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The parallel expansion of a dense, pellet-produced plasmoid is modelled with parameters
relevant to pellet fuelling experiments in the Wendelstein7-X stellarator. Good agreement
is found between the analytical theory and more detailed modelling. In particular, much
of the energy deposited in the pellet by the ambient plasma is transferred to the pellet ions
by the ambipolar electric field during the expansion. The validity of the hydrodynamic
treatment of the plasmoid and the ambient plasma is discussed.
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1. Introduction

Pellet injection into fusion devices is useful for particle supply (fuelling) and discharge
termination. It also offers unique diagnostic opportunities. From the theory standpoint,
pellet assimilation in the plasma is a challenging multiscale problem of transforming the
solid material into an expanding plasmoid. Pégourié (2007) presents a thorough review of
both experimental and theoretical work on this topic.

The existing models of pellet ablation in a hot magnetically confined plasma involve gas
shielding as an essential ingredient and predict that the ablated material is semi-transparent
to the incident hot electrons. The gas cloud left by the pellet initially expands in three
dimensions and then continues as a plasma in one dimension along the magnetic field
after it becomes ionized. At that point, the size of the plasma cloud is still relatively small
compared with the machine size, and the cloud is much denser and colder than the ambient
plasma. This work investigates the subsequent evolution of such a plasmoid.

It is sensible to describe the plasmoid dynamics within a fluid model. However, the
involvement of the hot ambient plasma is typically outside the applicability range of any
fluid models and, therefore, requires kinetic treatment. In particular, the coexistence of the
cold and hot electron populations within the plasmoid and the energy exchange between
them cannot be properly described in terms of a single temperature. Related to this issue
is the dependence of the ambipolar potential on both electron populations rather than on a
single Maxwellian. Yet another reason for the kinetic approach is the weak collisionality
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and long mean free path in the rarefied ambient plasma as opposed to frequent collisions
within the much denser and colder plasmoid. All these aspects call for relevant kinetic
amendments to the fluid models. A comprehensive kinetic resolution to these challenges is
not yet available. It is, however, possible to identify some trends in experimentally relevant
situations via rigorous analysis that involves only physics-based simplifications as opposed
to arbitrary assumptions. An inherent part of such an effort is to specify the applicability
conditions of the identified trends and assess whether the codes at hand simulate the
essential physics ingredients appropriately.

In this work, we use a hybrid (two-component) approach to study the expansion of the
pellet-produced plasmoid: we simulate the cold plasmoid with a Lagrangian fluid code and
describe the rarefied hot plasma kinetically. This approach was proposed by Rozhansky &
Veselova (1994) and adopted by Parks, Sessions & Baylor (2000). The hot plasma acts as a
collisional volumetric source of energy for the plasmoid. This model extends the work of
Aleynikov et al. (2019) by including ion heating into the picture. An immediate practical
motivation for this extension is to refine theoretical predictions for pellet experiments in
the Wendelstein 7-X stellarator (W7-X).

In the W7-X, pellets are used for plasma fuelling (Baldzuhn et al. 2019). One of the
most prominent features observed in pellet experiments in the W7-X is a significant
enhancement of global energy confinement time (Baldzuhn et al. 2020; Bozhenkov
et al. 2020). In these experiments, the ion temperature exceeds 3 keV with 5 MW of
electron heating after injection of a series of cryogenic hydrogen pellets. Although this
phenomenon is attributed to the reduction of turbulent transport associated with the
change of density and temperature profiles due to the pellets, the immediate plasma energy
balance during pellet assimilation is also important.

We pre-empt our quantitative analysis by qualitative thoughts described in § 2 and
related back-of-the-envelope estimates, which include limitations of the adopted approach.
Extensions of the self-similar solution for the expansion of the plasmoid, proposed
by Aleynikov et al. (2019), are also discussed in § 2. Sections 3 and 4 describe our
computational model. Section 5 discusses the early stage of plasmoid expansion, when
the plasmoid is not yet transparent to the ambient particles and the ambient plasma needs
to be treated kinetically. Section 6 is devoted to the discussion of the later stage of the
expansion, when the heated plasmoid becomes transparent to the ambient particles and the
ambient plasma can be treated as a uniform volumetric source of energy. We demonstrate
a good agreement between the analytical and the numerical models within the appropriate
applicability range.

2. General considerations

In the W7-X, one cryogenic hydrogen pellet typically contains approximately Ntotal =
1020 electrons, and is injected at a speed of 100–300 m s−1 by a blower gun. The pellet
penetrates approximately Lp = 5–15 cm into the plasma (Baldzuhn et al. 2019). At first,
the ablated neutral material expands at the speed of sound in all three dimensions. This
three-dimensional (3-D) expansion continues until the cloud becomes ionized and its
pressure becomes smaller than the magnetic pressure, i.e.

B2/2μ0 ≈ Ntotal

LpπR2
Tp, (2.1)

where B is the toroidal magnetic field, R ≈ √
Tp/mit is the size of the cloud that

expands with the sound speed, Tp is the plasmoid temperature and t denotes time.
The cloud pressure decreases with time as ∼ 1/t2 if fast ablation and ionization are
assumed.
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FIGURE 1. Attenuation s = ∫ L/2
−L/2(1/λ) dx of a 4 keV electron flux (red) and 2 keV ion flux

(blue) in a plasmoid of Tcold temperature.

We note that the cloud temperature increases linearly in time as

Tp
e ≈ Ta

e ν
a
eet, (2.2)

where the collisional time νa
ee is given by (2.9) below. For the ambient plasma with density

na = 5 × 1019 m−3, Ta = 4 keV electron temperature and B = 2.5 T, the cloud pressure
drops below the magnetic pressure when the cloud size reaches ≈ 2 cm. Spectroscopic
measurements of the pellet plasmoid in the Large Helical Device suggest that the plasmoid
size in the direction perpendicular to the magnetic field reaches approximately 10 cm
(Motojima et al. 2010). A similar size is recorded in the W7-X experiments (Baldzuhn
et al. 2019). However, after the 3-D expansion phase, the plasmoid expands along the field
lines to much greater length. This expansion is driven by the ambipolar potential, which
forms due to the plasmoid pressure gradient. Given the above parameters, the expected
average field line integrated plasmoid density is approximately Nl = 1022 m−2.

Throughout this work we assume that the pellets are very fast, so that the
field-line-integrated plasmoid density remains constant after the solid pellet leaves the
field line. This assumption breaks down for slower pellets that act as an ablative source
on the time scale comparable to the plasmoid expansion time. Such slow pellets are
considered by Arnold, Aleynikov & Helander (2021).

The cold plasmoid opacity is different for the ambient hot plasma electrons and ions.
Because the stopping power of the hot ions on cold electrons is very high, the cold
plasmoid is not transparent for the ambient ions before it is heated, while it is always
transparent for the ambient electrons. In the high-performance pellet experiments in
the W7-X, pellets are injected into a plasma with an electron temperature of 4 keV
and an ion temperature of 2 keV (Bozhenkov et al. 2020). Figure 1 shows attenuation
s = ∫ L/2

−L/2(1/λ) dx of a hot particle flux in the plasmoid of Tcold temperature. Here, L

denotes the plasmoid length, so that
∫ L/2

−L/2 n dx = n0. The mean free path λ is calculated
using the parallel slowing down time τs as given by (18.5) from the paper by Trubnikov
(1965). The red curve indicates the attenuation of 4 keV electron flux and the blue curve
shows the attenuation of 2 keV ion flux.1 The steep rise of the ion attenuation for a colder
plasmoid is due to friction on cold electrons. The plasmoid becomes transparent to the
ambient ions when it reaches 100 eV.

1Here and in all calculations in this work the Coulomb logarithm is taken to be equal 12.
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In this work we focus on the long-term evolution of the plasmoid, so that the long mean
free path of the ambient plasma particles in a heated plasmoid prevents us from treating the
ambient plasma hydrodynamically. Instead, we use a simplified description of the kinetic
effects. First, we consider the finite mean free path of the ambient plasma. In order to
do that we solve a simplified kinetic equation for the ambient particles. The appropriate
moments of the collisional integral provide energy and momentum sources in the fluid
equations for the plasmoid. The kinetic model is introduced in § 4. The quantity of interest
at this stage is the external pressure that hinders expansion. Second, we treat the plasmoid
as being nearly transparent to the ambient electrons and ions. In this limit, the ambient
plasma acts as a volumetric heating source for the pellet material. This limit is considered
semi-analytically below, as well as by Aleynikov et al. (2019).

In a non-conductive medium the difference between the fluxes of electrons and
ions would electrically charge the plasmoid and establish an electrostatic potential that
equalizes the fluxes. However, in our case good conductivity precludes formation of any
significant potential. Indeed, in the unfavourable limit when the entire ambient ion flux
is slowed down within the plasmoid, the potential φc that creates a neutralizing electron
current is given by (see Lengyel et al. 1999)

nae

√
2Ta

mi
≈ σ‖

φc

L0
, (2.3)

where σ‖ = 1.96(e2np/meν
p
ee) is the parallel conductivity and L0 is the minimum between

the plasmoid length L and the ion mean free path λ. The maximum φc estimate is
obtained for L0 = L. Assuming the sound speed expansion L =

√
Tp

e /mit and using (2.2)
for plasmoid temperature we find

eφc ≈ me

mi
Ta, (2.4)

which is negligible compared with the plasmoid and the ambient plasma temperatures.
The highly collisional plasmoid electrons have a Boltzmann distribution in the

ambipolar potential,

eφ ≈ Tp
e ln

(
np

na

)
, (2.5)

where np and na are the plasmoid density and the ambient plasma density, respectively.
Once the expansion becomes one-dimensional (1-D), the plasmoid density np evolves as

np ∼ Nl

Vt
∼ Nl√

Tp
e

mi
t

∼ Nl

t3/2√νa
ee

√
Ta

e

mi

∼ Nl(
νa

eet
)3/2
λa

√
me

mi

, (2.6)

where Nl is the line-integrated plasmoid density, V is the expansion speed and λa is the hot
ambient plasma mean free path. Note that the plasmoid temperature grows linearly with
time as discussed by Aleynikov et al. (2019). The potential is then

eφ
Ta

e

≈ νa
eet ln

(
Nl

λana

1(
νa

eet
)3/2

√
mi

me

)
. (2.7)

In order to neglect the effect of this potential on the ambient plasma, the potential has
to be much smaller than the ambient plasma temperature, i.e. eφ � Ta. The quantity
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Nl/(λ
ana) is of order unity under the assumption that the penetration depth of the hot

electrons into the ablating pellet is roughly one mean free path within the solid material
(or neutral gas shield). Of course, this is a very rough estimate and Nl/(λ

ana) can differ
from unity significantly. However, it follows from (2.7) that the ambipolar potential
becomes significant long before the plasmoid is heated to the ambient temperature, unless
Nl/(λ

ana) is very small. We note that (2.7) does not take into account the reduction of
the collisional heat exchange when the temperature of the cold population approaches the
ambient temperature (see (2.8)). The numerical calculations discussed in the following
show that the potential may actually decrease after an initial rise because of the reduced
heating rate.

The calculations presented in this paper ignore the effect of the ambipolar potential
on the ambient plasma, which puts a ceiling on the applicability range of this approach.
Aleynikov et al. (2019) discussed a self-similar solution for the expansion of the heated
plasma into a vacuum. The solution relied on the plasmoid electron temperature being
homogeneous along the field line and the plasmoid ions being cold. The former is an
almost universally valid assumption, but the latter is not necessarily the case because of
the collisional ion heating by electrons in a very dense plasmoid. The collisional coupling
between the pellet ions and electrons initially keeps Ti ≈ Te. However, as the plasmoid
density drops, the electron temperature decouples from the ion temperature and exceeds it
so that Ti � Te for the most part of the expansion.

To understand the validity range of the cold ion approximation, we first note that the
collisional energy transfer between the plasmoid electrons and the plasmoid ions does not
change the total pressure that drives the expansion. Consequently, the ion heating can be
assessed on the basis of the cold ion expansion model (Aleynikov et al. 2019).

For two Maxwellian species α and β with Tα/Tβ � mα/mβ and the same flow velocity,
the heating per unit volume experienced by species α due to β is given by

Qα,β = 3νB
α,βnα

(
Tβ − Tα

)
, (2.8)

where we define a Braginskii-like collision frequency as

νB
α,β = 4

√
2πnβe2

αe2
β ln Λ

3mαm−1/2
β T3/2

β

. (2.9)

The plasma as a whole has four components: plasmoid electrons (denoted e), plasmoid
ions (i), hot background electrons (eh) and hot background ions (ih). We assume that the
ion distribution is Maxwellian, which is justified near the origin where the plasmoid is
very dense. By taking into account collisional heating of the plasmoid ions by plasmoid
electrons and background ions, we obtain the following equation for the ion temperature
in the plasmoid:

3
2

(
∂Ti

∂t
+ V

∂Ti

∂x

)
+ Ti

∂V
∂x

= 3νB
i,ec(Te − Ti) + 3νB

i,ihTh, (2.10)

with V , Te, n being prescribed by the self-similar solution of Aleynikov et al. (2019).
Namely, Te = νB

e,ehTat, u = 3x/(2t) and n = Nl

√
3mi/(8πTet2) exp(−3mix2/(8Tet2)),

where Nl is the total line-integrated density of plasmoid material. The heating terms are
given by (2.8), but the contribution from the background ions is approximate since V �= 0.
It is helpful to de-dimensionalize (2.10) by defining a time scale (νB

e,eh)
−1, mass scale mi
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FIGURE 2. Evolution of the temperatures of plasmoid species at the origin. The green line
shows ion temperature growth if there is no ion–electron collisional coupling.

and a velocity scale
√

Ta/mi. With dimensionless equivalents of variables denoted by
tildes, (2.10) becomes

∂T̃i

∂ t̃
+ 3x̃

2t̃
∂T̃i

∂ x̃
+ T̃i

(
1
t̃

+ 2σ

t̃3
exp

(
−3x̃2

8t̃3

))
= 2σ

t̃2
exp

(
−3x̃2

8t̃3

)
+ 2

√
me

mi
, (2.11)

where σ is a dimensionless quantity, defined as

σ = 2Nle4 ln Λ√
3(Ta)2

√
me

mi
(2.12)

in CGS units. Within a factor of order unity, σ is equal to the length of the cloud, measured
in units of the mean free path of electrons with the ambient temperature, multiplied by√

me/mi.
Equation (2.11) may be solved by the method of characteristics combined with an

integrating factor, which yields the solution:

T̃i =
(

1 −
√

me

mi

)
σ

t̃
exp

(
−3x̃2

8t̃3
+ σ

t̃2
exp

(
−3x̃2

8t̃3

))∫ ∞

σ/t̃2 exp(−(3x̃2/8t̃3))

1
γ

e−γ dγ +
√

me

mi
t̃,

(2.13)

where τ = t̃/
√

σ . The above quantity has its maximum at the origin, and its value is given
by

T̃i(x = 0)√
σ

=
(

1 −
√

me

mi

)
1
τ

e1/τ 2

∫ ∞

1/τ 2

1
γ

e−γ dγ +
√

me

mi
τ. (2.14)

Figure 2 presents the temperatures of both plasmoid species at the origin (with and
without the ion–electron coupling). The ion temperature peaks when τ = 2.36, which
gives a maximum value of T̃i/

√
σ = 0.705. In dimensional units, the ‘early maximum

temperature’ of the ions is Tmax
i = 0.705

√
σTa at t = 2.36

√
σ(νB

e,eh)
−1. For τ � 5, the

electron–ion collisional coupling weakens and heating by the background ions takes over.
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As expected, collisional coupling decreases further away from the origin, which leads to
lower ion temperatures in the outer regions of the plasmoid.

For τ � 1, ion and electron temperatures are almost equal in the plasmoid. This is
expected at early times, due to strong collisional coupling between the species. Once this
coupling becomes weak, the ion temperature at the origin grows

√
mi/me times slower

than that of the electrons, because the remaining ion heating source is collisions with
background ions. We thus conclude that the Ti � Te assumption is justified, except at very
early times, as long as

√
σ � 1.

The early maximum ion temperature at the origin may be expressed as

Tmax
i = 0.705

[
2Nle4 ln Λ√

3

√
me

mi

]1/2

. (2.15)

in CGS units. We note that this temperature is independent of the background plasma
parameters. The only essential parameter involved is the line-integrated density of the
plasmoid Nl, which is determined by the initial condition. It is also noteworthy that this
early maximum temperature is independent of the rate at which the plasmoid electrons are
heated, despite the fact that energy is channelled from the plasmoid electrons to the ions.

Equation (2.15) shows that the early ion temperature maximum is in the range of a few
tens of electron volts for the W7-X relevant parameters. Detailed numerical calculations
discussed in §§ 3–5 confirm this conclusion.

Within the idealized cold ion approximation, the model of plasmoid expansion consists
of the following three equations (continuity, momentum balance and energy balance):

∂np

∂t
+ ∂

∂x
(npV) = 0,

mi

(
∂V
∂t

+ V
∂V
∂x

)
= −Tp

e (t)
∂ ln np

∂x
,

d
dt

∫ ∞

−∞

(
3npTp

e

2
+ minpu2

2

)
dx =

∫ ∞

−∞
Q(t)n dx,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.16)

where Q(t) represents the per particle heating rate.
Equations (2.16) admit solutions with Gaussian density profiles and linear velocity

profiles (Aleynikov et al. 2019; Kidder 1971):

n(x, t) = Nl

√
a(t)
π

exp
(−a(t)x2) , (2.17)

V(x, t) = b(t)x. (2.18)

This ansatz reduces (2.16) to a set of three ordinary differential equations:

ȧ + 2ab = 0,

ḃ + b2 = 2aT/mi,

3
2

Ṫ + bT = Q(t).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.19)

Note that the plasmoid density factor Nl does not appear in these equations when the
heating function Q(t) is defined as the per particle collisional energy exchange, i.e. via
(2.8). Hence, (2.19) describe expansion of a plasmoid of any line-integrated density.
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We next consider a more general fluid model, with which we will then compare solutions
of the ordinary differential equations (2.19).

3. Fluid model for the plasmoid
We consider a plasmoid of finite size, which, according to the fluid description, remains

finite during the expansion, and we use a set of 1-D Braginskii equations (Braginskii 1965)
to describe expansion of the plasmoid along the magnetic field:

∂n
∂t

+ ∂nV
∂x

= Sn,

∂mnV
∂t

+ ∂

∂x

(
mnV2 + nT − 4

3
η

∂V
∂x

)
= SV + eEn + R,

∂

∂t

(
mnV2

2
+ 3

2
nT

)
+ ∂

∂x

(
mnV3

2
+ 5

2
nVT − κ

∂T
∂x

− 4
3
η

∂V
∂x

V

)
= eEnV + RV + Qexch + ST .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.1)

Here, the usual notation and CGS units are used and the i/e subscript is omitted for brevity.
The transport coefficients are those given by Braginskii (1965). The collisional heat
exchange Qei = −Qie and the S-terms represent external sources and sinks, as discussed
in § 4.

We apply the usual simplifications to these equations. The ion and electron momentum
equations are added to cancel the electric field and mutual friction forces. The small terms
of order ∝ me/mi are neglected. We also assume quasi-neutrality (the Debye length is
much smaller than the overall dimensions of the cloud), i.e. ni = ne ≡ n and Vi ≈ Ve ≡
V . The small difference between Vi and Ve responsible for current flowing through the
plasmoid is neglected.

The ambipolar electric field E(x) is determined by the electron momentum balance
equation, assuming fast electron temperature equilibration and neglecting electron inertia
and viscosity:

|e|En = −∂nTe

∂x
+ Se

V + RT . (3.2)

With these simplifications, the set of hydrodynamic equations for plasmoid expansion
reduces to

∂n
∂t

+ ∂nV
∂x

= Sn,

∂minV
∂t

+ ∂

∂x

(
minV2 + n(Te + Ti) − 4

3
ηi

∂V
∂x

)
= SV ,

∂

∂t

(
3
2

nTi

)
+ ∂

∂x

(
5
2

nVTi − κi
∂Ti

∂x

)
= STi + V

∂nTi

∂x
+ Qei, +4

3
ηi

(
∂V
∂x

)2
+ miV2

2
Sn − VSV ,

∂

∂t

(
3
2

nTe

)
+ ∂

∂x

(
5
2

nVTe − κe
∂Te

∂x

)
= STe + V

∂nTe

∂x
+ Qie.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.3)
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Pellet injection modelling: on parallel dynamics of a plasmoid 9

We use a Lagrangian representation to solve these equations. The Lagrangian time
derivative is d/dt = ∂/∂t + V(∂/∂x) so that the system (3.3) takes the form:

dn
dt

+ n
∂V
∂x

= Sn,

dμ

dt
+ μ

∂V
∂x

= −∂n(Te + Ti)

∂x
+ ∂

∂x

(
4
3
ηi

∂V
∂x

)
+ SV,

dεe

dt
+ εe

∂V
∂x

= −2
3
εe

∂V
∂x

+ ∂

∂x
κe

∂Te

∂x
+ Se

T + Qei,

dεi

dt
+ εi

∂V
∂x

= −2
3
εi

∂V
∂x

+ ∂

∂x
κi

∂Ti

∂x
+ 4

3
ηi

(
∂V
∂x

)2

+ Si
T + Qie + miV2

2
Sn − VSV,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.4)

where εi/e ≡ 3/2nTi/e, μ ≡ minV .
The Lagrangian coordinates ξ, t, where ξ marks the ‘fluid element’ (ξ = x|t=0), with

Jacobian J ≡ |∂x/∂ξ |, allow us to cast (3.4) into a set of conservation laws. The evolution
of the medium is described by functions x(ξ, t), V(x, t), n(x, t). The law of motion for
each fluid element is given by

dx
dt

= V(x, t), (3.5)

and its derivative with respect to ξ is given by

∂

∂ξ

dx
dt

= ∂V(x, t)
∂ξ

= ∂V(x, t)
∂x

∂x
∂ξ

⇒ ∂V
∂x

=
(

∂x
∂ξ

)−1 d
dt

∂x
∂ξ

. (3.6)

Substituting this expression into (3.4), and introducing the ‘substance’ values instead of
densities,

N ≡ nJ, M ≡ μJ, Ei/e ≡ εi/eJ, (3.7a–c)

the desired form of the equations is obtained:

dJ
dt

= ∂

∂ξ

M
Nmi

,

dN
dt

= SnJ,

dM
dt

= −2
3

∂

∂ξ

Ei + Ee

J
+ 4

3
∂

∂ξ

ηi

J
dJ
dt

+ SVJ,

dEe

dt
= −2

3
Ee

J
dJ
dt

+ 2
3

∂

∂ξ

κe

J
∂

∂ξ

Ee

N + 2me

miτe
(Ei − Ee) + Se

TJ,

dEi

dt
= −2

3
Ei

J
dJ
dt

+ 2
3

∂

∂ξ

κi

J
∂

∂ξ

Ei

N + 2me

miτe
(Ee − Ei) + Si

TJ,

+ 4
3J

ηi

(
dJ
dt

)2

+ M2

2N 2mi
SnJ − M

Nmi
SVJ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.8)
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The source terms on the right-hand side of (3.8), due to collisions with the ambient plasma,
are given by

Sn = −
∫ ∞

−∞
St · d3v; SV = −m

∫ ∞

−∞
St · v‖d3v; ST = −m/2

∫ ∞

−∞
St · v2 · d3v,

(3.9a–c)

where St describes collisions between the ambient particles and the plasmoid particles, as
discussed next.

In the present work, we do not model the ambient plasma self-consistently, it just
determines these source terms in our model. It should be noted that in a purely
hydrodynamic case (infinite collisionality of the plasmoid), these volumetric sources
would degenerate to delta-functions and define therefore boundary conditions for (3.8).
In our case of finite collisionality, the exchange between ambient plasma and the plasmoid
is taken into account by sources (3.9), and the boundary conditions for (3.8) represent the
absence of additional energy and momentum fluxes through the moving boundary,

∂V
∂x

= 0,
∂Te,i

∂x
= 0 (on the plasmoid side). (3.10a,b)

4. Treatment of sources

The initial 3-D expansion of the ablated material makes it transparent to the ambient hot
electrons, but the mean free path of the ambient ions in the plasmoid is still shorter than
the plasmoid size until the plasmoid electrons warm up. This suggests that the ambient
ion pressure may slow down the plasmoid expansion rate. However, this factor turns out
to be of secondary importance in the parameter range under consideration. The reason
is that the initial pressure inside the plasmoid is much greater than the ambient plasma
pressure, and the plasmoid electrons warm up sufficiently to decrease the ion stopping
power before the plasmoid pressure becomes comparable to the ambient pressure. As
a result, the plasmoid quickly becomes transparent to the ambient ions and, therefore,
unaffected by their pressure. In other words, the coupling of the plasmoid to the ambient
hot ions diminishes quickly as its temperature rises, the collision frequency falls and the
expansion changes character from hydrodynamic to kinetic.

To model this trend in the code, we treat the incident ions plasma as a half-Maxwellian
beam entering the plasmoid. The plasmoid parameters are governed by (3.8). We describe
the slowing down of the ion beam within the plasmoid by a 1-D quasi-steady-state kinetic
equation. For simplicity, a simple model is employed that only includes collisional drag
and ignores any ambipolar potential. We characterize the drag by a velocity-dependent
collision frequency. This enables the code to model the energy and momentum deposition
from the ambient ions, which depend on the ion mean free path, in a computationally
efficient and qualitatively accurate way.

The simplified kinetic equation for the ambient ions is

v‖
∂f
∂x

= −f νs, (4.1)

where νs is taken to be the slowing-down frequency (summation over the scatterer species
is assumed) as given by (18.5) from the paper by Trubnikov (1965), i.e.

νs
α/β = 1

τα/β

(
1 + mα

mβ

)
aβ(v), (4.2)
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where

aβ(v) = 4√
π

∫ u

0
exp (−s2)s2 ds, where u =

√
mβv2

2Tβ

, (4.3)

and where the relaxation time is given by

τα/β
≡ 1

να/β

= 1√
2π

(mαv
2/2)3/2√mα

e2
αe2

βnβ ln Λ
. (4.4)

In the limit Ta � Tp the most important process is braking of the beam particles on
the cloud. Note that this choice of collision frequency would not be appropriate for the
electrons, which undergo pitch-angle scattering on the ions. However, this process may be
neglected since Sei

T is small compared with Sii
T by a factor of

√
me/mi, see table 2 in the

paper by Trubnikov (1965).
Despite the fact that the slowing down of the fast particles is calculated self-consistently,

we assume that their density is insignificant, so that the particle source in the fluid model
is negligible Sn = 0.

The boundary condition for f is assumed to be Maxwellian,

φa =
( m

2πTa

)3/2
exp

(
−m(v2

‖ + v2
⊥)

2Ta

)
. (4.5)

The distribution function for ions then obtains the form:

fi(x, v‖>0) = na exp
(

−
∫ x

xL

ν ii
s + ν ie

s dx′

v‖

)
φa

i ; (4.6)

similar expressions for v‖ < 0 and for the electrons are straightforward.
The source terms (3.9a–c) take into account contributions of all species,

SV = me

∫ (
feν

ee
s + feν

ei
s

)
v‖ d3v + mi

∫ (
fiν

ii
s + fiν

ie
s

)
v‖ d3v,

Se
T = 1

2

∫ (
me feν

ee
s + mi fiν

ie
s

)
v2 d3v,

Si
T = 1

2

∫ (
mi fiν

ii
s + me feν

ei
s

)
v2 d3v.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.7)

As we have mentioned above, in the present calculations we neglect the contribution of
e–i collisions compared with the corresponding i–i terms.

This momentum and the energy sources are calculated at each kinetic sub-step and used
in (3.8).

4.1. Ambient plasma model in the limit of low collisionality
If the ambient plasma collisionality within the plasmoid is low we may treat it as being
uniform there. The effects of the plasmoid on the ambient plasma can be neglected in this
case. Thus, a Maxwellian distribution with n = na, V = 0, T = Ta is assumed for the hot
particles within the domain [xL, xR] that is occupied by a colder Maxwellian plasmoid with
parameters np(x, t), Vp(x, t), Tp(x, t).
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The expression for the energy exchange between two Maxwellian populations,
valid for any masses and temperatures, is given in the paper by Dnestrovskii &
Kostomarov (1985), (2.2.21):

STαβ
= 4να/β√

π

mα

mβ

nα(Tα − Tβ)(
1 + mαTβ

mβTα

)3/2 . (4.8)

Equation (4.8) describes electron–electron energy exchange between the ambient
plasma and the plasmoid, but it is not accurate for ion–ion collisions in our case, because
the pellet ions can move faster along the field lines than their thermal speed. A more
accurate expression for the ion–ion energy exchange is given by (17.24) of the paper by
Trubnikov (1965),

STii = npTa

τa

(
8√
π

exp(−u2
0) − 2erf(u0)

u0

)
, (4.9)

where u0 ≡
√

miV2
0/2Ta

i , τa is the simplest time (4.4), calculated using the parameters
of the ambient plasma. The corresponding expression for the braking of the pellet ions
by collisions with the ambient plasma is obtained from (18.1) of the paper by Trubnikov
(1965),

SVii = −2minpvTa

τau2
0

(
erf(u0) − 2√

π
u0 exp(−u2

0)

)
. (4.10)

Given that we treat the plasmoid as being transparent to the ambient particles, we set
Sn ≡ 0.

5. Initial opaque phase of expansion

In the experiments reported by Baldzuhn et al. (2020) and Bozhenkov et al. (2020)
pellets were injected into a plasma of density 5 × 1019 m−3 and approximately 4 keV
electron and 2 keV ion temperature. The expected field-line-integrated plasmoid density,
suggested by the experimental observations,is approximately Nl ≈ 1022 m−2. As discussed
in § 2, such a plasmoid is initially not fully transparent to the ambient ions, but it is
transparent to the ambient electrons. As a result, the heating profile initially is not uniform
and the slowing down of ambient plasma particles (mostly ions) results in an external
pressure which hinders expansion. As the plasmoid temperature increases, it becomes
transparent to the ambient ions and the effects of non-uniform heating and external
pressure vanish. In order to demonstrate that the finite initial opacity does not have a
significant effect on the subsequent plasmoid dynamics we calculate the expansion using
the two models for the ambient plasma discussed in § 4.

Figure 3 shows evolution of the central electron temperature (Te) and the width of the
plasmoid (LHWHM), which is defined as a half-Width at half-maximum (HWHM) during
the first 25 μs of the plasmoid expansion. Three snapshots (at 0.1 μs, at 1 μs and at
25 μs) of the plasmoid density, electron and ion temperature profiles are also shown. The
red curves show results of the calculations using the kinetic model for the ambient plasma,
whereas the black curves are obtained using the low-collisionality ambient plasma model
discussed in § 4.1.

These calculations demonstrate that initially the ion temperature follows closely the
electron temperature in the region of high density due to very strong collisional coupling
in the plasmoid, as discussed in § 2. These temperature profiles later decouple as the
plasmoid temperature increases. The first two snapshots of the electron temperature profile
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FIGURE 3. Evolution of the plasmoid central electron temperature (Te) and size (LHWHM)
calculated in two limits: kinetic ambient plasma with effect of ambient pressure and
inhomogeneous heating (red curves) and in low-collisionality limit (black curves). Three
snapshots (c–h: at 0.1 μs, at 1 μs and at 25 μs) of the plasmoid density profiles (n), electron
(solid) and ion (dashed) temperature profiles (T) are shown.
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FIGURE 4. Evolution of the integrated momentum source
∫∞

0 SV dx normalized to the ambient
hydrodynamic pressure naTa (dashed curve, left axis). Ratio of the plasmoid electron pressure
to the ambient electron pressure (solid curves, right axis). Colours as in figure 3.

(at 0.1 μs, at 1 μs) show the effect of the inhomogeneous heating, i.e. the electron
temperature is elevated in the external region of the plasmoid (i.e. within the penetration
depth of the ambient particles). This inhomogeneity vanishes as the plasmoid is heated,
due to the increased transparency and heat conductivity (see the flat profiles on the 25 μs
snapshot).

It is instructive to investigate the effect of ambient pressure on the evolution of the
plasmoid. Figure 4 shows the evolution of the integrated momentum source

∫∞
0 SV dx

normalized to the ambient hydrodynamic ion pressure naTa
i . It is evident that initially,

when the plasmoid is not transparent to the ions, the total momentum source is
approximately equal to the ambient ion hydrodynamic pressure (the electron friction
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contributes to SV insignificantly). As the plasmoid is heated, the ion mean free path
increases and the friction forces from the left and the right ambient fluxes start to cancel
each other. The net ambient force is then reduced drastically. The subsequent evolution of
the plasmoid is thus equivalent to expansion into a vacuum (Aleynikov et al. 2019).

The solid curves in figure 4 (right axis) show the evolution of the plasmoid electron
pressure normalized to the ambient electron pressure (colours are as in figure 3). It is
evident that in this particular example, the plasmoid pressure is always much higher than
the ambient plasma pressure, except for the later phase (after 10 μs), when the actual
momentum exchange is much lower than the hydrodynamic pressure. The dashed–dotted
curve shows the pressure obtained from the corresponding self-similar solution (2.19) and
in the paper by Aleynikov et al. (2019). All three solutions agree in the later stages of
expansion.

It is noteworthy that after initially different evolution of the density profiles (see
the evolution of the width LHWHM and the snapshots at 1 μs), the profiles exhibit a
remarkable agreement in the later stage of expansion (see the snapshots at 25 μs). This
is not a coincidence. Indeed, during the initial ‘cold plasmoid’ phase the heating is
not homogeneous, the ambient pressure is present, and the plasmoid electron and ion
temperatures are comparable so that the dynamics is governed by the full system (3.3).
However, as the plasmoid is heated, these effects vanish and the long-term evolution
is governed by the reduced system (2.16), which admits a self-similar solution. These
solutions often act as attractors (intermediate asymptotics) for solutions with arbitrary
initial conditions. It is therefore expected that ‘further’ away from the ‘cold plasmoid’
phase the solutions of the full system will agree with the reduced system (2.16) regardless
of the initial conditions. In § 6 we will investigate the long-term expansion of the plasmoid.

6. Results and discussion

Here we investigate the long-term evolution of the plasmoid. It is expected that these
solutions will agree with the self-similar solutions of the reduced system (2.19). The
calculations are performed for the plasmoid and plasma parameters relevant to the W7-X
pellet injection experiments: the ambient electron and ion temperatures are Ta = 4 keV
and the ambient plasma density is 5 × 1019 m−3. We present the results for the plasmoids
of several different densities.

Figure 5 shows the evolution of the central electron (Te) and ion (Ti) temperatures,
plasmoid length (LHWHM), and the total plasmoid electron (Ee) and ion (Ei) energies.
These plots result from two different calculations. The first one uses the full system
((3.8)) with the sources ((4.8)–(4.10)) (black curves). The second represents the analytical
model based on (2.16) (red curves). The only heating source in the analytical model is the
electron collisional coupling with the ambient plasma calculated using (4.8). The plots also
show the time-dependent ambipolar potential (φmax) (solid curve) and normalized central
density (log10(n

p
0/na)) (dashed curve). In the case shown in figure 5, the ambient plasma

temperature is 4 keV and the density is 5 × 1019 m−3. The electron energy consists only of
thermal electron energy, Ee = ∫∞

−∞ npTe dx, while the ion energy is a sum of thermal and
kinetic energies, Ei = ∫∞

−∞ npTi dx + ∫∞
−∞ np(miV2/2) dx.

As discussed in §§ 2 and 5, the plasmoid is very dense and cold initially as well
as during the first few μs in figure 5. Consequently, the collisional coupling between
cold electrons and ions is then strong enough that their temperatures are almost equal.
Once the temperature increases, the coupling weakens. The analytically predicted ion
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FIGURE 5. Evolution of the (a) central electron (Te) and ion (Ti) temperatures, (b) plasmoid
length (LHWHM), (c) potential at the origin φmax, and (d) the energy of the plasmoid components
(Ei, Ee). Red curves, analytical model (2.19); black curves, full system (3.8). The line integrated
plasmoid density is Nl = 0.5 × 1022 m−2. The ambient plasma temperature is Ta = 4 keV and
the corresponding density is 5 × 1019 m−3.

temperature at decoupling, Tmax
i ≈ 50 eV (see (2.15)), is in good agreement with the

numerical calculations (≈46 eV).2
During the next stage of the expansion, the ion heating is relatively weak. The Te

becomes almost homogeneous within the plasmoid, because of the high electron heat
conductivity. The ions are accelerated by the pressure gradient but remain quite cold, and
their heat conductivity and viscosity remain small. Although the ions are cold, their kinetic
energy actually exceeds the electron thermal energy, as shown in figure 5. The black solid
curve in figure 5(d) shows the ambipolar potential determined by (2.7). We note that this
potential grows initially, due to the increase of the plasmoid temperature. However, the
potential later decreases, as the temperature growth slows down and the plasmoid density
drops. In this particular case, the potential is always significantly lower than the ambient
plasma temperature (4 keV) and can, therefore, be neglected at all times.

The analytical and numerical models agree well for the majority of the expansion, except
at the very beginning, where the ion and the electron temperatures are comparable, and the
cold ion approximation of the analytical model is not justified. Yet, due to the relatively
low decoupling temperature, the further expansion is covered accurately by both models.
The calculations are terminated when the central plasmoid density, shown with a dashed
curve in figure 5(d), approaches the ambient plasma density.

Figure 6 compares the profiles of density (n), flow velocity (V), ion temperature (Ti) and
normalized mean free path at t = 50μs. The figure shows the results for the same models

2Our numerical experiments confirm that the accuracy of (2.15) is of the order of 10 %. Equation (2.15) should be
used in order to define the applicability limit for the cold ion plasmoid model.
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mean free path profiles at t = 50 μs during plasmoid expansion. Colour codes and plasma
parameters as in figure 5.

as those in figure 5 (black, ‘full’ numerical model; red, analytical). For the most part,
the numerical calculations show Gaussian density profiles and linear velocity profiles, in
agreement with the analytical solution. A noticeable difference is only at the edges of the
plasmoid where the hydrodynamic description is problematic as discussed below.

A linear velocity profile is characteristic for the expansion of plasma into a vacuum
and is also seen under other conditions (Gurevich, Pariiskaya & Pitaevskii 1966). Our
numerical experiments show that solutions always converge to the self-similar profiles
(i.e. Gaussian density and linear velocity) at the late stage of expansion.

Unlike the electron temperature, the ion temperature profile exhibits a large increase
toward the edges (see Ti plots in figure 6) during the expansion. This temperature increase
is predominantly due to viscous ion heating, which is inversely proportional to the collision
frequency and therefore progressively more important as the density of the cloud drops
and the temperature increases. It reaches its maximum when the mean free path becomes
comparable to the length of the cloud, at which time Braginskii’s equations used in the
hydrodynamic treatment of the problem breaks down (see λc/L plot in figure 6).

Similar to figure 5, figure 7 shows the evolution of the central electron and ion
temperatures (Te and Ti), plasmoid length (LHWHM), the ratio of ion to electron energy
((EK

i + ET
i )/ET

e ) and the potential at the origin (φmax) for plasmoids of three different
densities. The dashed–dotted curves on the length plot (LHWHM) show the actual finite
size of the plasmoid. The black curves correspond to the cases in figures 5 and 6
(Nl = 0.5 × 1022 m−2), whereas the blue and the green curves refer to Nl = 3 × 1022 m−2

and Nl = 6 × 1022 m−2, respectively. The red curves represent the density-independent
analytical prediction using (2.19).

After an initial transient, excellent agreement between the analytical and the numerical
models is observed for all densities. Both models use the same per particle heating source
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FIGURE 7. Comparison of the evolution of the (a) central electron and ion temperatures (Te
and Ti), (b) plasmoid length (L), (c) ratio of the ion to the electron energy ((EK

i + ET
i )/ET

e ) and
(d) the ambipolar potential at the origin for plasmoid with different line-integrated densities.
Colour codes and the plasma parameters as in figure 5, with the addition of blue curves for
Nl = 3 × 1022 m−2 and green for Nl = 6 × 1022 m−2.

given by (4.8), except that ion–ion collisions are taken into account in the full system.
This explains the somewhat higher ion to electron energy ratio ((EK

i + ET
i )/ET

e ) in the ‘full’
numerical model. The resulting ion temperature does not affect the expansion significantly.
The decoupling temperature increases with the plasmoid density, as expected from (2.15).

The maximum ambipolar potential achieved during the expansion is higher for the
higher-density cases (φmax = 2.5 keV for Nl = 3 × 1022 m−2 and φmax = 3.5 keV for
Nl = 6 × 1022 m−2), thus reducing the accuracy of the calculations. This maximum is
achieved when the plasmoid length is approximately 50 m.3 A more rigorous kinetic
treatment of the ambient plasma is required to make quantitative calculations for the later
stages of the plasmoid assimilation for such densities.

Note that the ‘black’ and the ‘green’ cases represent two distinct assimilation scenarios:
in the low density ‘black’ case, the plasmoid temperature is still lower than the ambient
plasma temperature when their densities equalize; in the higher density ‘green’ case, the
plasmoid and the ambient plasma temperatures approach each other when the plasmoid is
still very dense. The subsequent final assimilation is different in these two cases.

A noteworthy prediction of the analytical model (Aleynikov et al. 2019) is the 50/50
partitioning of the deposited energy between the plasmoid electrons and ions. The ions are
accelerated during the expansion, which happens on the electron heating time scale. The
accelerated ions subsequently thermalize with the ambient ones on the ion collisional time
scale, which is much longer. This is sometimes the dominant mechanism of ion heating

3The potential will then significantly alter the speed of hot electrons moving through the cloud and therefore the
heating rate.
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FIGURE 8. Comparison of the (a) evolution of the central electron and ion temperatures (Te
and Ti), (b) plasmoid length (L), (c) ratio of the ion to the electron energy ((EK
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e ) and
(d) the ambipolar potential at the origin (φmax) for plasmoids with Nl = 3 × 1022 m−2 for three
different ambient plasma temperatures: Ta = 2 keV (black), Ta = 4 keV (blue), Ta = 8 keV
(green). Blue curves are the same as in figure 7.

during pellet injection in the W7-X. The time-dependent ratio of the ion energy to electron
energy ((EK

i + ET
i )/ET

e ) during the expansion is shown in figure 7. This ratio is higher in
the full model than the analytical prediction (red curve). This is because of the finite ion
temperature (neglected in the analytical model). The ratio itself grows during the later
stages of expansion and generally exceeds the 50/50 partitioning for the constant heating
case. It is, therefore, expected that most of the deposited energy ends up in the ions rather
than in the electrons in realistic scenarios.

Figure 8 shows the evolution of the plasmoid parameters for different ambient
temperatures: Ta = 2 keV (black), Ta = 4 keV (blue), Ta = 8 keV (green). The expected
dependence of the plasmoid size (L) on the ambient temperature is L ∼ √

Te ∼ √
Q ∼√

νe,ehTa ∼ (Ta)−1/4. Yet, for the chosen parameters, the dependence is weaker than that,
because of the heating rate reduction due to the finite Ta/T ratio, i.e. Q ∼ (T − Ta).
These results suggest a certain universality of the expansion dynamics with respect
to different plasma and plasmoid parameters (remember that the self-similar solution
suggests independence of the plasmoid density as well). Note that the effect of the
ambipolar potential on the ambient plasma has been neglected in these simulations.
This assumption can now be justified for the higher temperature cases. The result for
Ta = 2 keV (black case) should be considered as qualitative.

7. Summary

In this paper, we have revisited the self-similar solution for plasma expansion into a
vacuum of Aleynikov et al. (2019) and compared it with a new and more complete model.
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For the conditions relevant to the W7-X pellet experiments, good agreement was found
between the models. Both models assumed that the pellet ablation is much faster than the
expansion, i.e. no external particle sources were taken into account. This assumption is
well justified for fast pellets (>1000 m s−1), but is problematic for slower pellets.

The presented results show that over 50 % of the energy given to the pellet (mostly by
electrons) ends up as ion kinetic energy. This effect may help to explain the ion temperature
observations during pellet injection in the W7-X experiments (Baldzuhn et al. 2020;
Bozhenkov et al. 2020), where no significant loss of the ion temperature was observed
during the injection of a pellet sequence despite a considerable rise in density.

We have also demonstrated two significant limitations of the hydrodynamic approach to
the problem of plasmoid expansion: first, the plasmoid ions need to be treated kinetically
at the later stages of expansion, because their mean free path becomes comparable to
the plasmoid size; and second, an accurate calculation of the power deposition from the
ambient plasma would require accounting for the ambipolar potential.

Acknowledgements

The authors are grateful to Alexey Mishchenko and Håkan Smith for helpful comments.

Editor Troy Carter thanks the referees for their advice in evaluating this article.

Funding

The work of B.N.B. was supported by the U.S. Department of Energy Contract Nos.
DEFG02-04ER54742 and DESC0016283.

Declaration of interests

The authors report no conflict of interest.

REFERENCES

ALEYNIKOV, P., BREIZMAN, B., HELANDER, P. & TURKIN, Y. 2019 Plasma ion heating by cryogenic
pellet injection. Journal of Plasma Physics 85, 905850105.

ARNOLD, A.M., ALEYNIKOV, P. & HELANDER, P. 2021 Self-similar expansion of a plasmoid supplied
by pellet ablation. Plasma Physics and Controlled Fusion. (in press).

BALDZUHN, J., DAMM, H., BEIDLER, C.D., MCCARTHY, K., PANADERO, N., BIEDERMANN, C.,
BOZHENKOV, S.A., BRUNNER, K.J., FUCHERT, G., KAZAKOV, Y., et al. 2019 Pellet fueling
experiments in wendelstein 7-x. Plasma Physics and Controlled Fusion 61 (9), 095012.

BALDZUHN, J., DAMM, H., BEIDLER, C.D., MCCARTHY, K., PANADERO, N., BIEDERMANN, C.,
BOZHENKOV, S.A., DINKLAGE, A., BRUNNER, K.J., FUCHERT, G., et al. 2020 Enhanced energy
confinement after series of pellets in wendelstein 7-x. Plasma Physics and Controlled Fusion 62
(5), 055012.

BOZHENKOV, S., KAZAKOV, Y., FORD, O., BEURSKENS, M., ALCUSÓN, J., ALONSO, J., BALDZUHN,
J., BRANDT, C., BRUNNER, K., DAMM, H., et al. 2020 High-performance plasmas after pellet
injections in wendelstein 7-x. Nuclear Fusion 60 (6), 066011.

BRAGINSKII, S.I. 1965 Transport processes in a plasma. In Reviews of Plasma Physics (ed. M. A.
Leontovitch), vol. 1. Consultants Bureau.

DNESTROVSKII, Y.N. & KOSTOMAROV, D.P. 1985 Numerical Simulations of Plasmas. Springer.
GUREVICH, A., PARIISKAYA, L. & PITAEVSKII, L. 1966 Self-similar motion of rarefied plasma. Sov.

Phys. JETP 22 (2), 449.
KIDDER, R.E. 1971 Interaction of intense photon and electron beams with plasmas. In Physics of High

Energy Density (ed. G. Caldirola & H. Knoepfel). Academic Press.

https://doi.org/10.1017/S0022377821000714 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821000714


20 A. Runov, P. Aleynikov, A.M. Arnold, B.N. Breizman and P. Helander

LENGYEL, L., BUCHL, K., PAUTASSO, G., LEDL, L., USHAKOV, A.A., KALVIN, S. & VERES, G. 1999
Modelling of impurity pellet ablation in asdex upgrade (neon) and wendelstein w7-as (carbon) by
means of a radiative (killer) pellet code. Nuclear fusion 39, 791.

MOTOJIMA, G., SAKAMOTO, R., GOTO, M., YAMADA, H. & EXPERIMENT GROUP, L. 2010
Spectroscopic diagnostics for spatial density distribution of plasmoid by pellet injection in the large
helical device. Plasma and Fusion Research 5, S1033–S1033.

PARKS, P.B., SESSIONS, W.D. & BAYLOR, L.R. 2000 Radial displacement of pellet ablation material in
tokamaks due to the grad-b effect. Physics of Plasma 7, 1968–1975.

PÉGOURIÉ, B. 2007 Review: Pellet injection experiments and modelling. Plasma Physics and Controlled
fusion 49, R87–R160.

ROZHANSKY, V.A. & VESELOVA, I.Y. 1994 Plasma propagation along magnetic field lines after pellet
injection. Nuclear Fusion 34, 665–674.

TRUBNIKOV, B.A. 1965 Particle interactions in a fully ionized plasma. In Reviews of Plasma Physics (ed.
M. A. Leontovitch), vol. 1. Consultants Bureau.

https://doi.org/10.1017/S0022377821000714 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821000714

	1 Introduction
	2 General considerations
	3 Fluid model for the plasmoid
	4 Treatment of sources
	4.1 Ambient plasma model in the limit of low collisionality

	5 Initial opaque phase of expansion
	6 Results and discussion
	7 Summary
	References

