OBSERVATIONS OF PARENT MOLECULES IN COMETS AT RADIO WAVELENGTHS: HCN, H₂S, H₂CO AND CH₃OH

P. COLOM¹, D. BOCKELEE-MORVAN¹, J. CROVISIER¹, D. DESPOIS², G. PAUBERT³ ¹Observatoire de Paris, Section de Meudon, F-92195 Meudon, France ²Observatoire de Bordeaux, BP 89, Avenue Pierre Sémirot, F-33270 Floirac, France ³IRAM, Avenida Divina Pastora, 7, N.C., E-18012 Granada, Spain

ABSTRACT. We present observations of cometary parent molecules at the IRAM radio telescope which led to the first detections of H_2S and CH_3OH in comets, and confirmed the presence of H_2CO and HCN. Production rates and abundances relative to H_2O are given.

Comets P/Brorsen-Metcalf (1989 X), Austin (1989c1) and Levy (1990c) were observed on September 2-7 1989, May 21-25 and August 26-31 1990, respectively. The observations [1] were performed with the IRAM (Institut de Radio Astronomie Millimétrique) 30-m telescope at Pico Veleta (Spain). The J(1-0) 89 GHz and J(3-2) 266 GHz transitions of HCN were marginally detected in P/Brorsen-Metcalf, whereas clear detections were obtained in comets Austin and Levy. The 3_{12} - 2_{11} 226 GHz line of H₂CO was searched for and detected in the three comets [2]. The observation of H₂S 1_{10} - 1_{01} at 169 GHz in comet Austin led to the first detection of hydrogen sulfide in a comet [3]. Cometary H₂S was confirmed in Levy, through both the 169 GHz and the 2_{20} - 2_{11} 217 GHz lines [4, 5]. Methanol was identified in comet Austin through several J(2-1) Δ K = 0 (97 GHz) and J(3-2) Δ K = 0 (145 GHz) rotational transitions [1,3]. A dozen of CH₃OH lines around 97, 145, 165 and 218 GHz were detected in comet Levy [1].

HCN, H₂CO and H₂S production rates were derived from the observed line intensities using models treating the evolution of the excitation conditions from the collision-dominated region (inner coma: collisions with H₂O, $\sigma = 10^{-14}$ cm², T_{kin} = 50 K) to the radiation-dominated region (outer coma: IR excitation of the vibrational bands by the Sun). For CH₃OH, we assume LTE and use a rotational temperature of 30 K, in agreement with the observed relative line intensities. For the density distribution we assume isotropic outflow from the nucleus at constant velocity of 0.8 km s⁻¹ and take into account the molecular lifetimes against photodissociation. The results are summarized in the table.

HCN seems to be more abundant by at least a factor of two in periodic comets (P/Halley, P/Brorsen-Metcalf) than in non-periodic comets (Wilson, Austin, Levy). This suggests a chemical difference between periodic and new comets. Production rates inferred with the assumption of release from the nucleus show that formaldehyde is a minor component of the nucleus with an abundance relative to water which ranges from $4x10^{-4}$ (Levy) to $4x10^{-3}$ (P/Brorsen-Metcalf) [2]. These abundances are at least an order of magnitude less than the IKS Vega value (4%) [6]. H₂S is a minor component, with a relative abundance of $2x10^{-3}$. The other sulfur-bearing molecules observed (SO₂, OCS, H₂CS) are less abundant than hydrogen sulfide [4, 5]. Implications for Solar System formation are given in [5, 7]. Methanol is a substantial component of the nucleus, with a relative abundance of 1% in comets Austin and Levy.

439

P. D. Singh (ed.), Astrochemistry of Cosmic Phenomena, 439–440. © 1992 IAU. Printed in the Netherlands.

Molecule	Line	Frequency GHz	Date	Q a [s ⁻¹]	Q/Q[H2O] b
P/Brorsen-Metcalf (1989 X)					
HCN	J(1-0)	88.6	89/09/04-07	4.5×10^{26}	1.8x10 ⁻³
H ₂ CO	312-211	225.7	89/09/04-07	1.1×10^{27}	4.4x10 ⁻³
Austin (1989c1)					
HCN	J(1-0)	88.6	90/05/23	2.0×10^{25}	5.0x10 ⁻⁴
H ₂ CO	312-211	225.7	90/05/21-25	4.6×10^{25}	1.1x10 ⁻³
H ₂ S	110-101	168.8	90/05/24-25	1.1x10 ²⁶	2.7x10 ⁻³
CH3OH	(3,0)-(2,0)A	145.1	90/05/25	4.9×10^{26}	1.2x10 ⁻²
Levy (1990c)					
HCN	J(1-0)	88.6	90/08/29	6.6x10 ²⁵	2.6x10-4
H ₂ CO	312-211	225.7	90/08/26-30	1.0×10^{26}	4.0x10 ⁻⁴
H ₂ S	110-101	168.8	90/08/30-31	5.0x10 ²⁶	2.0x10 ⁻³
СН3ОН	(3,0)-(2,0)A	145.1	90/08/27	1.8x10 ²⁷	7.2x10 ⁻³
HC3N	J(24-23)	218.3	90/08/27	$< 1.2 \times 10^{25}$	< 5.0x10 ⁻⁵
SO ₂	717-606	165.2	90/08/29	< 6.0x10 ²⁶	$< 2.5 \times 10^{-3}$
OCS	J(18-17)	218.9	90/08/28	$< 5.0 \times 10^{26}$	$< 2.0 \times 10^{-3}$
H ₂ CS	414-313	135.3	90/08/28	$< 2.5 \times 10^{26}$	< 1.0x10 ⁻³

TABLE : Production rates and abundances.

a. Assuming a parent distribution; b. Q[H₂O] from OH-18 cm observations.

References

- Bockelée-Morvan D., Crovisier J., Colom P., Despois D., Paubert G. (1990), Observations of parent molecules in comets P/Brorsen-Metcalf (19890), Austin (1989c1) and Levy (1990c) at millimetre wavelengths: HCN, H₂S, H₂CO and CH₃OH, Proceedings of the 24th ESLAB Symp. "The Formation of Stars and Planets, and the Evolution of the Solar System", Friedrichshafen, 17-19 Sept. 1990, ESA SP-315, 243-248
- [2] Colom P., Crovisier J., Bockelée-Morvan D., Despois D., Paubert G. (1992), Formaldehyde in comets: microwave observations in P/Brorsen-Metcalf (1989 X), Austin (1989c1) and Levy (1990c), Astron. and Astrophys. (in press)
- [3] Bockelée-Morvan D., Colom P., Crovisier J., Despois D., Paubert G. (1991), *Microwave* detection of hydrogen sulfide and methanol in comet Austin (1989c1), Nature **350**, 318-320
- [4] Crovisier J., Despois D., Bockelée-Morvan D., Colom P., Paubert G. (1991), Microwave observations of hydrogen sulfide and searches for other sulfur compounds in comets Austin (1989c1) and Levy (1990c), Icarus (in press)
- [5] Despois D., Crovisier J., Bockelée-Morvan D., Colom P. (1991), Formation of comets: constraints from the abundance of hydrogen sulfide and other sulfur-bearing molecules, IAU Symposium 150, this volume
- [6] Combes et al. (1988), The 2.5-12 μm spectrum of comet Halley from the IKS-VEGA Experiment, Icarus 76, 404-436
- [7] Despois D. (1991), Solar System Interstellar Medium, a chemical memory of the origins, IAU Symposium 150, this volume