Canad. Math. Bull. Vol. 31 (4), 1988

APPROXIMATION OF A FUNCTION AND ITS DERIVATIVES BY ENTIRE FUNCTIONS OF SEVERAL VARIABLES

BY

EL MOSTAPHA FRIH AND PAUL M. GAUTHIER

ABSTRACT. The paper gives a good approximation of a C^k function on \mathbf{R}^n and its derivatives by the restriction of an entire function on \mathbf{C}^n and its derivatives respectively.

In this paper we deal with approximation of a C^k function on \mathbb{R}^n and its derivatives by the restriction of an entire function and its derivatives respectively in a way which is better than uniform approximation. As a particular case we obtain, for k = 0, Carleman's theorem [3]. Similar results were given in the case n = 1 by Hoischen [1].

This work was inspired by the proof of Whitney's theorem by Narasimhan, (see [2]).

We shall use the following notations. $H(\mathbb{C}^n)$ will denote the space of entire functions. If

$$\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbf{N}^n, |\alpha| \text{ denotes } \sum_{i=1}^n \alpha_i \text{ and } D^{\alpha} = \frac{\partial^{\alpha_1 + \ldots + \alpha_n}}{\partial^{\alpha_1}_{x_1} \ldots \partial^{\alpha_n}_{x_n}}$$

For $S \subset \mathbf{R}^n$, k a non negative integer and $f \in C^k(\mathbf{R}^n)$, we set

$$||f||_k^s = \sum_{|\alpha| \le k} \frac{1}{\alpha!} \sup_{x \in S} |D^{\alpha} f(x)|.$$

Note that if $f, g \in C^k(\mathbf{R}^n)$ we have

$$||fg||_k^s \leq ||f||_k^s ||g||_k^s$$
.

THEOREM. For some $0 \le k \le \infty$, let f and ϵ be such that, $f \in C^k(\mathbb{R}^n)$, $\epsilon \in C(\mathbb{R}^n)$ and ϵ is positive. Let (K_p) be a sequence of compact sets in \mathbb{R}^n with $K_0 = \phi, K_p \subset K_{p+1}^0$ and $\bigcup K_p = \mathbb{R}^n$. Let (n_p) be a sequence of non negative integers and set $k_p = \min(k, n_p)$. Then, there exists $g \in H(\mathbb{C}^n)$ such that

$$|D^{\alpha}f(x) - D^{\alpha}g(x)| < \epsilon(x), \text{ for } x \in \mathbf{R}^n \setminus K_p^0 \text{ and } |\alpha| \leq k_p,$$

Received by the editors July 30, 1987, and, in revised form, October 27, 1987.

Research supported by NSERC of Canada and FCAR of Québec.

AMS Subject Classification (1980): 32A15, 41A30.

Canadian Mathematical Society 1987.

[December

for every $p \ge 0$.

For the proof we shall use the following lemma which can be found in ([2], p. 31).

LEMMA. Let $f \in C_0^k(\mathbf{R}^n)$, $0 \leq k < \infty$. For $z = (z_1, \ldots, z_n) \in \mathbf{C}^n$ and $\lambda > 0$ set,

$$G_{\lambda}(f)(z) = \pi^{-(n/2)} \lambda^{(n/2)} \int_{\mathbf{R}^n} f(t) \exp\left[-\lambda \sum_{i=1}^n (z_i - t_i)^2\right] dt.$$

Then we have

(a)
$$G_{\lambda}(f) \in H(\mathbb{C}^n)$$

(b)
$$||G_{\lambda}(f) - f||_{k}^{\mathbf{R}^{n}} \to 0, \text{ as } \lambda \to \infty.$$

PROOF OF THE THEOREM. Set $Ap = \overline{K_{p+1} \setminus K_p}$, for $p \ge 0$. There exists a sequence of positive real numbers (ϵ_p) such that $\epsilon_p < \epsilon(x)$ for $x \in A_p$ and $\epsilon_{p+1} \le \epsilon_p/2$ for every $p \ge 0$. It suffices then to prove that there exists $g \in H(\mathbb{C}^n)$ so that:

$$||f - g||_{k_p}^{A_p} < \delta_p$$
, for every $p \ge 0$, where $\delta_p = \frac{\epsilon_p}{k_p!}$.

We may suppose $k_{p+1} \ge k_p$. Then we have

(1)
$$\delta_{p+1} < \frac{1}{2}\delta_p.$$

Let $\varphi_p \in C_0^{\infty}(\mathbf{R}^n)$, $\varphi_p \equiv 0$ in a neighborhood of K_{p-1} and $\varphi_p \equiv 1$ in a neighborhood of A_p . Set

$$C_p = 1 + ||\varphi_p||_{k_p}^{\mathbf{R}^n}.$$

By the lemma, there exists $\lambda_0 > 0$ such that if $g_0 = G_{\lambda_0}(\varphi_0 f)$ we have

$$||g_0 - \varphi_0 f||_{k_0}^{K_1} < \frac{\delta_0}{5C_1}$$

By induction, we define numbers λ_i and functions g_i in the following way. Suppose we have defined λ_i and g_i for $i \leq p - 1$; then using the lemma, there is a function $l_p(\lambda_i, g_i) i \leq p - 1$ such that if $\lambda_p > l_p(\lambda_i, g_i)$ and if we set $g_p = G_{\lambda_p}[\varphi_p(f - g_0 - \ldots - g_{p-1})]$, then

(2)
$$\left\| g_p - \varphi_p \left(f - \sum_{i=0}^{p-1} g_i \right) \right\|_{k_p}^{K_{p+1}} < \frac{\delta_p}{5C_{p+1}}$$

The function g_p depends on λ_p and g_i , $i \leq p - 1$; this implies that the function l_p depends only on λ_i , $i \leq p - 1$. Since $\varphi_p \equiv 0$ (respectively $\varphi_p \equiv 1$)

496

(3)
$$||g_p||_{k_p}^{K_{p-1}} < \frac{\delta_p}{5C_{p+1}},$$

(4)
$$\left\| f - \sum_{i=0}^{p} g_i \right\|_{k_p}^{A_p} < \frac{\delta_p}{5C_{p+1}}.$$

Replacing p by p + 1 in (2) and, using (1), (4) and the fact that $C_p \ge 1$, we have

$$\begin{split} ||g_{p+1}||_{k_{p}}^{A_{p}} &\leq \left\| \left| \varphi_{p+1} \left(f - \sum_{i=0}^{p} g_{i} \right) \right\|_{k_{p}}^{A_{p}} + \left\| g_{p+1} - \varphi_{p+1} \left(f - \sum_{i=0}^{p} g_{i} \right) \right\|_{k_{p}}^{A_{p}} \\ &< ||\varphi_{p+1}||_{k_{p}}^{\mathbb{R}^{n}} \frac{\delta_{p}}{5C_{p+1}} + \frac{\delta_{p+1}}{5C_{p+2}} \\ &< C_{p+1} \frac{\delta_{p}}{5C_{p+1}} + \frac{\delta_{p+1}}{5C_{p+2}} < \frac{3\delta_{p}}{10}. \end{split}$$

With (3), this gives

(5)
$$||g_{p+1}||_{k_p}^{K_{p+1}} < \frac{2}{5}\delta_p.$$

We show now that the λ_p can be chosen so that the series $\sum_{i\geq 0} g_i(z)$ defines an entire function. Since $\bigcup K_p = \mathbb{R}^n$, there is a p_0 such that $0 \in K_{p_0}$. Let (B_{r_p}) be a sequence of balls with radius r_p centred at the origin such that $B_{r_p} \subset K_p$ for $p \geq p_0$ and $r_p \to \infty$ as $p \to \infty$. Let $z \in \mathbb{C}^n$ and $R \geq |z|$. Choose $p \geq p_0$ such that

$$1 - \frac{R^2}{r_p^2} - \frac{2R}{r_p} > \frac{1}{2}.$$

For q > p, supp $\varphi_q \subset \mathbf{R}^n \setminus K_p \subset \mathbf{R}^n \setminus B_{r_p}$.

By definition

$$g_q(z) = \pi^{-n/2} \lambda^{n/2} \int_{\mathrm{supp}\varphi_q} \varphi_q \left(f - \sum_{i=0}^{q-1} g_i \right) e^{-\lambda(z-t)^2} dt,$$

where

$$z = (z_1, \ldots, z_n), t = (t_1, \ldots, t_n)$$
 and $(z - t)^2 = \sum_{i=1}^n (z_i - t_i)^2$.

From the inequality

[December

$$|e^{-\lambda_q(z-t)^2}| \leq e^{-\lambda_q(|t|^2 - |z|^2 - 2|z||t|)}$$

and since $|t| \ge r_p > 0$ for q > p we obtain

$$|g_q(z)| \leq \pi^{-n/2} \lambda_q^{n/2} \int_{\mathrm{supp}\varphi_q} \left| \varphi_q \left(f - \sum_{i=0}^{q-1} g_i \right) \right| e^{-\lambda_q r_p^2 (1 - (R^2/r_p^2) - (2R/r_p))} dt.$$

Thus for q > p we have

$$|g_q(z)| \leq \pi^{-n/2} \lambda_q^{n/2} e^{-\lambda_q(r_p^2/2)} M_q$$

where

$$M_q = \int_{\mathrm{supp}\varphi_q} \left| \varphi_q \left(f - \sum_{i=0}^{q-1} g_i \right) \right| dt.$$

Since M_q depends only on $\lambda_1, \ldots, \lambda_{q-1}$, we can choose inductively the λ_q such that

$$\lambda_q^{n/2} e^{-\lambda_q/q} M_q < \frac{1}{q^2}$$

and this implies that

$$\sum \lambda_q^{n/2} e^{-\lambda_q \sigma} M_q < \infty$$
 for any $\sigma > 0$.

Thus the series $\sum_{i\geq 0} g_i(z)$ converges uniformly on compact sets of \mathbb{C}^n . Let $g(z) = \sum_{i\geq 0} g_i(z)$. Then using (1), (4), (5) and $C_p \geq 1$, we have

$$\begin{split} ||f - g||_{k_p}^{A_p} &\leq \left\| \left| f - \sum_{i=0}^p g_i \right| \right|_{k_p}^{A_p} + \sum_{i>p} ||g_i||_{k_p}^{A_p} \\ &\leq \frac{\delta_p}{5} + \sum_{i\geq p} \frac{2}{5} \delta_i \\ &\leq \frac{\delta_p}{5} + \frac{2}{5} \delta_p \sum_{i=0}^\infty \frac{1}{2^i} \\ &\leq \delta_p. \end{split}$$

COROLLARY. Let $f \in C^k(\mathbf{R}^n)$, $0 \leq k < \infty$, $\epsilon \in C(\mathbf{R}^n)$ and ϵ positive. Then there exists $g \in H(\mathbf{C}^n)$ satisfying

$$|D^{\alpha}f(x) - D^{\alpha}g(x)| < \epsilon(x)$$
 for all $x \in \mathbf{R}^n$ and $|\alpha| \leq k$.

PROOF. Take $n_0 = k$ in the theorem.

REMARKS. (1) The corollary would, of course, fail for $k = +\infty$. The

498

counterexample given by Hoischen [1] in one variable works also in several variables. Take $x_0 \in \mathbf{R}^n$. There is a function $f \in C^{\infty}(\mathbf{R}^n)$ such that $D^{\alpha}f(x_0) = (\alpha!)^2 + 1$. If there is $g \in H(C^n)$ satisfying $|D^{\alpha}f(x) - D^{\alpha}g(x)| < 1$ for all $x \in \mathbf{R}^n$ and all α , we get $|D^{\alpha}g(x_0)| > |D^{\alpha}f(x_0)| - 1 = (\alpha!)^2$ and then

$$\frac{|D^{\alpha}g(x_0)|}{\alpha!} > \alpha!.$$

This implies that g cannot be representable as an absolutely convergent power series in a neighbourhood of x_0 , and this is a contradiction.

(2) If f is real valued, in the theorem and the corollary, g can be chosen to take real values on \mathbb{R}^{n} .

REFERENCES

1. L. Hoischen, Eine Verschärfung eines Approximationssatzes von Carleman, Journal of Approximation Theory 9, (1973), pp. 272-277.

2. R. Narasimhan, Analysis on real and complex manifolds, North-Holland Publishing Co., Amsterdam, 1968.

3. S. Scheinberg, Uniform approximation by entire functions, Journal d'Analyse Mathématique, **29**, (1976), pp. 16-19.

Département de Mathématiques

et de Statistique et Centre de Recherches Mathématiques Université de Montréal