Bull. Austral. Math. Soc.
55R40 55s 10 55N99
Vol. 38 (1988) [11-17]

ON THE INTEGRAL COHOMOLOGY OF THE SEVEN-CONNECTIVE COVER OF BO

Tze Beng Ng

Let $B O, B S O$ and BSpin be the classifying spaces for the infinite orthogonal, infinite special orthogonal and infinite spinor groups respectively. It is well known that their integral cohomology rings have torsion only of order 2. In this paper we present an elementary proof that for the 7 -connective cover of $B O, B O\langle 8\rangle$, the integral cohomology ring $H^{*}(B O(8) ; Z)$ too has torsion only of order 2. The method follows that of Borel and Hirzebruch and a result of Wu concerning the Steenrod reduced mod p operation for an odd prime p on the Pontrjagin classes.

1. Introduction

Recently I wished to know whether the integral cohomology of $B O\langle 8\rangle$, the 7 connective cover of $B O$, the classifying space for the infinite orthogonal group, has any element' of order $\geqslant 4$. The purpose of this note is to answer this in the negative, more specifically, I prove

Theorem 1.1. The torsion elements of $H^{*}(B O\langle 8\rangle ; \mathbf{Z})$ are of order 2.
Recall that $B O(8\rangle$ fibres over BSpin with fibre $K(Z, 3)$, the Eilenberg-MacLane space of type $(\mathbf{Z}, 3)$. To prove Theorem 1.1 we need the structure of $H^{*}\left(B O\langle 8\rangle ; \mathbf{Z}_{2}\right)$.

2. Сонomology of $B O(8\rangle$

In [4] I defined a system of generators for $H^{*}\left(B S O ; \mathbf{Z}_{2}\right)$ as follows.

$$
H^{*}\left(B S O ; \mathbf{Z}_{2}\right) \cong \mathbf{Z}_{2}\left[v_{i} \mid i \geqslant 2\right]
$$

where

$$
v_{i}=\left\{\begin{array}{l}
S q^{2^{r}} \ldots S q^{2^{2}} S q^{2} w_{4} \text { if } i=2^{r+1}+2, r \geqslant 0, \\
S q^{2^{i}\left(2^{t+1}+1\right)} \ldots S q^{2^{t+1}+1} S q^{2^{t}} \ldots S q^{2} w_{4} \text { if } i=2^{t+j+2}+2^{j+1}+1, t \geqslant 0, j \geqslant 0, \\
S q^{2^{j}(2+1)} S q^{2^{j-1}(2+1)} \ldots S q^{2+1} w_{4} \text { if } i=2^{j+2}+2^{j+1}+1, j \geqslant 0, \\
S q^{2^{r-1}} \ldots S q^{2} S q^{1} w_{2} \text { if } i=2^{4}+1, r \geqslant 0, \\
w_{i} \text { otherwise. }
\end{array}\right.
$$

Then a Leray-Serre spectral sequence argument for the fibration $B O\langle 8\rangle \rightarrow \mathbf{B S p i n}$ gives:

[^0]Theorem 2.1. $H^{*}\left(B O\langle 8\rangle ; \mathbf{Z}_{2}\right) \cong Z_{2}\left[v_{i} ; \alpha(i-1)>2\right]$, where $\alpha(j)=$ number of 1 's in the dyadic expansion of j.

According to [4] we have
Theorem 2.2.

$$
\begin{aligned}
S q^{1} v_{2^{j}+2} & =v_{2^{j}+2+1} \text { if } j \geqslant 2 ; \\
S q^{1} v_{2^{j}+2^{k}+1} & =\left(v_{2^{j-1}+2^{k-1}+1}\right)^{2} \text { for } j \geqslant k>1 ; \\
S q^{1} v_{2^{j}+2+1} & =0, j \geqslant 1 ; \\
S q^{1} v_{4} & =v_{5}+v_{2} v_{3} ; \\
S q^{1} v_{2} & =v_{3}
\end{aligned}
$$

3. The SQ ${ }^{1}$-сономOLOGY of $H^{*}\left(B O\langle 8\rangle ; \mathbf{Z}_{2}\right)$

Let k be a field. Let $M=\sum_{k=0}^{\infty} M_{i}$ be a graded vector-space of finite type over a field k, that is the dimension of M_{i} is finite for each i. Recall that the Poincare Series of $M, P_{k}(M, t)$, is defined by

$$
P_{k}(M, t)=\sum_{i \geqslant 0} \operatorname{dim}\left(M_{i}\right) t^{i} .
$$

When k is the field Z_{p}, where p is a prime, we write $P_{p}(M, t)$ for $P_{k}(M, t)$ and for the rational field we write $P_{0}(M, t)$ for $P_{\mathbf{Q}}(M, t)$.

By Thomas [5] we have
Theorem, 3.1.

$$
H^{*}(\mathbf{B S p i n} ; \mathbf{Q}) \cong \mathbf{Q}\left[Q_{1}, \ldots, Q_{i}, \ldots\right]
$$

where Q_{i} are generators in dimension $4 i$.
Since the fibre of $B O\langle 8\rangle \rightarrow$ BSpin is $K(Z, 3)$ and since $H^{*}(K(Z, 3) ; Q) \cong$ $H^{*}\left(S^{\mathbf{3}} ; \mathbf{Q}\right)$, a Leray-Serre spectral squence argument for rational cohomology gives us

Theorem 3.2.

$$
H^{*}(B O\langle 8\rangle ; \mathbb{Q}) \cong \mathbf{Q}\left[Q_{2}, \ldots, Q_{j}, \ldots\right]
$$

Hence
Corollary 3.3.

$$
P_{0}\left(H^{*}(B O(8) ; \mathbb{Q}), t\right)=\prod_{j \geqslant 2}\left(1-t^{4 j}\right)^{-1}=U(t)
$$

In order to commute the Sq^{1} cohomology of $H^{*}\left(B O\langle 8\rangle ; \mathrm{Z}_{2}\right)$ we shall need the following

Theorem 3.4. (Borel-Hirzebruch [1])

$$
\begin{aligned}
P_{2}\left(H\left(H^{*}\left(B S O ; \mathrm{Z}_{2}\right), S q^{1}\right), t\right) & =P_{0}\left(H^{*}(B S O ; \mathbf{Q}), t\right) \\
& =\prod_{j \geqslant 1}\left(1-t^{4 j}\right)^{-1}=Q(t) .
\end{aligned}
$$

Now we shall rename the v_{i} for $\alpha(i-1) \leqslant 2$. Define R_{0} to be v_{2}. For integers $i \geqslant$ j define $R(i, j)$ to be $v_{2^{i}+2^{j}+1}$. For Example, $R(0,0)=v_{3}, R(1,0)=v_{4}, R(1,1)=v_{5}$ and $R(i, i)=v_{2^{i+1}+1} i \geqslant 0$. As in [4] we define $L(k, j), k \geqslant j \geqslant 0$ to be the polynomial subalgebra over \mathbf{Z}_{2} generated by $R(r, s), k>r \geqslant s \geqslant 0$ or $k=r$ and $j \geqslant s$ together with R_{0}. Let the ideal generated by $L(k, j)$ be denoted by $\bar{L}(k, j)$.

Define $M(k, j), k \geqslant j \geqslant 0$, by

$$
M(k, j)=H^{*}\left(B S O ; \mathbf{Z}_{2}\right) / \bar{L}(k, j)
$$

Define $M(0)=H^{*}\left(B S O ; \mathbf{Z}_{2}\right) /\left(v_{2}\right)$. By Theorem $2.2 \mathrm{Sq}^{1}(L(k, j)) \subseteq L(k, j)$ for $k \geqslant$ $j \geqslant 1$. Since $\mathrm{Sq}^{1}: H^{*}\left(B S O ; \mathbf{Z}_{2}\right) \rightarrow H^{*}\left(B S O ; \mathbf{Z}_{2}\right)$ is a derivation and $\mathrm{Sq}^{1} \mathrm{Sq}^{1}=0$, the cohomology $H\left(H^{*}\left(B S O ; \mathrm{Z}_{2}\right), \mathrm{Sq}^{1}\right)=\operatorname{Ker} \mathrm{Sq}^{1} / \mathrm{Im} \mathrm{Sq}^{1}$ is a graded vector space over \mathbf{Z}_{2}. By abuse of notation we shall write d for

$$
\left.\mathrm{Sq}^{1}\right|_{L(k, j)} k \geqslant j \geqslant 1 \text { or } \mathrm{Sq}^{1}: M(k, j) \rightarrow M(k, j) .
$$

Then $H^{*}\left(B O\langle 8\rangle ; \mathbf{Z}_{2}\right)=\underset{\longrightarrow}{\operatorname{Lim}} M(k, j)$. Now

$$
\left(H^{*}\left(B S O ; \mathbf{Z}_{2}\right), \mathrm{Sq}^{1}\right)=\left(\mathbf{Z}_{2}\left[v_{2}, v_{3}, v_{4}, v_{5}\right], d\right) \otimes(\dot{M}(1,1), d) .
$$

Thus $P_{2}\left(H^{*}\left(B S O ; \mathbf{Z}_{2}\right), \mathrm{Sq}^{1}\right)=\left(1-t^{4}\right)^{-1}\left(1-t^{8}\right)^{-1} P_{2}(M(1,1), d)$ where we denote $P_{2}\left(H\left(H^{*}\left(B S O ; \mathbf{Z}_{2}\right), \mathrm{Sq}^{1}\right), t\right), P_{2}(H(M(1,1), d), t)$ by $P_{2}\left(H^{*}\left(B S O ; \mathbf{Z}_{2}\right), \mathrm{Sq}^{1}\right)$ and $P_{\mathbf{2}}(M(1,1), d)$, respectively.

Now for $(j, k), j \geqslant k>1$, it follows from Theorem 2.2 that we have the following exact sequence of chain complexes

$$
\begin{equation*}
0 \rightarrow \sum^{2^{j}+2^{k}+1} M(j, k-1) \xrightarrow{\cdot R(j, k)} M(j, k-1) \rightarrow M(j, k) \rightarrow 0 \tag{3.5}
\end{equation*}
$$

where $\left(\sum^{2^{j}+2^{k}+1} M(j, k-1)\right)_{\boldsymbol{r}}=(M(j, k-1))_{r-2^{j}-2^{k}-1}$ and $\cdot R(j, k)$ means multiplication by $R(j, k)$. This short exact sequence induces the long exact sequence

$$
\begin{aligned}
\cdots \rightarrow H^{i}\left(\sum^{2^{j}+2^{k}+1} M(j, k-1)\right) & \rightarrow H^{i}(M(j, k-1)) \rightarrow H^{i}(M(j, k)) \\
& \rightarrow H^{i+1}\left(\sum^{2^{j}+2^{k}+1} M(j, k-1)\right) \rightarrow \ldots
\end{aligned}
$$

which is equivalent to

$$
\begin{align*}
\ldots & \rightarrow H^{i-2^{j}-2^{k}-1}(M(j, k-1)) \rightarrow H^{i}(M(j, k-1)) \tag{3.6}\\
& \rightarrow H^{i}(M(j, k)) \rightarrow H^{i-2^{j}-2^{k}}(M(j, k-1)) \rightarrow \ldots
\end{align*}
$$

3.7 Claim: $H^{2 r+1}(M(j, k-1))=0$ for $j \geqslant k, k \geqslant 2$. Assuming this claim, we then have from (3.6) the following short exact sequence

$$
0 \rightarrow H^{2 i}(M(j, k-1)) \rightarrow H^{2 i}(M(j, k)) \rightarrow H^{2 i-2^{j}-2^{k}}(M(j, k-1)) \rightarrow 0
$$

Therefore $H^{2 i}(M(j, k))=H^{2 i}(M(j, k-1)) \oplus H^{2 i-2^{j}-2^{k}}(M(j, k-1))$. Thus we have

$$
\begin{equation*}
P_{2}(M(j, k), d)=\left(1+t^{2^{j}+2^{k}}\right) P_{2}(M(j, k-1), d) \tag{3.7}
\end{equation*}
$$

for $k>1$. Now for $k \geqslant 2$,

$$
\begin{equation*}
(M(k-1, k-1), d) \cong(M(k, 1), d) \otimes\left(\mathbf{Z}_{2}[R(k, 0), R(k, 1)], d\right) \tag{3.8}
\end{equation*}
$$

Since $d(R(k, 0))=R(k, 1)$, for $k \geqslant 2$

$$
P_{2}(M(k-1, k-1), d)=\left(1-t^{2\left(2^{k}+2\right)}\right)^{-1} P_{2}(M(k, 1), d)
$$

Thus for $k \geqslant 2$

$$
\begin{equation*}
P_{2}(M(k, 1), d)=\left(1-t^{2^{k+1}+2^{2}}\right) P_{2}(M(k-1, k-1), d) . \tag{3.9}
\end{equation*}
$$

3.10 Proof of Claim 3.7:

$$
\begin{aligned}
P_{2}(M(1,1), d) & =P_{2}\left(H^{*}\left(B S O ; \mathrm{Z}_{2}\right), \mathrm{Sq}^{1}\right)\left(1-t^{4}\right)\left(1-t^{8}\right) \\
& =Q(t) \cdot\left(1-t^{4}\right)\left(1-t^{8}\right) .
\end{aligned}
$$

Thus $H^{2 i+1}(M(1,1), d)=0 . H^{2 i+1}(M(j, k-1))=0$ for $j>k, k \geqslant 2$ is proved by induction on $(j, k-1)$. It $k=2$, then it follows from (3.9) ${ }_{j}$ and induction hypothesis. If $k>2$ then if follows from the exact sequence (3.6) and the induction hypothesis.

Now from (3.7) ${ }_{(j, k)}$ we have

$$
P_{2}(M(j, k), d)=\left(1+t^{2^{j}+2^{k}}\right)\left(1+t^{2^{j}+2^{k-1}}\right) \ldots\left(1+t^{2^{j}+2^{2}}\right) P_{2}(M(j, 1), d)
$$

This together with (3.9) ${ }_{j}$ gives us:

$$
\begin{aligned}
P_{2}(M(j, k), d)= & \prod_{k \geqslant r \geqslant 2}\left(1+t^{2^{j}+2^{r}}\right) \prod_{j-1 \geqslant s \geqslant r \geqslant 2}\left(1+t^{2^{2}+2^{r}}\right) \\
& \prod_{\substack{ \\
j \geqslant r \geqslant 2}}\left(1-t^{2^{r+1}+2^{2}}\right) P_{2}(M(1,1), d) \\
& \prod_{\substack{-1 \geqslant s \geqslant r \geqslant 2 \\
s=j, k \geqslant r \geqslant 2}}\left(1+t^{t^{2}+2^{r}}\right) \prod_{j \geqslant r \geqslant 2}\left(1-t^{2^{r+1}+2^{2}}\right) Q(t) \cdot\left(1-t^{4}\right)\left(1-t^{8}\right) \\
= & \left(1-t^{4}\right) Q(t) \prod_{\substack{j-1 \geqslant s>r \geqslant 2 \\
s=j, k \geqslant r \geqslant 2}}\left(1+t^{2^{r}+2^{r}}\right) \prod_{j \geqslant r \geqslant 2}\left(1-t^{2^{r+1}+2^{2}}\right) \\
& \cdot\left(1-t^{2^{j+1}}\right) ; \\
P_{2}(M(j, j), d)= & U(t) \prod_{\substack{j-1 \geqslant s \geqslant r \geqslant 2 \\
s=j, j>r \geqslant 2}}\left(1+t^{2^{r}+2^{r}}\right) \prod_{j \geqslant r \geqslant 2}\left(1-t^{2^{r+1}+2^{2}}\right) \cdot\left(1-t^{2^{j+2}}\right) .
\end{aligned}
$$

Since

$$
\prod_{s>r \geqslant 2}\left(1+t^{2^{*}+2^{r}}\right) \prod_{r \geqslant 2}\left(1-t^{2^{r+1}+2^{2}}\right)=1
$$

we see that

$$
P_{2}(\xrightarrow{\operatorname{Lim}} M(k, j), d)=\left(1-t^{4}\right) Q(t)=\prod_{j \geqslant 2}\left(1-t^{4 j}\right)^{-1} .
$$

Therefore we have
Theorem 3.11.

$$
P_{2}\left(H^{*}\left(B O\langle 8\rangle ; \mathbf{Z}_{2}\right), S q^{1}\right)=P_{0}\left(H^{*}(B O\langle 8\rangle ; \mathbf{Q})\right)
$$

From Theorem 3.11 and [1] we have
Theorem 3.12. The 2-primary component of $H^{*}(B O\langle 8\rangle ; \mathbf{Z})$ has order 2 only.
4. The mod p cohomology of $B O\langle\beta\rangle$ for odd prime p

Consider the mod p Leray-Serre cohomology spectral sequence for $K(\mathbb{Z}, 3) \longrightarrow$ $\mathrm{BO}(8) \longrightarrow$ BSpin

By Cartan [3] $H^{*}\left(K(\mathbf{Z}, 3), \mathbf{Z}_{p}\right)$ is an anti-commutative algebra generated by

$$
\left\{\mathcal{P}^{p^{k}} \mathcal{P}^{k-1} \ldots \mathcal{P}^{p} \mathcal{P}^{1} \iota_{3}, \beta \mathcal{P}^{p^{k}} \mathcal{P}^{p^{k-1}} \ldots \mathcal{P}_{\iota_{3}} \mid k \geqslant 0\right\}
$$

where $\mathcal{P}^{p^{i}}$ are the Steenrod reduced $\bmod p$ operations and β is the Bockstein operation associated with the exact sequence $0 \rightarrow \mathbf{Z}_{\boldsymbol{p}} \rightarrow \mathbf{Z}_{\boldsymbol{p}^{2}} \rightarrow \mathbf{Z}_{\boldsymbol{p}} \rightarrow 0$ and ι_{3} is the fundamental class of $K(Z, 3)$.

Now by Thomas [5], $H^{*}\left(\mathrm{BSpin} ; \mathbf{Z}_{p}\right) \cong \mathbf{Z}_{p}\left[P_{1}, P_{2}, \ldots\right]$ where $P_{i} \in H^{4 i}\left(\mathrm{BSpin} ; \mathbf{Z}_{p}\right)$ is the mod p Pontrjagin class.

Let $\left\{E_{r}, d_{r}\right\}$ be the $\bmod p$ Leray-Serre spectral squence for $B O(8) \rightarrow$ BSpin. Then $E_{2} \cong H^{*}\left(\mathbf{B S p i n} ; \mathbf{Z}_{p}\right) \otimes H^{*}\left(K(3, Z), \mathbf{Z}_{p}\right)$. Then:

$$
\begin{aligned}
& d_{4} \iota_{3}=\frac{1}{2} P_{1} \\
& d_{2\left(p^{k+1}+1\right)}\left(\mathcal{P}^{p^{k}} \ldots \mathcal{P}^{p^{k-1}} \mathcal{P}^{p} \mathcal{P}^{\iota_{3}}\right)=\frac{1}{2} \mathcal{P}^{p^{k}} \ldots \mathcal{P}^{1} P_{1} \\
& d_{2\left(p^{k+1}+1\right)+1}\left(\beta \mathcal{P}^{p^{k}} \ldots \mathcal{P}^{1} \iota_{3}\right)=0
\end{aligned}
$$

By Wu [6] $\mathcal{P}^{p^{k}} \ldots \mathcal{P}^{p} \mathcal{P}^{1} P_{1}=P_{\left(p^{k+1}+1\right) / 2}$ modulo decomposables. We shall now define a system of generators for $H^{*}\left(\mathrm{BSpin} ; \mathbf{Z}_{p}\right)$. Let

$$
\begin{aligned}
& v_{0}=P_{1} \\
& v_{k}=\mathcal{P}^{p^{k-1}} \ldots \mathcal{P}^{P} \mathcal{P}^{1} P_{1} \text { for } k \geqslant 1 .
\end{aligned}
$$

Then $\operatorname{dim} v_{k}=2\left(p^{k}+1\right)$. Thus $\left\{v_{0}, v_{1}, v_{2}, \ldots\right\}$ together with P_{i} for $i \neq \frac{p^{k}+1}{2} k \geqslant 0$ generates $H^{*}\left(\mathrm{BSpin} ; \mathrm{Z}_{p}\right)$.

By the usual spectral sequence argument we have:
Theorem 4.1. $H^{*}\left(B O\langle 8\rangle ; \mathrm{Z}_{p}\right) \cong H^{*}\left(\mathrm{BSpin} ; \mathrm{Z}_{p}\right) / L \otimes \Lambda$ where Λ is the subalgebra generated by $\left\{\beta \mathcal{P}^{p^{k}} \ldots \mathcal{P}^{1} \iota_{3}, k \geqslant 0\right\}$ and L is the ideal generated by $\left\{v_{0}, v_{1}, \ldots, v_{k}, \ldots\right\}$.

Let $R_{k}=H^{*}\left(\operatorname{BSpin} ; \mathbf{Z}_{p}\right) /\left(v_{0}, v_{1}, \ldots v_{k}\right)$. For $k \geqslant 0$ we have the following exact sequence

$$
0 \longrightarrow \sum^{2\left(p^{k+1}+1\right)} R_{k} \xrightarrow{\cdot v_{k+1}} R_{k} \longrightarrow R_{k+1} \longrightarrow 0
$$

Thus $P_{p}\left(R_{k+1}, t\right)+t^{2\left(p^{k+1}+1\right)} P_{p}\left(R_{k}, t\right)=P_{p}\left(R_{k}, t\right)$. That is $P_{p}\left(R_{k+1}, t\right)$ $=\left(1-t^{2\left(p^{k+1}+1\right)}\right) P_{p}\left(R_{k}, t\right)$. Hence we have

Theorem 4.2.

$$
\begin{aligned}
P_{p}\left(R_{k}, t\right) & =\prod_{j \geqslant 1}^{k}\left(1-t^{2\left(p^{j}+1\right)}\right) P_{0}\left(R_{0}, t\right) \\
& =\prod_{j \geqslant 1}^{k}\left(1-t^{2\left(p^{j}+1\right)}\right) \prod_{j \geqslant 2}\left(1-t^{4 j}\right)^{-1} .
\end{aligned}
$$

It follows from Theorem 4.1 and Theorem 4.2 that

$$
P_{p}\left(H^{*}\left(\mathrm{BSpin} ; \mathrm{Z}_{p}\right) / L, t\right)=\prod_{j \geqslant 1}\left(1-t^{2\left(p^{j}+1\right)}\right) \prod_{j \geqslant 2}\left(1-t^{4 j}\right)^{-1}
$$

Now $P_{p}(\Lambda, t)=\prod_{k \geqslant 1}\left(1-t^{2\left(p^{k}+1\right)}\right)^{-1}$. Therefore

$$
\begin{aligned}
P_{p}\left(H^{*}\left(B O\langle 8) ; \mathbf{Z}_{p}\right), t\right) & =P_{p}\left(H^{*}\left(\mathrm{BSpin} ; \mathrm{Z}_{p}\right) / L, t\right) P_{p}(\Lambda, t) \\
& =\prod_{j \geqslant 2}\left(1-t^{4 j}\right)^{-1}=P_{0}\left(H^{*}(B O\langle 8) ; \mathbf{Q}), t\right) .
\end{aligned}
$$

Thus we prove:
Theorem 4.3. $H^{*}(B O(8) ; \mathrm{Z})$ has no p-torsion for odd prime p.
Theorem 1.1 now follows from Theorem 3.12 and Theorem 4.3.

References

[1] A. Borel and F. Hirzebruch, 'Characteristic classes and homogeneous spaces II', Amer. J. Math. 81 (1959), 315-382.
[2] A. Borel, Lecture Notes in Mathematics 36, in (Springer Verlag, 1967).
[3] H. Cartan, 'Sur les groupes d'Eilenberg-MacLane $H(\pi, n), 1,11, '$ Proc. Nat. Acad. Sci., U.S.A. vol $\leqslant 0$ (1954), 467-471, 704-707:
[4] Tze-Beng Ng, 'A note on the mod 2 cohomology of B $\hat{S} O_{n}<16>$ ', Canad. J. Math. 37 (1985), 893-907.
[5] E. Thomas, 'On the cohomology groups of the classifying space for the stable spinor group', Bol. Soc. Mat. Mexicana 7(1962), 57-69.
[6] W.T. Wu, 'On Pontrjagin classes II', Acta. Math. Sinica (1954), 171-199.

[^1]
[^0]: Received 3 September 1987
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 \$A2.00+0.00.

[^1]: Department of Mathematics
 National University of Singapore
 Singapore

