �2c2y
By ¼ �2c2x:

Figure 6.2 Iron surface of an ideal quadrupole, ignoring the asymptotic tails.
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The vertical field on the midplane varies linearly across the aperture and is an
example of a gradient field.
The symmetry properties of a magnet are determined by the symmetry of the

poles. In an ideal normal 2N-multipole, the poles are located at the azimuthal
angles

ϕk ¼ ð2k � 1Þ π
2N

; k ¼ 1; 2; . . . ; 2N (6.1)

The polarities of the poles alternate in direction. The spacing between the poles
is π/N.

6.2 Approximate multipole configurations

It is not possible to build an ideal multipole magnet because the equipoten-
tial surfaces extend to infinity. Thus one is faced with approximating the
ideal surface as well as possible to meet the field quality requirements for
the magnet. Any approximation leads to the presence of additional allowed
multipoles. The strength of the normal multipoles are proportional to cos ϕk.
The conductor must be wound around the poles in such a way that the polarities of
adjacent poles are in opposite directions. In order to get the poles to alternate in
sign, we need

cos ϕk þ
π
N

� �
¼ �cos ϕk:

This is the same requirement that we saw in Section 4.6 for current distributions, so
the allowed multipole components m are again given by

m ¼ N ð2nþ 1Þ; n ¼ 0; 1; 2; . . .

Halbach has described methods for determining the effects on the multipole
coefficients of iron saturation and perturbations in the fabrication or construction of
iron-dominated magnets.[3, 4] These methods involve determining the effect of the
perturbation on the scalar potential associated with the pole surface. Among the
effects he considers are azimuthal and radial displacements of the poles and
modifications in the shape of the pole surface. For example, the addition of an
iron shim with thickness profile hðϕÞ modifies the unperturbed scalar potential
approximately by

δVm ≈ � hðϕÞ HrðϕÞ;
where HrðϕÞ is the field on the unperturbed surface.
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6.3 Dipole configurations

Dipole magnets are commonly used to bend charged particle beams and for
experiments requiring a uniform field.[5] The window frame dipole, shown in
Figure 6.3, is a common configuration.[2, 6, 7] The coils approximate two
parallel infinite current sheets, which we saw in Equation 4.33 produces
a uniform vertical field. In the window-frame approximation, the field is very
uniform across the aperture up to the vicinity of the coils. The field inside the
coils falls off approximately linearly, reaching zero at the outer edge of the coils.
If we look at the Ampère law around the dotted path indicated in Figure 6.3, we
find that

NI ¼
ð
H
!

·dl
!

¼ B0h
μ0

þ B0Liron
μ

; (6.2)

where NI is the number of amp-turns in the coil, B0 is the field on the midplane at
the center of the aperture, h is the gap between the iron boundaries, and Liron is the
path length in the iron. Since μ � μ0 and the typical path length in the iron is at
most a few times greater than the gap, we have

h

μ0
� Liron

μ
:

The field produced by a window frame dipole is then

B0≃
μ0NI
h

: (6.3)

Note that the field strength is inversely proportional to the size of the gap.

Figure 6.3 Window frame dipole.
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For finite permeability, the iron will undergo saturation at high field strengths,
the second term in Equation 6.2may no longer be negligible, and the field in the gap
will be smaller than indicated by Equation 6.3. The field is lower at the center of the
magnet compared to the field at the edges. This creates a small positive sextupole
component in the field. Increasing the width of the pole beyond the useful aperture
can improve the field quality.
Figure 6.4 shows a cross-section through one of the coils. The force on the

conductor is

F
! ¼

ð
J
!� B

!
dV:

The current density can be written as

J ¼ NI
wh

¼ B0

μ0w
:

Assuming the field falls off linearly across the coil

BðxÞ ¼ B0
x
w

and using

dV ¼ hL dx;

we can write [1]

F ¼ B2
0 hL

μ0 w2

ðw
0
x dx

¼ B2
0 hL

2 μ0
:

Figure 6.4 Cross-section through a dipole coil. The aperture of the magnet is
located at negative x in this figure.
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Thus the force per unit length acting on the coil is

F
L
¼ B2

0 h
2μ0

and the transverse pressure is

P ¼ B2
0

2μ0
:

Field calculations involving finite permeability iron have to be done using
computer programs. Figure 6.5 shows a model1 of a window frame dipole made
with the program POISSON.2 This figure shows one quarter of the cross-section of
the magnet. The box in the lower left corner is an air region, which is the useful
aperture in the magnet. The box to the right of the aperture is the conductor region.
The remaining region is assumed here to be made of 1010 alloy steel. The contour
lines show the direction of the magnetic field, which are vertical and fairly uniform
in the aperture. POISSON breaks the iron into a large grid of points where the
vector potential is computed. The relative permeability at each grid point is
determined from a B-H curve. The one used here has a maximum μr value of
2,755. The program produces a self-consistent solution of Maxwell’s equations.
Table 6.1 summarizes the results for three values of the field B0 at the center of the
aperture. The second column shows theminimum value of the relative permeability
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Figure 6.5 POISSON model of a window frame dipole. The dimensions are in
centimeters.

1 This is a model of the 18D72 bending magnet that was built at Brookhaven National Laboratory.
2 We will discuss the POISSON program in more detail in Chapter 11.
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at any of the iron grid points. This quantity depends on the field strength in the iron
and becomes smaller as the iron saturates at higher fields.
The third column shows the half-width of the good field region, defined here as

the distance at which the field exceeds B0 by more than 10�3 T. The last column
shows the fractional contribution of the sextupole compared to the dipole contribu-
tion to the field. The strength of the field across the half-aperture is shown in
Figure 6.6 for the two higher values of B0. The field is smallest at the center of the
aperture and grows as it approaches the conductor.
Another common dipole configuration is the H-dipole,[2, 6, 7] shown in

Figure 6.7. The coils are recessed and hidden from direct view of the useful part
of the magnet aperture. This makes the field less sensitive to errors in the coil
location. The field is not as uniform as that in the window frame configuration.
The error multipoles in a fixed, useful aperture decrease exponentially with
increasing pole width. The iron near the edge of the pole is the first area that
exhibits saturation. The good field region can also be extended by adding or
subtracting material at the outer edges of the pole, rounding the corners, or by

Table 6.1 Summary of POISSON calculations for the win-
dow frame dipole

B0 [T] Minimum μr x0.001 [cm] F3

1.56 65 21.2 3.5 10−5

2.07 13 9.3 4.0 10−4

2.59 4 3.0 3.1 10−3
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Figure 6.6 Magnetic field along the midplane aperture for the window frame
dipole.
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tapering the side edge of the iron. Leakage flux, which circulates around the
conductors, can also cause saturation in the iron near the coils, so the magnetic
field in the pole piece is maximum at the center of the pole. This creates a negative
sextupole component in the field in the aperture.
The effective width of the field is ≈wþ g. This causes the flux from the midplane

to get squeezed going into the poles,

wBpole ≈ ðwþ gÞB0;

where B0 is the field on the midplane at the center of the aperture. The field on the
pole is then

Bpole ≈ 1þ g
w

� �
B0:

The H-dipole has good field quality and mechanical stability. Simple racetrack-
shaped coils can be used to excite the field in the iron.
The C-dipole, shown in Figure 6.8, is a configuration that allows good

access to the magnet aperture from the side.[2, 6] The field in the iron can
be excited with simple racetrack coils. However, the requirement for accessi-
bility leads to a number of disadvantages. The necessary volume of the iron
yoke is larger than for an H-dipole. There may be considerable leakage flux
surrounding the conductors. The asymmetry in the yoke makes the mechanical
stability worse. At high field levels, the attractive force between the poles can
be quite large. Shims may be required at the edges of the poles to get
acceptable field quality. There is a nonuniform magnetic field across the
aperture, although this may be a desirable feature for applications that require
a gradient field component. The field is smaller on the outside side of the gap
than on the inside. The lack of left-right symmetry allows even harmonics to
also be present in the field between the pole pieces. The fringe fields between
the pole pieces extend outward by about a gap length on both sides of the pole
pieces.

Figure 6.7 Cross-section of an H-dipole.
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The effective length of a dipole, taking into account its end windings, is

Leff ¼ 1

B0

ð∞
�∞

BðzÞ dz

≃ Liron þ h;

(6.4)

where B0 is the dipole strength in the center of the magnet. The quantity h is
a length proportional to the aperture of the dipole, which takes into account the
fringe field extending beyond the iron.
Conformal mapping techniques have been used to improve the modelling of the

fringe field from dipole magnets.[8] Maps were used to transform the field from
single and double-sided pole pieces with a uniform gap to the upper half of the
complex plane.

6.4 Quadrupole configurations

Quadrupole magnets are frequently used for focusing charged particle beams.[5]
We saw in Section 6.1 that an ideal quadrupole requires an infinitely long hyper-
bolic iron surface. A common method for terminating the iron boundary is to use
symmetric cutoff angles θ1, as shown for half of a symmetric pole in Figure 6.9.[6]
The surface at the cutoff angles proceeds outwards along a radius. The equation of
the hyperbolic surface relative to the centerline of the pole is

r2cos 2θ ¼ a2;

Figure 6.8 Cross-section of a C-dipole.
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where a is the radius to the center of the pole. The cutoff angle θ1 can be selected to
be ~27° in order to eliminate the first allowed error multipole B6. In this case, the
radius to the cutoff point is given by

r1
a

≃ 1:12:

The choice of the angle θ1 also determines the amount of space available for the
conductor. Excitation of the iron poles by the conductor can be determined by using
the Ampère law around the path shown in Figure 6.10.

NI≃
ða
0

BðrÞ
μ0

drþ B0Liron
μ

:

The contribution from the path in the iron may be neglected since μr � 1.
The contribution for the path along the x axis vanishes because the field is
perpendicular to the path. Thus we have,

NI≃
ða
0

gr
μ0

dr

¼ ga2

2μ0
;

Figure 6.9 Cutoff angle θ1 for the iron surface in a quadrupole magnet.

Figure 6.10 Loop through the quadrupole.

160 Iron-dominant transverse fields

https://doi.org/10.1017/9781009291156.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291156.007


whereNI is the amp-turns around a pole and g is the quadrupole field gradient. Thus
the gradient is given by

g ¼ 2μ0NI
a2

(6.5)

and the pole tip field is

Bpole ¼ ga

¼ 2μ0NI
a

:
(6.6)

Saturation in the iron affects the area near the conductor first.
Figure 6.11 shows a POISSON model3 of a quadrupole with hyperbolic pole

pieces. The figure shows 1/8 of the symmetric cross-section. The 45° boundary
splits one of the four poles in half. The region in the vicinity of the origin is the open
aperture. The rectangular box on the side of the pole for x ~14 to 26 cm is the
conductor, which wraps around the pole and returns on the opposite side of the
symmetric half pole piece. The pole piece is part of the iron yoke that provides
a flux path to the symmetric adjacent pole.
High-field dipoles and quadrupoles require pole piece materials with a large

value for the saturation magnetic flux density. A number of soft magnetic materials
with large Bsat are listed in Table 6.2. Also listed are the initial and peak values for
the permeability and the coercivity. The resistivity of the material is important for
considerations of eddy current losses in time-varying operations.
Quadrupoles have also been constructed by approximating the hyperbolic sur-

face with a circular cylinder.[6] Consider a circle tangent to the hyperbola at the
center of the pole, as shown in Figure 6.12. The circular surface is continued out to
a cut-off angle θ1 with respect to the center of the pole and then extends outward
along a radius. Let a be the shortest distance from the center of the magnet to the
pole and R be the radius of curvature of the circle, which is centered at C. Then

R ¼ R sin θ1 þ a sin θ1

¼ a sin θ1
1� sin θ1

:

The radius of the cutoff point is

r1 ¼ ðRþ aÞcos θ1:

3 This model is an example file that is part of the POISSON code distribution.
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Figure 6.11 POISSON model of a quadrupole with hyperbolic pole pieces.
Dimensions are in centimeters.

Table 6.2 Magnetic alloys with large Bsat [9]

Alloy Composition1 Bsat [T] Initial μr Max μr Hc [Oe]
2 ρe [μΩ-cm]

35Co,1Cr 2.42 650 10,000 0.63 20
Supermendur 49Co,2 V 2.40 800 70,000 0.23 40
Vanadium
permendur

49Co,2 V 2.35 800 6,000 2.20 40

Iron 2.14 150 5,000 1.00 10
Silicon steel 0.5Si 2.05 280 3,000 0.90 28
silicon steel 3Si 2.01 290 8,000 0.70 47
grain-oriented
Si steel

3Si 2.01 1,400 50,000 0.09 50

1 In percent, balance is Fe; 2 1 Oe = 1 10−4 T / μ0:
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One solution to these equations, which makes the first allowed multipole harmonic
B6 ¼ 0; is

θ1 ¼ 31:5


r1
a
¼ 1:785

R
a
¼ 1:094:

Conformal mapping techniques have been used to simplify the design of
quadrupoles and higher order multipole magnets.[10] The desired higher-order
multipole is mapped to a dipole geometry, where it is easier to understand what
effects proposed modifications make to the field in the useful aperture. It is also
possible to numerically determine the field quality in the higher multipole
aperture more accurately by computing the multipole coefficients in the trans-
formed geometry.
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