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Abstract

In this article a collection of random self-similar fractal dendrites is constructed, and their
Hausdorff dimension is calculated. Previous results determining this quantity for random
self-similar structures have relied on geometrical properties of an underlying metric space
or the scaling factors being bounded uniformly away from 0. However, using a percolative
argument, and taking advantage of the tree-like structure of the sets considered here, it
is shown that conditions such as these are not necessary. The scaling factors of the
recursively defined structures in consideration form what is known as a multiplicative
cascade, and results about the height of this random object are also obtained.
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1. Introduction

There is now a substantial literature focusing on the geometrical and analytical properties
of self-similar fractals, which are commonly described as the unique nonempty compact
subset K ⊆ X satisfying K = ⋃

i∈S ψi(K), where (ψi)i∈S is a finite collection of con-
tractions on an underlying complete metric space (X, d). The existence and uniqueness of K
is guaranteed by an extension of the usual contraction principle for complete metric spaces;
see [16, Theorem 1.1.4], for example. A fundamental problem in this area is to calculate the
Hausdorff dimension, dimH K , of the self-similar fractal K , and in a wide class of examples
it is now known (see [16, Corollary 1.5.9]) that dimH K is the unique positive α solving∑
i∈S rαi = 1, where (ri)i∈S are the contraction ratios of (ψi)i∈S . Additionally, various

stochastic versions of this result have been investigated. For example, when the underlying
metric space (X, d) is a finite-dimensional Euclidean space, in [20] a random self-similar set
K satisfying K = ⋃

i∈S w(i)Ki , where (w(i))i∈S is a random (finite or countable) collection
of scaling factors and (Ki)i∈S are independent copies (up to translation) of K , independent
of (w(i))i∈S , was constructed and (assuming that K is nonempty and (w(i)Ki)i∈S fulfils a
nonoverlapping condition) the Hausdorff dimension of K was shown to be P-almost surely
(a.s.) equal to the unique positive α solving

E
∑
i∈S

w(i)α = 1, (1)

which obviously reduces to the deterministic equation when w(i) = ri , P-a.s. Note that we
are assuming that all the random variables are defined on an underlying probability space
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(0, 0) (1, 0)

Figure 1: Self-similar dendrite T .

with probability measure P, and E is the expectation under P. A similar result was proved
independently in [8].

The aim of this article is to obtain similar Hausdorff dimension results to those discussed
above for a class of random self-similar trees that do not fit into the usual framework for
random self-similar sets. First though, it is necessary to deal with questions concerning their
construction. Our starting point, rather than to define a random set directly, is to consider a
fixed fractal subset of R

2 and build a random metric upon it. More precisely, for (x, y) ∈ R
2,

set

ψ1(x, y) := 1
2 (1 − x, y), ψ2(x, y) := 1

2 (1 + x,−y), ψ3(x, y) := ( 1
2 + cy, cx),

for some constant c ∈ (0, 1
2 ), and define T to be the unique nonempty compact set satisfying

T = ⋃
i∈S ψi(T ), where we now define S := {1, 2, 3}. The set T , shown in Figure 1, is easily

checked to be a dendrite, by which we mean that it is an arc-wise connected topological space
containing no subset homeomorphic to the circle. Although the Euclidean metric is important
for its construction, we are only interested in T as a topological space. Indeed, the Hausdorff
dimension of T with respect to the intrinsic random metric we construct upon it can be strictly
larger than 2.

Heuristically, we build a random metric on T by first supposing that the distance between
the ‘edge’ from (0, 0) to (1, 0) is of length 1. We then replace this by three randomly scaled
copies of the edge with new lengths given by (w(i))i∈S (see Figure 2) and continue inductively
to replace edges independently of each other by triples of scaled edges, with the relevant scaling
factors having the same distribution as (w(i))i∈S . As the number of inductive steps increases our
discrete approximations eventually fill out a dense subset of T , and (under certain distributional
conditions on the scaling factors) calculating the ‘limiting distance’ between points yields a
metric R on T such that (T , R) is a compact metric space, and the topology induced by R on
T is the same as the original (Euclidean) one, P-a.s. See Section 3 for full details.

Importantly, we do not assume that w(1) + w(2) ≡ 1, P-a.s., and, as a result of this, the
distance in (T , R) between (0, 0) and (1, 0) depends, in general, on all of the steps in the
inductive procedure. For reasons related to the construction of the metric R as a so-called
resistance metric, we call this limiting distance between (0, 0) and (1, 0), R∅, a resistance
perturbation. Similarly, the distance between (0, 0) and ( 1

2 , 0) in (T , R) is not simplyw(1), but
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Figure 2: Edge replacement procedure.

equal to w(1)R1, where R1 is the resistance perturbation associated with this ‘edge’ of T and
has the same distribution as R∅. The fact that T is a dendrite means that we can characterise
these resistance perturbations in a convenient way that allows us to deduce their distributional
properties and perform calculations with them.

In Section 4 we provide conditions on (w(i))i∈S that allow us to deduce the Hausdorff
dimension of (T , R). Proving that α, as defined by (1), is an upper bound for the Hausdorff
dimension is straightforward, and requires no further conditions than those used for the con-
struction of (T , R). Conversely, when obtaining a lower bound for the dimension of a fractal
defined in a recursive fashion, it is often a problem when parts of the fractal become small
too quickly, and this is the case here. For the proof in [20] of the result described above,
the underlying Euclidean geometry of the random sets being considered is critical, but since
our fractal trees are not embedded into any fixed metric space there is no easy translation of
this argument to our setting. Another common assumption for proving a Hausdorff dimension
lower bound and related results is that the scaling factors are bounded uniformly away from
zero [8], [12]. In Theorem 5, below, we show one application of this condition in our setting.
More interestingly, though, is that knowledge of the geometry of the trees in consideration
allows us to avoid a uniform lower bound; in fact, we shall require only that clusters of small
scaling factors are not too large. We construct a random graph approximation to T and use
a percolation argument upon this to show that this is the case when the scaling factors are
independent and their distributions satisfy a simple polynomial tail bound at 0; see Theorem 6,
below.

Let us complete the discussion of our results related to random self-similar dendrites by
outlining a pair of examples. Firstly, one choice of random scaling factors that does not fit into
any previously studied set-up but satisfies conditions that allow us to calculate the Hausdorff
dimension of the fractal (T , R) is if we suppose that (w(i))i∈S are independent and identically
distributed (i.i.d.) U(0, 1) random variables. It is easy to check that the Hausdorff dimension is
2 in this case. Note, in particular, that w(1)+w(2) �= 1, P-a.s.; consequently, there are indeed
nontrivial resistance perturbations in this case. Secondly, although we cannot calculate the
Hausdorff dimension using the techniques of this article, when (w(i))i∈S are the square-roots
of a Dirichlet ( 1

2 ,
1
2 ,

1
2 ) triple, the construction of (T , R) is of interest in its own right. The

reason for this is explained in detail in [7], where it was proved that in this case (T , R) is a
version of the continuum random tree of Aldous, which is an important random dendrite with
connections to many other stochastic tree-like objects [1].

The family of random scaling factors that we use to construct the random metric space (T , R)
form what is known as a multiplicative cascade, which is a probabilistic structure that has been
studied extensively; see [9] and [17]–[19]. Much of this previous work has concentrated on
investigating properties of an associated tree-martingale limit (see Section 2 for a definition),
and we add to this body of knowledge by proving a tail bound at 0 for this random variable
(Proposition 1). We also define the height of a (generalised) multiplicative cascade, and derive
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a simple condition that yields the finiteness of this quantity and its moments; see Corollary 1
and Theorem 2.

Finally, let us remark that, although only one particular self-similar fractal dendrite is con-
sidered in this article, at the expense of some additional notation, relatively minor refinements
of the proofs used here allow the results we obtain to be extended to any post-critically finite
self-similar fractal dendrite; see [16] for a definition of a post-critically finite self-similar fractal.
A treatment of the general case appears in [6].

2. Multiplicative cascade results

We first introduce an address space to label various objects in the discussion. Fix a finite
index set S, letN := |S|, and define the ‘shift-space’of infinite sequences� := SN. For n ≥ 0,
the corresponding finite sequences are denoted by

�n := Sn and �∗ :=
∞⋃
m=0

�m,

where S0 := {∅}. For i ∈ �m, j ∈ �n, and k ∈ �, we write ij = (i1, . . . , im, j1, . . . , jn) and
ik = (i1, . . . , im, k1, k2 . . .). For i ∈ �∗, we denote by |i| the integer n such that i ∈ �n and
call this the length of i. For i ∈ �n ∪ �, n ≥ m, the truncation of i to length m is written as
i | m = (i1, . . . , im).

We define a multiplicative cascade to be a family of random variables (w(i))i∈�∗\{∅} which
take values in [0, 1] such that, for i ∈ �∗\{∅}, theN -tuples (w(ij))j∈S are independent copies
of (w(j))j∈S . The multiplicative cascade has a naturally associated filtration (Fn)n≥0, defined
by Fn := σ(w(i) : |i| ≤ n). Throughout our arguments, we use the function

F(θ) := E

(∑
i∈S

w(i)θ
)

for θ > 0,

which is decreasing and continuous and satisfies

F(θ) →
∑
i∈S

P(w(i) = 1) as θ → ∞. (2)

Furthermore, we introduce the notation l(i) := w(i | 1)w(i | 2) · · ·w(i) for i ∈ �∗\{∅},
and l(∅) = 1; and use this to define the so-called tree-martingale (this term was coined in [9]),
(Mθ(n))n≥0, by Mθ(n) := ∑

i∈�n l(i)
θF (θ)−n. It is straightforward to check that, for each

θ > 0, (Mθ(n))n≥0 is an (Fn)n≥0-martingale. In particular, E(Mθ(n)) = E(Mθ(0)) = 1. By
the almost sure martingale convergence theorem, this implies that Mθ(n) → Mθ as n → ∞,
P-a.s., for some random variable Mθ with EMθ ∈ [0, 1]. By relabelling, we have the same
distributional properties for the random variables (Mθ

i )i∈�∗ defined by

Mθ
i = lim

n→∞

∑
j∈�n l(i, j)

θ

l(i)θF (θ)n
. (3)

It is not difficult to check that, for each n, (Mθ
i )i∈�n is a collection of i.i.d. random variables,

independent of Fn. Also, the following identity holds:

Mθ =
∑
i∈�n

l(i)θ

F (θ)n
Mθ
i . (4)
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To generalise our cascade model, we introduce random perturbations of the l(i), denoted by
(Xi)i∈�∗ . We shall assume that theXi are identically distributed nonnegative random variables
satisfying E(Xθi ) < ∞ for every θ > 0, and that Xi⊥F|i| for all i ∈ �∗, where ⊥ is taken to
mean ‘is independent of’. The reason for the introduction of the factors (Xi)i∈�∗ will become
apparent later, since perturbations with these properties arise naturally in the construction of
our self-similar dendrite.

We can consider the cascade model as a weighted graph tree, rooted at ∅ with vertex set�∗
and edge set {{i, i|(|i|− 1)} : i ∈ �∗ \ {∅}}; where the edge {i, i | (|i|− 1)} has weight l(i)Xi .
For two vertices in �∗, we define the distance between them to be the sum of edge distances
along the shortest path in the graph. We then define the height of the tree to be

H = sup
i∈�

∞∑
n=0

l(i | n)Xi | n.

The usual definition of tree height (the supremum of distances of vertices from the root) actually
has the sum index starting from 1, but we shall find this slightly adjusted definition more useful
in later sections.

Our first main result about multiplicative cascades is Theorem 1, below, a simple corollary
of which gives a sufficient condition for the expected height EH to be finite. In Theorem 2,
below, we deal with the unperturbed case and show that the condition is necessary in this case.
We start by estimating how fast the edge lengths l(i)Xi decay as |i| → ∞.

Lemma 1. Suppose that
∑
i∈S P(w(i) = 1) < 1 and fix d ≥ 0, then

(a) there exist constants c < ∞ and α1 ∈ (0, 1) such that

E

((
sup
i∈�n

l(i)Xi

)d)
≤ cαn1 for all n ∈ N,

(b) there exists a positive, finite random variableA and (deterministic) α2 ∈ (0, 1) such that

sup
i∈�n

l(i)Xi ≤ Aαn2 for all n ∈ N,P-a.s.

Proof. To prove part (a) we first look for bounds on the tail of the distribution of supi∈�n l(i).
Applying Markov’s inequality, the definition of Mθ(n), and the independence assumption of
the Xis we obtain, for λ, θ > 0,

P

(
sup
i∈�n

l(i)Xi ≥ λ

)
≤ P

(∑
i∈�n

l(i)θXθi ≥ λθ
)

≤ λ−θ E(Xθ
∅
)F (θ)n. (5)

The condition
∑
i∈S P(w(i) = 1) < 1 and (2) imply that we can find θ0 > d large enough

so that F(θ0) < 1. Let x := ‖X∅‖θ0 (which is less than ∞ by assumption) and define
λn := xF(θ0)

n/θ0 , which is less than 1 for n ≥ n0 for some n0 ∈ N. Assume, for now, that
n ≥ n0. For λ ≥ λn, the upper bound in (5) is less than or equal to 1 and so is nontrivial and,
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for λ < λn, we merely use the fact that we are trying to bound a probability to deduce that

E

((
sup
i∈�n

l(i)Xi

)d)
=

∫ ∞

0
dλd−1 P

(
sup
i∈�n

l(i)Xi ≥ λ

)
dλ

≤
∫ λn

0
dλd−1 dλ+

∫ ∞

λn

dλd−1−θ0xθ0F(θ0)
n dλ

= xdθ0

θ0 − d
F(θ0)

dn/θ0 .

Hence, taking α1 = F(θ0)
d/θ0 and c suitably large gives us part (a) of the lemma.

To prove part (b) we again look to bound the tail probability of supi∈�n l(i)Xi . We proceed
as above to obtain the bound

P( sup
i∈�n

l(i)Xi ≥ λn) ≤ λ−nθ E(Xθ
∅
)F (θ)n.

If we fix θ = θ0 we can find a λ0 ∈ (0, 1) such that λ−θ0
0 F(θ0) < 1 and so

∞∑
n=0

P

(
sup
i∈�n

l(i)Xi ≥ λn0

)
≤ E(Xθ

∅
)

∞∑
n=0

(λ
−θ0
0 F(θ0))

n < ∞.

An application of the Borel–Cantelli lemma then gives us part (b) of our lemma.

In proving Theorem 1 we will apply the following elementary lemma, which we state without
proof.

Lemma 2. Let (xn)n≥0 be a sequence of nonnegative real numbers, then

( ∞∑
n=0

xn

)d
≤ c

∞∑
n=0

xdn (1 + n)d for all d ≥ 1,

where c is a constant depending only on d .

Theorem 1. Let
∑
i∈S P(w(i) = 1) < 1 and d ≥ 0, then

E

(( ∞∑
n=0

sup
i∈�n

l(i)Xi

)d)
< ∞.

Proof. For d ≥ 1, applying Lemmas 1 and 2 yields

E

(( ∞∑
n=0

sup
i∈�n

l(i)Xi

)d)
≤ c1 E

( ∞∑
n=0

(
sup
i∈�n

l(i)Xi

)d
(1 + n)d

)
≤ c2

∞∑
n=0

(1 + n)dαn1 ,

which is clearly finite. For d ∈ [0, 1), the result follows from the case in which d = 1 by
applying the inequality xd ≤ 1 + x for all x ≥ 0.

Corollary 1. Let
∑
i∈S P(w(i) = 1) < 1 and d ≥ 0, then E(Hd) < ∞.
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Proof. After noting that

sup
i∈�

∑
n

l(i | n)Xi | n ≤
∑
n

sup
i∈�n

l(i)Xi,

this result follows from Theorem 1.

We now show how, for unperturbed cascades, the condition
∑
i∈S P(w(i) = 1) < 1 is also

necessary for finite moments of H .

Theorem 2. Assume that Xi ≡ 1 for all i ∈ �∗ then

(a) if
∑
i∈S P(w(i) = 1) < 1, EHd < ∞ for all d ∈ R,

(b) if
∑
i∈S P(w(i) = 1) = 1, EH = ∞,

(c) if
∑
i∈S P(w(i) = 1) > 1, P(H = ∞) > 0.

Proof. Assume that
∑
i∈S P(w(i) = 1) < 1. Clearly, ifXi ≡ 1 for all i ∈ �∗ then (Xi)i∈�∗

satisfies the conditions that enable us to apply the previous results of this section. Hence, if
d ≥ 0, E(Hd) < ∞ follows from Corollary 1. We note that, because l(∅) = 1,H ≥ 1. Hence,
for d < 0, E(Hd) ≤ 1 < ∞. Thus, part (a) holds.

We now construct a Galton–Watson branching process related to our tree. Given
(w(i))i∈�∗\{∅}, we define w̃(i) := 1{w(i)=1}, where 1{·} is the indicator function, and

l̃(i) :=
|i|∏
n=1

w̃(i | n).

It is then easy to check that if

Zn :=
∑
i∈�n

l̃(i),

then (Zn)n≥0 is a Galton–Watson process. Importantly, if Zn > 0 then we must have l̃(i) = 1
for some i ∈ �n, and so l̃(i | m) = 1 for 1 ≤ m ≤ n. Consequently, H ≥ n+ 1. This means
that {Zn > 0} ⊆ {H ≥ n + 1} and so we can use known results about the extinction of the
Galton–Watson process to infer results about H . In particular, it may be calculated that

EZ1 =
∑
i∈S

P(w(i) = 1).

To prove part (c) we note that if
∑
i∈S P(w(i) = 1) > 1 then EZ1 > 1 and so the branching

process is supercritical and survives with positive probability (for a proof of this see, for
example, [3]). Thus, we have Zn > 0 for all n ≥ 0, with strictly positive probability and
this implies that

P(H = ∞) = P(H ≥ n, for all n ≥ 0) > 0.

Now assume that EZ1 = ∑
i∈S P(w(i) = 1) = 1. It is a standard result that the

extinction time of a critical Galton–Watson process with finite offspring variance has an
infinite expectation. If X is the extinction time of our Galton–Watson process then we have
{X > n} = {Zn > 0} ⊆ {H ≥ n+ 1} and so H > X. Since EX = ∞, it follows that part (b)
holds.
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Remark 1. At criticality, the Galton–Watson process exhibits two types of behaviour. First,
there is the trivial case whenZ1 = 1, P-a.s. This implies thatZn = 1 for all n, and so the process
survives. This is mirrored in the multiplicative cascade when we have

∑
i∈S P(w(i) = 1) = 1

and P(supi∈S w(i) = 1) = 1. In this caseH = ∞, P-a.s. In the nontrivial case, P(Z1 = 1) < 1,
the Galton–Watson process becomes extinct with probability 1. It follows that we can also find
a multiplicative cascade with

∑
i∈S P(w(i) = 1) = 1 and H < ∞, P-a.s. The problem of

whether we have H < ∞ in the general nontrivial case is left open.

Remark 2. If N = ∞, there exist random variables with
∑
i∈S P(w(i) = 1) < 1 and also

supi∈S w(i) = 1, P-a.s. In this case we have H = ∞, P-a.s., and so Theorem 2 does not hold
in general when N = ∞.

Remark 3. The condition w(i) ∈ [0, 1], P-a.s., is not essential. For example, if we let
(w(i))i∈S be i.i.d. U[0, x] random variables and N ≥ 2, then by mimicking the proofs of
Lemma 1 and Theorem 2 it can be shown that EHd < ∞ for some values of x strictly greater
than 1 (the largest x for which this is true is 1 +O(N−1)).

The right-tail of the distribution of the tree-martingale limit Mθ has been considered by
various authors, including Liu, who has proved a widely applicable result demonstrating
exponential tails [17]. However, we will later require thatMθ also has finite negative moments
of some order for certain values of θ , and so we will also need information about its tail at 0.
The aim of the remainder of this section is to provide some simple conditions on the distribution
of (w(i))i∈S that allow us to deduce suitable estimates on the distribution of Mθ .

Let us start by assuming that N > 1,
∑
i∈S P(w(i) = 1) < 1, and P(w(i) = 0) = 0 for

every i. It follows that F(θ) is a strictly decreasing continuous function with F(0) = N > 1
and

F(θ) →
∑
i∈S

P(w(i) = 1) < 1 as θ → ∞.

Hence, there exists a unique, strictly positive solution to the equation F(θ) = 1. We shall
denote this solution by α. In the next lemma we present a few simple properties of Mθ when
θ ≤ α that we will apply later.

Lemma 3. Let N > 1,
∑
i∈S P(w(i) = 1) < 1, and P(w(i) = 0) = 0 for every i, and let α be

the unique solution to F(θ) = 1. If θ ≤ α, then

(a) P(Mθ ∈ (0,∞)) = 1,

(b) E((Mθ)d) < ∞ for all d ≥ 0.

Proof. For θ ≤ α, we can apply the results of [17] to deduce that Mθ(n) → Mθ in mean,
and so EMθ = 1. Furthermore, the decomposition of Mθ given by (4) allows us to deduce
that P(Mθ = 0)N = P(Mθ = 0); thus, P(Mθ = 0) ∈ {0, 1}. Combining these two facts
immediately implies part (a). Part (b) is also proved in [17].

Our main result for the tail at 0 of Mθ is proved using the methods of Barlow and Bass [5].
Their arguments allow a polynomial estimate for the distribution function of the limit random
variable to be improved to an exponential bound. We shall prove our main result only in the
case in which θ = α, as this eases notation by removing the factorsF(θ) (recall thatF(α) = 1).
However, the techniques used will actually apply whenever θ ≤ α. The first step is to deduce
the necessary polynomial bound.
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Lemma 4. If (w(i))i∈S satisfies the conditions of Lemma 3, and we fix β > 0 and ε ∈ (0, 1),
then there exists a constant c such that P(Mα ≤ x) ≤ ε + cxβ for every x ≥ 0.

Proof. Fix β > 0 and ε ∈ (0, 1). By Lemma 3, the tree-martingale limit Mα is nonzero,
P-a.s. Hence, P(Mα ≤ x) → 0 as x → 0. In particular, there exists an x0 > 0 such that
P(Mα ≤ x0) ≤ ε. Thus, for x ≥ 0, P(Mα ≤ x) ≤ ε + x

−β
0 xβ .

We can now prove the exponential tail bound at 0 for Mα under the additional assumptions
of independence and finiteness of negative moments of the (w(i))i∈S .

Proposition 1. If (w(i))i∈S satisfies the conditions of Lemma 3, are independent, and also
maxi∈S E(w(i)−β) < ∞ for some β > 0, then, for some constants c, γ ∈ (0,∞), we have

P(Mα ≤ x) ≤ exp(−cx−γ ) for all x ≥ 0.

Proof. Let β > 0 be a constant for which supi∈S E(w(i)−β) < ∞ and fix ε ∈ (0, 1). By
Lemma 4, we can find a constant c1 such that P(Mα ≤ x) ≤ ε+ c1x

β for all x ≥ 0. Applying
the relevant independence assumptions and the fact that Mα

i ∼ Mα , we can deduce from this
that, for all x ≥ 0 and i ∈ �n,

P(l(i)αMα
i ≤ x) = E(P(l(i)αMα

i ≤ x | Fn)) ≤ E

(
ε + c1

xβ/α

l(i)β

)
≤ ε + c1c

n
2x
β/α,

where c2 := maxi∈S E(w(i)−β) ∨ (N + 1). By writing Mα = ∑
i∈�n l(i)

αMα
i , we can check

that the conditions of [5, Lemma 1.1], hold, which implies that

P(Mα ≤ x) ≤ exp(c3(c2N)
n/2xβ/2α +Nn ln ε) for all x ≥ 0, (6)

for some constant c3. We now look to choose n in a way that will give us the control we require
over this bound. Define n0 = n0(x) to be the unique solution to (c2/N)

n0/2 = −ln ε/xβ/2αc3,
and then set n = �n0 − 1�, where �·� denotes the integer-part function. We have c2 > N and
so we can find c4 > 0 such thatNc−1

2 ≤ (1 − c4)
2. Consequently, because n−n0 ∈ (−2,−1],

we have

(c2N)
(n−n0)/2 −Nn−n0 = Nn−n0((c2N

−1)(n−n0)/2 − 1) ≤ −c4N
−2.

By the choice of n0, our upper bound (6) now becomes

ln P(Mα ≤ x) ≤ c3(c2N)
n0/2xβ/2α(c2N)

(n−n0)/2 +Nn0Nn−n0 ln ε

= −Nn0((c2N)
(n−n0)/2 −Nn−n0) ln ε

≤ c4N
n0−2 ln ε

= c4N
−2 ln ε

( −ln ε

xβ/2αc3

)2 lnN/(ln c2−lnN)

,

and the result follows.

The final result of this section is a simple corollary of Proposition 1.

Corollary 2. Under the assumptions of Proposition 1, E((Mα)−d) < ∞ for every d ≥ 0.
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3. Random self-similar fractal dendrites

In this and the following section we fix S := {1, 2, 3} and T to be the deterministic dendrite
described in Section 1. For a wide class of self-similar fractals, including T , there is now a well-
established approximation procedure for defining an intrinsic quadratic form and associated
resistance metric on the relevant space, which we briefly outline in our specific case for the
purpose of introducing notation. See [4] and [16] for more details.

First, define the boundary of T to be the two-point set V 0 := {(0, 0), (1, 0)}, and define
an initial Dirichlet form by D(f, f ) := (f (0, 0) − f (1, 0))2 for f ∈ C(V 0), where, for a
countable set A, we denote C(A) := {f : A → R}. Furthermore, we introduce an increasing
family of subsets of T by setting

V n :=
⋃
i∈�n

ψi(V
0),

where, for i ∈ �n, ψi := ψi1 ◦ · · · ◦ ψin . Given the quadratic form D and a set of scaling
factors (ri)i∈S , with ri > 0 for each i ∈ S, we can define a Dirichlet form on each of the V n

by setting, for n ≥ 1,

En(f, f ) :=
∑
i∈�n

1

ri
D(f ◦ ψi, f ◦ ψi) for all f ∈ C(V n), (7)

where ri := ri1 · · · rin for i ∈ �n. To establish the existence of a nontrivial limit as n → ∞,
we need to place some restrictions on the choice of (ri)i∈S so that the family {(V n, En)}n≥0 is
compatible in the sense that the trace of En+1 on V n is precisely En; see [16, Definition 2.2.1].
Some elementary algebra shows that, in our case, {(V n, En)}n≥0 is compatible if and only if
we assume that r1 + r2 = 1, and in this case we can take a limit in a sensible way. Specifically,
assume that r1 + r2 = 1 and let

E∗(f, f ) := lim
n→∞ En(f, f ) for all f ∈ F ∗, (8)

where F ∗ is the set of functions on the countable set V ∗ := ⋃
n≥0 V

n for which this limit
exists finitely. Note that we have abused the notation slightly by using the convention that if a
form E is defined for functions on a set A and f is a function defined on B ⊇ A, then we write
E(f, f ) to mean E(f |A, f |A). The resulting quadratic form (E∗,F ∗) is actually a resistance
form (see [16, Definition 2.3.1]), and we can use it to define a (resistance) metric R∗ on V ∗ by

R∗(x, y)−1 = inf{E∗(f, f ) : f ∈ F ∗, f (x) = 0, f (y) = 1} (9)

for x, y ∈ V ∗, x �= y, and setting R∗(x, x) = 0. Finally, if we also assume that ri < 1 for
each i ∈ S then R∗ extends uniquely to a metric R on T such that (T , R) is the completion of
(V ∗, R∗), and moreover the topology induced by R on T is the same as that induced by the
original (Euclidean) metric.

We will now explain how to randomise the above construction. The scaling factors that
we will use to define a sequence of Dirichlet forms on the subsets (V n)n≥0 of T will form
a multiplicative cascade and, identifying notation with the previous section, be denoted by
(w(i))i∈�∗\{∅}. In addition to the independence assumptions that we introduced in Section 2
for a multiplicative cascade, we will further suppose that the random variablesw(i) are nonzero,
P-a.s. The following assumptions will also be useful, and, for clarity, we will explicitly state
when we apply these.

https://doi.org/10.1239/aap/1189518635 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1189518635


718 D. A. CROYDON

Assumption 1. We have

(a) E(w(1)+ w(2)) = 1,

(b)
∑
i∈S P(w(i) = 1) < 1.

Although we would like to simply replace the deterministic scaling factors ri by the random
variables w(i) in a formula similar to (7), a sequence of forms defined in this way will not
be compatible in general and taking limits would not be straightforward. To deal with this
problem, we introduce another collection of random variables

Ri := lim
n→∞

∑
j∈{1,2}n

l(ij)

l(i)
, i ∈ �∗,

which we shall call resistance perturbations. Clearly these are identically distributed, and,
by appealing to the independence properties of (w(i))i∈�∗\{∅}, various questions regarding
the convergence and distribution of the (Ri)i∈�∗ may be answered by multiplicative cascade
techniques as discussed in Section 2. In particular, under Assumption 1(a) we find that the limit
defining Ri exists in (0,∞), P-a.s., ERdi < ∞ for every d ≥ 0, and that Ri = w(i1)Ri1 +
w(i2)Ri2 for every i ∈ �∗. Note thatAssumption 1(a) is actually necessary for the nontriviality
of the Ris, because if E(w(1)+ w(2)) �= 1 then Ri ∈ {0,∞}, P-a.s.

Given a multiplicative cascade of scaling factors satisfying Assumption 1(a) we define a
random sequence of Dirichlet forms on the vertex sets (V n)n≥1 by

En(f, f ) :=
∑
i∈�n

1

l(i)Ri
D(f ◦ ψi, f ◦ ψi) for all f ∈ C(V n),

for n ≥ 1, where, as before, D(f, f ) := (f (0, 0) − f (1, 0))2 for f ∈ C(V 0). In analysing
this quadratic form, it is natural to consider the graph (V n,En), where we define En :=
{ψi(V 0) : i ∈ �n}. The reason for this is that if we place a resistance of l(i)Ri along each edge
ψi(V

0), then En is the energy operator associated with the resulting electrical network. It is
elementary to check that (V n,En) is a graph tree for every n ≥ 0 by induction, noting that
(V n+1, En+1) is constructed by joining three graph trees with the same structure as (V n,En)
at a single vertex. This fact is convenient as it means that to calculate the resistance between
two points in V n we can simply apply the series law and sum the resistances of the edges on
the (unique shortest) path between them in (V n,En). We can use this result to show that the
sequence {(V n, En)}n≥0 is a compatible sequence in the sense described above.

Lemma 5. If Assumption 1(a) holds, then the sequence {(V n, En)}n≥0 is compatible, P-a.s.

Proof. To prove the result it will suffice to prove that the resistance between ψi(0, 0) and
ψi(1, 0) in the electrical network on (V n+1, En+1) is equal to l(i)Ri for every i ∈ �n. The path
between ψi(0, 0) and ψi(1, 0) in (V n+1, En+1) is given by the edges ψi1(V 0) and ψi2(V 0).
Thus, the resistance between ψi(0, 0) and ψi(1, 0) in the level n + 1 network is l(i1)Ri1 +
l(i2)Ri2, which is equal to l(i)Ri and so the proof is complete.

As a consequence of Lemma 5, if Assumption 1(a) holds, we can proceed as in the deter-
ministic case to define (E∗,F ∗) on V ∗ by taking the limit of the sequence (En)n≥1, as in (8).
By [16, Theorem 2.2.6], this is a resistance form and we can define a resistance metric R∗ on
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V ∗ by (9), P-a.s. Note that the compatibility of the sequence of forms used to defineR∗ implies
that

R∗(ψi(0, 0), ψi(1, 0)) = l(i)Ri for all i ∈ �∗. (10)

To complete the construction of our random metric on T it remains to show that R∗ can be
extended uniquely to a metric R on T such that (T , R) is the completion of (V ∗, R∗), and that
the topology induced by R on T is the same as that induced by the Euclidean metric. Before
demonstrating that this is the case, we prove some preliminary results about the diameter of
sets of the form (ψi(V

∗))i∈�∗ in the metric R∗. Let us start with a simple chaining lemma.

Lemma 6. If x ∈ V 0 and y ∈ V n, then we can find a sequence x0, . . . , xm, with x0 = x, xm =
y, and {xl−1, xl} ∈ ⋃n

n′=0 E
n′

for l ∈ {1, . . . m}, and such that, for n′ ≤ n, {xl−1, xl} ∈ En
′

for at most two of the l ∈ {1, . . . m}.
Proof. The proof of this lemma is elementary and we present only an outline here. If y ∈ V n

then we can connect y to a vertex of V n−1 using not more than two edges in En. Proceeding
inductively gives us (the reverse of) a sequence with the desired properties.

Throughout the remainder of the article, for a subset A of a metric space (X, d), we shall
denote the diameter of A by diamdA := sup{d(x, y) : x, y ∈ A}.
Lemma 7. If we assume that Assumption 1 holds, then E((diamR∗V ∗)d) < ∞ for all d ≥ 0.

Proof. Let x ∈ V 0 and y ∈ V ∗. Necessarily, y ∈ V n for some n ≥ 0. Thus, the description
of paths in V ∗ that was proved in Lemma 6 and the triangle inequality imply that

R∗(x, y) ≤ 2
n∑

m=0

sup
i∈�m

R∗(ψi(0, 0), ψi(1, 0)) = 2
n∑

m=0

sup
i∈�m

l(i)Ri,

where the equality follows from (10). Consequently, the diameter of (V ∗, R∗) is bounded above
by 4

∑∞
m=0 supi∈�m l(i)Ri . Applying this estimate, the result can be deduced from Theorem 1.

We now introduce random variables (Wi)i∈�∗ to represent the normalised diameters of the
sets (ψi(V ∗))i∈�∗ . In particular, set Wi := l(i)−1diamR∗ψi(V ∗) whenever the resistance
metric R∗ is defined. The definition of the σ -algebras Fn := σ(w(i) : |i| ≤ n) can be recalled
from Section 2.

Lemma 8. If Assumption 1 holds, then (Wi)i∈�∗ are identically distributed and satisfy
E(Wd

i ) < ∞ for every i ∈ �∗, d > 0, and Wi⊥F|i| for every i ∈ �∗.

Proof. The self-similarity of T and the multiplicative cascade (w(i))i∈�∗\{∅} immediately
implies that Wi has the same distribution as diamR∗V ∗ for every i ∈ �∗. From this we obtain
the first claim of the lemma and, when combined with Lemma 7, finite moments of the Wi .
The remaining result is a straightforward application of the independence properties of the
multiplicative cascade (w(i))i∈�∗\{∅}.

It is now easy to show that the diameters of the sets (ψi(V ∗))i∈�∗ decrease to 0 uniformly
as |i| → ∞.

Lemma 9. If Assumption 1 holds, then supi∈�n diamR∗ψi(V ∗) → 0, P-a.s.

Proof. This result is a simple corollary of the definition of (Wi)i∈�∗ , Lemma 8, and the
corresponding multiplicative cascade result, Lemma 1(b).
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This uniform decay of the diameter of the sets (ψi(V ∗))i∈�∗ allows us to extend the definition
of R∗ to the whole of T . Note that T is the closure of V ∗ with respect to the Euclidean metric
(see [16, Theorem 1.1.7]), which we will now denote by ρ. Hence, for any x, y ∈ T , there
exist sequences (xn)n∈N and (yn)n∈N in V ∗ with ρ(xn, x) → 0 and ρ(yn, y) → 0. Define

R(x, y) := lim
n→∞R

∗(xn, yn).

Before stating and proving Theorem 3, in which we show that this is a sensible definition for
R, we introduce the notation Ti := ψi(T ) and, for x ∈ T ,

Tn(x) :=
⋃

{Ti : i ∈ �n, x ∈ Ti}, T̃n(x) :=
⋃

{Ti : i ∈ �n, Ti ∩ Tn(x) �= ∅}. (11)

We will also apply the following result of [16, Proposition 1.3.6].

Lemma 10. The collection (Tn(x))n∈N forms a base of neighbourhoods of x with respect to ρ.

Theorem 3. Assume that Assumption 1 holds. Then R is a well-defined metric on T , topolog-
ically equivalent to the Euclidean metric, P-a.s.

Proof. Under the assumptions of the theorem, the argument that we give holds P-a.s. Let
x, y ∈ T and suppose that there exist, for m = 1, 2, sequences (xmn ) and (ymn ) in V ∗ such that
ρ(xmn , x) → 0 and ρ(ymn , y) → 0. Fix ε > 0. By Lemma 9, we can choose n0 ≥ 0 such that
supi∈�n diamR∗ψi(V ∗) < ε/2 for every n ≥ n0. Furthermore, we can use the convergence
of the sequences and Lemma 10 to show that there exists n1 ≥ n0 such that xmn ∈ Tn0(x) and
ymn ∈ Tn0(y), for m = 1, 2 and n ≥ n1. Thus,

|R∗(x1
n, y

1
n)− R∗(xmn′ , ymn′ )| ≤ R∗(x1

n, x
m
n′ )+ R∗(y1

n, y
m
n′ ) < ε

for m = 1, 2 and n, n′ ≥ n1. Taking m = 1, this implies that (R∗(x1
n, y

1
n))n≥0 is a Cauchy

sequence and has a limit. Taking m = 2 and n′ = n, this implies that the limit is unique and
so the function R is well-defined on T × T . It immediately follows, from the fact that R∗ is a
metric on V ∗, that R is positive, symmetric, and satisfies the triangle inequality. To prove that
R is a metric on T , it remains to show that R(x, y) = 0 implies that x = y. We shall prove the
stronger claim, i.e. that R(xn, y) → 0 implies that ρ(xn, y) → 0.

Suppose that (xn)n≥0 is a sequence in T withR(xn, y) → 0 for some y ∈ T . Fix ε > 0, and
choose n0 such that 21−n0 diamρT < ε. For z �∈ T̃n0(y), we must have z ∈ Ti and y ∈ Tj , for
some i, j ∈ �n0 with Ti ∩Tj = ∅. For any z′ ∈ ψi(V ∗) and y′ ∈ ψj (V ∗), using the additivity
along paths of the metric R∗ and the fact that the sets (Tk)k∈�n0

only intersect at vertices of
V n0 (see [16, Proposition 1.3.5]), it is possible to show that

R(z′, y′) = R∗(z′, y′) ≥ inf
k∈�n0

R∗(ψk(0, 0), ψk(1, 0)) =: c.

It follows that R(z, y) ≥ c. Since c > 0 and R(xn, y) → 0, there exists an n1 such that
R(xn, y) < c for all n ≥ n1. Consequently, xn ∈ T̃n0(y) for n ≥ n1. By our choice of n0
and the fact that the contraction ratios of (ψi)i∈S (with respect to ρ) are no bigger than 1

2 , this
implies that ρ(xn, y) < ε for n ≥ n1. Hence, ρ(xn, y) → 0.

To prove the equivalence of the metrics, it remains to show that, for all sequences (xn)n∈N

in T with ρ(xn, x) → 0 for some x ∈ T , we have R(xn, x) → 0. We note that if y ∈ Ti then
there exists a sequence (yn)n∈N ∈ ψi(V ∗) with ρ(yn, y) → 0. Consequently,

diamRTi = sup
x,y∈Ti

R(x, y) = sup
x,y∈ψi(V ∗)

R∗(x, y) = diamR∗ψi(V
∗). (12)
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Applying this fact and Lemma 9, we find that, given ε > 0, there exists an n0 such that
supi∈�n0

diamRTi < ε. By Lemma 10, we find that xn ∈ Tn0(x) for all n ≥ n1, for some n1.
It follows that R(xn, x) < ε for all n ≥ n1, and so R(xn, x) → 0 as desired.

As noted above, the dendrite T is the closure of V ∗ with respect to ρ. Thus, under
Assumption 1, Theorem 3 implies that (T , R) is the completion of (V ∗, R) and is a dendrite,
P-a.s. Furthermore, because T is a dendrite, it is possible to check, from the definition of R∗
as a resistance metric, that R must be a shortest path metric (additive along paths); see [15].

4. The Hausdorff dimension of T

For a metric space, (X, d), the Hausdorff dimension of F ⊆ X is defined by

dimH (F ) = inf{s : H s(F ) < ∞} = sup{s : H s(F ) > 0}, (13)

where

H s(F ) := lim
δ→0

inf

{ ∞∑
i=1

(diamdUi)
s : {Ui}i is a δ-cover of F

}

and, for δ > 0, we call a finite or countable family of sets (Ui)∞i=1 a δ-cover of F ⊆ X if
diamdUi ≤ δ for all i and F ⊆ ⋃

i Ui . If we suppose that Assumption 1 holds, then by
Theorem 3 we can construct the metric space (T , R), P-a.s. In this section we will present
further conditions on the scaling factors (w(i))i∈S that allow us to calculate the Hausdorff
dimension of (T , R) to be constant and equal to α, P-a.s., where α, as in Lemma 3, is defined
to be the unique positive solution to F(θ) = 1 for the function F(θ) := E(

∑
i∈S w(i)θ ). Note

that Assumption 1 implies that α ∈ (1,∞). We start by demonstrating the upper bound, for
which Assumption 1 is sufficient.

Theorem 4. Suppose that Assumption 1 holds, then dimH (T ) ≤ α, P-a.s.

Proof. The representation of diamRTi in (12) allows us to apply Lemma 9 to deduce that,
for large n, (Ti)i∈�n is a δ-cover for T . Thus,

E(Hθ (T )) ≤ E

(
lim inf
n→∞

∑
i∈�n

(diamRTi)
θ

)
≤ lim inf

n→∞ E

(∑
i∈�n

(l(i)Wi)
θ

)
,

where we have applied Fatou’s lemma, (12), and the definition of Wi to obtain the sec-
ond inequality. By Lemma 8, the expectation appearing in the right-hand side is equal to
F(θ)n E(Wθ

∅
), and the second of these factors is finite. Furthermore, for θ > α, F(θ) <

F(α) = 1, and from this we can deduce that Hθ (T ) = 0, P-a.s. The result follows using the
characterisation of the Hausdorff dimension in (13).

To prove that the α defined above is also a lower bound for the Hausdorff dimension of
(T , R), we need to make more restrictive assumptions on the scaling factors, and we will derive
the result in two special cases only. We proceed by applying a standard density result (see [10,
Proposition 4.9]), and the first step in doing this involves constructing a suitable measure on
T . The measure on T that will be useful for our purposes will be a natural stochastically self-
similar measure, and to construct it we proceed as in [12], initially defining a measure on the
shift-space � and then applying the natural projection onto T . To characterise a measure on
�, it is sufficient to define it on the cylinder sets, i� := {ij : j ∈ �} for i ∈ �∗. First, let Mθ

i
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be defined by (3) and alsoMθ := Mθ
∅

. Under Assumption 1 we can apply Lemma 3 to obtain,
for θ ≤ α, P(Mθ ∈ (0,∞)) = 1. Thus, if Assumption 1 holds, θ ≤ α, and we define µ̃θ by

µ̃θ (i�) = Mθ
i l(i)

θ

MθF (θ)n
, i ∈ �n,

then it is easy to apply the decomposition identity (4) to check that µ̃θ can be extended uniquely
to a probability measure on �. Taking θ = α removes the dependency on the index length,
which suggests that this is the natural exponent to choose.

The projection π from � to T that we apply is obtained from the fact that, for each i ∈ �,
there exists a unique π(i) ∈ T such that {π(i)} = ⋂∞

n=1 Ti | n; see [16, Proposition 1.3.3]. It
is the measure µα := µ̃α ◦ π−1 that we will utilise in proving lower bound results for the
Hausdorff dimension of T . Since the map π is standard, we will not discuss its measurability
(it is in fact a continuous surjection [16]); however, we will note that it is possible to check that
µα is a nonatomic Borel probability measure on (T , R), which satisfies

µα(Ti) = Mα
i l(i)

α

Mα
(14)

for i ∈ �∗ (at least P-a.s. when Assumption 1 holds).
So far we have been able to use the fixed graphs (V n,En) to approximate T . The problem

with these discretisations is that the lengths l(i)Ri of edges within the graphs are, in general,
widely varying as n → ∞. To try to limit this effect, it will be useful to consider graph
approximations to T for which we have some uniform control over the edge lengths. This
technique was also applied in [11, Section 4], for example. Let us start by saying that ⊆ �∗
is a cut-set if, for every i ∈ �, there exists a unique j ∈  with i | |j | = j , and there exists
an n such that |j | ≤ n for all j ∈ . This final condition is included to ensure that there is
only a countable number of cut-sets. In particular, we will be interested in the random cut-sets
(�δ)δ>0 defined by

�δ := {i : l(i) ≤ δ < l(i | (|i| − 1))}.
Note that if Assumption 1(b) holds, then Lemma 1(b) guarantees that this is indeed a cut-set
for all δ > 0, P-a.s. We introduce the corresponding graphs (V δ, Eδ), defined by

V δ :=
⋃
i∈�δ

ψi(V
0) and Eδ := {ψi(V 0) : i ∈ �δ}.

It is easy to check that, for each δ > 0, (V δ, Eδ) is a graph tree, P-a.s. Heuristically, to construct
(V δ, Eδ) we start with (V 0, E0) and if there is an edge ψi(V 0) in the graph with l(i) greater
than δ, then replace it by the three edges (ψij (V 0))j∈S and continue until there are no edges
left to replace.

It will be important to be able to estimate the µα-measure of balls of the form BR(x, δ) :=
{y ∈ T : R(x, y) < δ}. To do this, we will use collections of the sets (Ti)i∈�δ to cover the balls
BR(x, δ). In a slight change of notation from (11), for x ∈ T , define

Tδ(x) :=
⋃

{Ti : i ∈ �δ, x ∈ Ti}
and a larger neighbourhood of x by

T̃δ,ε(x) :=
⋃

{Ti : i ∈ �δ,R(Ti, Tδ(x)) < δε}.
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The number of sets making up this union is Nδ,ε(x) := #{i ∈ �δ : Ti ⊆ T̃δ,ε(x)}. It is clear
that BR(x, δ) ⊆ T̃δ/ε,ε(x), and recalling from (14) that µα(Ti) = Mα

i /(M
αl(i)α) for i ∈ �∗,

we therefore obtain

µα(BR(x, δ)) ≤ (Mα)−1ε−αδαNδ/ε,ε(x) sup
i∈�δ/ε

Mα
i . (15)

To complete the argument, we will analyse the behaviour of supi∈�δ M
α
i and Nδ,ε(x). In

bounding the first of these terms, we require control over the growth of the mean of |�δ|. The
next lemma provides this using a related age-dependent branching process.

Lemma 11. Under Assumption 1(a), E |�δ| ≤ cδ−α for some constant c.

Proof. Consider the following branching process. Start at time 0 with one particle, labelled
∅. A particle, i, has three children at times (σi − lnw(ij))j∈S , where σi = −ln l(i) is the birth
time of i. Label the child born to i at σi − lnw(ij) ≡ −ln l(ij) by ij , noting that children may
not be labelled in birth order. It is not necessary to define the time of dying explicitly in this
proof. The independence assumptions on the (w(i))i∈�∗\{∅} means that this setup describes a
general branching process in the sense of [13, Chapter 6]; furthermore, if Yt is defined to be the
random variable counting the births before time t then it is easy to check that |�δ| ≤ 3Y−ln δ .
Noting that the Malthusian parameter for the branching process is precisely the α defined by
E(

∑
i∈S w(i)α) = 1, standard arguments then show that E Yt ≤ c1eαt for some constant c1.

Combining these facts yields the lemma.

We now proceed with bounding the growth of supi∈�δ M
α
i as δ → 0. To allow us to apply

Borel–Cantelli arguments to deduce P-a.s. such as this, it is useful to choose a particular
subsequence of δs to investigate. Henceforth, we consider (δn)n≥0 defined by δn := e−n.

Lemma 12. If Assumption 1(a) holds and β > 0, then limn→∞ δ
β
n supi∈�δn M

α
i = 0, P-a.s.

Proof. If P(
∑
i∈S w(i) = 1) = 1 then Mα

i ≡ 1, P-a.s. for all i and so the result is
obvious. Now assume that P(

∑
i∈S w(i) = 1) < 1. For each i ∈ �∗, define a subset

of �∗ by �i := {ik : k ∈ �∗}\{i} and related σ -algebras Fi := σ(w(j) : j ∈ �i) and
Gi := σ(w(j) : j ∈ �∗\�i). By definition, we have Fi⊥Gi . It is straightforward to check that
Mα
i is Fi-measurable and {�δ = } ∈ Gi for any cut-set containing i. Thus, for i ∈ , with

 a cut-set, we have

P(Mα
i > η,�δ = ) = P(�δ = )P(Mα > η) for η ≥ 0.

From this we deduce, using the countability of cut-sets, that

P

(
sup
i∈�δ

Mα
i > η

)
=

∑
 :  a cutset

P

(
sup
i∈�δ

Mα
i > η, �δ = 

)

≤
∑

 :  a cutset

∑
i∈

P(Mα
i > η,�δ = )

=
∑

 :  a cutset

∑
i∈

P(Mα > η)P(�δ = )

= P(Mα > η)
∑

 :  a cutset

|| P(�δ = )

= P(Mα > η)E |�δ|.
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SinceMα is the limit of a multiplicative cascade, we can check the conditions of [17, Theorem
2.1] to deduce that its distribution satisfies P(Mα > η) ≤ exp(−c1η

γ ) for some constants c1
and γ . Applying this and Lemma 11, we obtain

P( sup
i∈�δ

Mα
i > η) ≤ c2 exp(−c1η

γ )δ−α,

and the result can subsequently be obtained using the Borel–Cantelli lemma.

We are now in a position to be able to prove the lower Hausdorff dimension bound in
our first special case. To prove the result we assume that w(1) + w(2) = 1, P-a.s., which
is a strengthening of Assumption 1(a), and also implies that the resistance perturbations are
precisely 1, thereby eliminating one random variable from our consideration. We also assume
that Assumption 1(b) holds to allow us to construct the metric space (T , R), P-a.s. The
assumption that is most specifically related to the problems which arise in the computation of
a lower bound for the Hausdorff dimension, however, is a uniform lower bound for (w(i))i∈S .
Calculations of this kind become difficult if parts of the fractal become, in some sense, too
small too quickly, and by bounding the scaling factors uniformly below, we are able to prevent
this from occurring here.

Theorem 5. Suppose that w(1) + w(2) = 1, P-a.s., Assumption 1(b) holds, and there exists
an ε > 0 such that P(w(i) > ε, i ∈ S) = 1, then dimH (T ) = α, P-a.s.

Proof. From [16, Proposition 1.3.5], we know that the intersection of distinct sets from
(Ti)i∈�δ can only happen at points in V δ . Consequently, if i, j ∈ �δ then the distance between
the sets Ti and Tj is

R(Ti, Tj ) = min
x∈V 0

i ,y∈V 0
j

min
i1,...,in∈�δ : x0∈ψi1 (V 0),y∈ψin (V 0)

ψim (V
0)∩ψim+1 (V

0)�=∅

n∑
m=1

l(im)Rim, (16)

where the second minimum on the right-hand side is the graph distance in V δ and Eδ between
the vertices x and y when an edge of the form ψi(V

0) is weighted by l(i)Ri , and that this is
equal toR(x, y) is a result of the fact thatR is additive along paths. Since we have δε < l(i) for
every i ∈ �δ , all the edge weights in (V δ, Eδ) are greater than δε (using the fact that Ri ≡ 1).
Thus, if R(Ti, Tj ) < δε, then R(Ti, Tj ) = 0. This means that, for x ∈ T , every Ti ⊆ T̃δ,ε(x)

has a nonzero intersection with some Tj ⊆ Tδ(x) (where i, j ∈ �δ). A simple consideration of
the geometry of T allows us to deduce that we must therefore have Nδ,ε(x) ≤ 9 for all x ∈ T ,
P-a.s. Thus, applying the bound in (15), for r ∈ [εδn+1, εδn), we obtain

µα(BR(x, r))

rs
≤ 9ε−sesM−1

α δα−s
n sup

i∈�δn
Mi
α.

If s < α, then Lemma 12 therefore gives lim supr→0 r
−sµα(BR(x, r)) = 0, and so [10,

Proposition 4.9] implies the result.

For the second special case in which we prove a Hausdorff dimension lower bound, we make
the following assumption.

Assumption 2. The random variables (w(i))i∈S are independent and their distributions satisfy
the following tail condition. If p ∈ (0, 1), there exists a constant ε > 0 such that

P(w(i) ≤ xε | w(i) ≤ x) ≤ p for all x ∈ (0, 1], i ∈ S.
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Again, this is an assumption which stops the fractal getting too small too quickly. Rather
than bounding them uniformly below, as in Theorem 5, we assume independence of the scaling
factors and restrict the amount of build up of mass close to 0 in the distributions of the scaling
factors. This independence allows us to use a percolation-type argument, which enables us to
avoid having to impose a uniform lower bound. If w(i) has distribution function �, then the
inequality in Assumption 2 is equivalent to �(εx) ≤ p�(x) for every x ∈ (0, 1]. From this, it
is easy to see that if � is approximately polynomial (i.e. there exist constants c1 and c2 such
that c1x

n ≤ �(x) ≤ c2x
n), then Assumption 2 holds. An example of when the build-up of

mass is too great for this to hold is the distribution function�(x) = (1− ln x)−1. The following
lemma gives another alternative characterisation of Assumption 2 that will prove to be useful
in obtaining negative moments for the resistance perturbations (Ri)i∈�∗ .

Lemma 13. Let X be a (0, 1]-valued random variable with distribution function �, then the
following statements are equivalent.

(a) If p ∈ (0, 1), then there exists an ε ∈ (0, 1) such that �(xε) ≤ p�(x) for x ∈ (0, 1].
(b) There exist constants ε ∈ (0, 1) and β > 0 such that

E

((
1 − xβε

Xβ

)
1{X≤x}

)
≥ 0 for all x ∈ (0, 1].

Proof. Assume that part (a) holds and fix p ∈ (0, 1). Choose ε ∈ (0, 1) such that �(xε) ≤
p�(x) holds, and let β > 0 satisfy p < εβ . Integration by parts yields

E(xβX−β 1{X≤x}) = lim
δ→0

{
[xβy−β�(y)]xy=δ + β

∫ x

δ

xβy−β−1�(y) dy

}
.

Now,�(εn) ≤ pn, and so, for y ∈ (εn+1, εn], we have y−β�(y) ≤ ε−β(n+1)pn. It follows that,
because pε−β < 1, limδ→0[xβy−β�(y)]xy=δ = �(x), which gives an alternative expression
for the first term in the limit above. Furthermore,

lim
δ→0

β

∫ x

δ

xβy−β−1�(y) dy =
∞∑
n=0

βxβ
∫ xεn

xεn+1
y−β−1�(y) dy

≤ βxβ
∞∑
n=0

∫ xεn

xεn+1
(xεn+1)−β−1pn�(x) dy

≤ β�(x)ε−β−1
∞∑
n=0

(pε−β)n

= β�(x)

εβ+1(1 − pε−β)
.

Hence, E(xβX−β 1{X≤x}) is bounded above by a constant multiple of�(x), and therefore part
(b) holds.

Conversely, suppose that part (b) holds for some ε ∈ (0, 1) and β > 0. Fix p ∈ (0, 1) and
define ε′ := (pε)1/β . For x ∈ (0, 1], we have

�(ε′x) ≤ E

(
1{X≤ε′x}

ε′βxβ

Xβ

)
≤ p E

(
1{X≤x}

εxβ

Xβ

)
≤ p�(x),

which is statement (a).
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Lemma 14. Under Assumptions 1(a) and 2, we have E((R∅)
−d) < ∞ for every d > 0.

Proof. The result will follow from Corollary 2 if we can show that E(w(i)−β) < ∞, i = 1, 2,
for some β > 0. Under Assumption 2, this is a simple consequence of the previous lemma.

We now use the alternative description of Assumption 2 provided by Lemma 13 to show
that the inequality in Assumption 2 still holds if the w(i) are multiplied by the resistance
perturbations Ri . We shall use the ε0 obtained in the following lemma to describe what
constitutes a small edge of (V δ, Eδ).

Lemma 15. If Assumption 1(a) and 2 hold and p ∈ (0, 1), then there exists an ε0 > 0 such
that

P(w(i)Ri ≤ ε0x | w(i) ≤ x) ≤ p for all x ∈ (0, 1], i ∈ S.

Proof. By Lemma 13, we can choose ε, β > 0 such that

E

((
1 − εxβ

w(i)β

)
1{w(i)≤x}

)
≥ 0 for all x ∈ (0, 1], i ∈ S.

Also note that, by Lemma 14, E((Ri)−β) < ∞. Hence,

P(w(i)Ri ≤ ε0x,w(i) ≤ x) ≤ E

((
ε0x

w(i)Ri

)β
1{w(i)≤x}

)

= ε0
β E(R−β

∅
)E

(
xβ

w(i)β
1{w(i)≤x}

)

≤ ε0
β

ε
E(R−β

∅
)P(w(i) ≤ x),

and so the result holds for ε0 chosen suitably small.

Henceforth we consider p to be a deterministic constant and choose ε0 so that the claim of
Lemma 15 holds. For reasons that will become clear in the proof of Lemma 17, below, it will
be convenient to assume that p ∈ (0, 33/44).

We now look to bound Nδ,ε0(x), and to do so it will be convenient to use the language of
percolation theory. We first define the events (Aδi )i∈�δ by

Aδi := {l(i)Ri ≤ ε0δ}.
For i ∈ �δ , we call the set Ti open if Aδi occurs, and closed otherwise. Thus, Ti being open
corresponds to ψi(V 0) being a small edge in the graph (V δ, Eδ) (when an edge of this form is
weighted by l(i)Ri). We will show that the largest cluster of sets from (Ti)i∈�δ which are open
is not too large, and explain how this fact gives us a useful estimate for Nδ,ε0(x).

Consider the random variable

Hδ := (�δ; (l(i | (|i| − 1)))i∈�δ ).

We shall be conditioning on Hδ , the informal motivation for doing so is the following. In the
proof of Lemma 11 we introduced a branching process where the individual i is born at time
−ln l(i). Hence, if we stop the branching process at time −ln δ (and cannot see into the future)
then we will be able to ascertain the value of Hδ . However, we will not be able to observe the
exact values of l(i) orRi for i ∈ �δ . So, in this sense, we can considerHδ to be the information
about the weighted graph (V δ, Eδ) available at time −ln δ.
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We now make precise the nature of the percolation-type behaviour that the independence
of the w(i)s under Assumption 2 induces on the open/closed sets of (Ti)i∈�δ . Note that the
result provides an upper bound on the probability of a set from (Ti)i∈�δ being open which
is independent of δ. This scale-invariance property will be of particular importance for the
arguments that follow.

Lemma 16. Suppose that Assumptions 1 and 2 hold. Let δ ∈ (0, 1). Conditionally on Hδ , the
sets (Ti)i∈�δ are open/closed independently. Furthermore, for i ∈ �δ , we have

P(Aδi | Hδ) ≤ p, P -a.s.,

and, for s ≥ 1, we have

E(s
1
Aδ
i | Hδ) ≤ 1 − p + sp, P -a.s.

Proof. Suppose that i1, . . . , in are distinct elements of �δ . Applying the independence of
the (w(i))i∈�∗\{∅}, elementary arguments yield

P(Aδ
i1
, . . . , Aδin | Hδ) =

n∏
m=1

P

(
w(im)Rim ≤ ε0δ

x

∣∣∣∣ w(im) ≤ δ

x

)
x=l(im | (|im|−1))

.

This implies the independence claim. Consider the case in which n = 1, and write i = i1.
Since i ∈ �δ , we must have l(i | (|i| − 1)) > δ. Hence, we can apply the bound of Lemma 15
to the above expression to obtain P(Aδi | Hδ) ≤ p, P-a.s. The generating function bound is a
simple consequence of this.

We now introduce an algorithm to find the largest cluster of open sets of the form (Ti)i∈�δ .
We shall work on the graph (�δ, �δ), where the edge set �δ is defined by

�δ := {{i, j} : i, j ∈ �δ, Ti ∩ Tj �= ∅, Ti, Tj open}.
We shall write C(i) for the component of (�δ, �δ) which contains the vertex i. Clearly, if Ti is
closed, then C(i) = {i}. The following argument to find the size of the largest cluster is inspired
by similar procedures used in [14] to find the size of the largest cluster of a random digraph,
and in [2] to find the size of the largest cluster of a complete graph with edge percolation.

Assume thatHδ is known. Let i ∈ �δ and set L0 := {i} andD0 := ∅. For n ≥ 1, we define
Ln and Dn inductively. Assume that we are given Ln and Dn. If Ln �= ∅ then pick a vertex
j ∈ Ln (we can assume that there is a deterministic rule for doing this), and set

Ln+1 := Ln ∪ {k ∈ �δ : k �∈ Ln ∪Dn, {j, k} ∈ �δ}\{j}, Dn+1 := Dn ∪ {j}.
If Ln = ∅ then set Ln+1 := ∅ and Dn+1 := Dn.

It is a little unclear from this description as to exactly what the algorithm is doing and so we
now try to provide a more intuitive description in terms of a branching process related to �δ .
Call i a live vertex. For the first step, connect to i all those vertices in�δ that are joined to i by
an edge in �δ . Call these vertices live and i dead. At an arbitrary stage, pick a live vertex, j ,
and connect to it all those vertices which we have not yet considered and are connected to j
by an edge in �δ . Call the new vertices in our branching process live and j dead. Continue
until we have no live vertices to pick from. At the point of termination, the collection of dead
vertices contains exactly the vertices of C(i).
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In our notation,Ln represents the live vertices andDn the dead ones. Since we can pick each
vertex in�δ only once in the algorithm, we must haveD|�δ |+1 = C(i). However, the algorithm
may effectively terminate before this stage, giving |Dn| = n∧ τ , where τ := inf{n : Ln = ∅}.
Necessarily, L|�δ |+1 = ∅, and so this infimum is well-defined and finite. In particular, we
must have |C(i)| = τ .

Using this algorithm, we are able to obtain a tail estimate for the distribution of |C(i)|,
conditional onHδ . Note that this result is scale-invariant; the tail bound on the size of a cluster
does not depend on δ.

Lemma 17. Suppose that Assumptions 1 and 2 hold and let δ ∈ (0, 1). There exists a
deterministic constant c, not depending on δ, such that, for i ∈ �δ ,

P(|C(i)| > n | Hδ) ≤ e−cn, P -a.s.

Proof. Choose i ∈ �δ and use the algorithm described prior to this lemma to construct
(Ln,Dn)n≥0. Given Ln and Dn, the number of new live vertices in the (n + 1)th step of the
algorithm is

Zn := #{k ∈ �δ : k �∈ Ln ∪Dn, {j, k} ∈ �δ},
if Ln �= ∅, where j = j (Ln) is the vertex chosen from Ln in the algorithm, and 0 otherwise.
On {Ln = ∅}, for s ≥ 1,

E(sZn | Hδ,Ln,Dn) = 1, P -a.s.

On {Ln �= ∅} with j = j (Ln), using the independence and generating function bound of
Lemma 16, for s ≥ 1, we have

E(sZn | Hδ,Ln,Dn) ≤
∏

k∈�δ : k �∈Ln∪Dn,
Tj∩Tk �=∅

E(s1{Tk open} | Hδ) ≤ (1 − p + sp)4, P -a.s., (17)

where for the second inequality we have applied the facts that at most three of the sets (Ti)i∈�δ
intersect at any point, and also that Tj only intersects with other elements of (Ti)i∈�δ at points
in ψj (V 0). Hence, because this upper bound is larger than 1, we have

E(sZn | Hδ,Ln,Dn) ≤ (1 − p + sp)4, P -a.s.

For n ≤ τ , we have |Ln| = |Ln−1| + Zn−1 − 1, and so, for s ≥ 1, we have

E(s|Ln| 1{|Ln|>0} | Hδ) ≤ E(s|Ln| 1{|Ln−1|>0} | Hδ)
= E(s|Ln−1| 1{|Ln−1|>0} E(sZn−1−1 | Hδ,Ln−1,Dn−1) | Hδ)
≤ s−1(1 − p + sp)4 E(s|Ln−1| 1{|Ln−1|>0} | Hδ),

where we use inequality (17) for the final bound and we have also used the fact that {|Ln| >
0} = {τ > n}. Applying this repeatedly yields a P-a.s. upper bound of s−n(1 − p + sp)4n for
the expectation considered. Consequently, for s ≥ 1, we obtain

P(|C(i)| > n | Hδ) = P(|Ln| > 0 | Hδ) ≤ E(s|Ln| 1{|Ln|>0} | Hδ) ≤ s−n(1 − p + ps)4n,

P-a.s. This is minimised by s = (1 − p)/3p, which is greater than 1, because of the upper
bound we have assumed on p. Substituting for this value of s we obtain an upper bound of
(443−3(1 − p)3p)n for P(|C(i)| > n | Hδ), and the result follows.
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Lemma 17 is easily extended to give a tail estimate for the distribution of the size of the largest
component, Cδ := supi∈�δ C(i), from which we can prove the following a.s. convergence
result.

Lemma 18. If Assumptions 1 and 2 hold, then lim supn→∞ n−1Cδn < ∞, P-a.s.

Proof. Applying the conditional tail distribution of Lemma 17, we have

P(Cδ > n) = E(P(Cδ > n | Hδ)) ≤ E

(∑
i∈�δ

P(|C(i)| > n | Hδ)
)

≤ E(|�δ|)e−c1n,

and so it is possible to deduce, from Lemma 11, a tail bound of the form P(Cδ > n) ≤
c2e−c1nδ−α for Cδ . Applying this, a simple Borel–Cantelli argument yields the lemma.

We are now able to prove the lower bound for the Hausdorff dimension of T in the second
special case.

Theorem 6. Assume that Assumptions 1 and 2 hold, then dimH (T ) = α, P-a.s.

Proof. As in (16), the distance between sets of the form (Ti)i∈�δ is the weighted graph
distance between the corresponding vertices in (V δ, Eδ). Hence, if it happens thatR(Ti, Tj ) <
δε0, then the shortest path between a vertex of V 0

i and a vertex of V 0
j contains only edges

contained in open sets from (Tk)k∈�δ . Thus, if Tk ⊆ T̃δ,ε0(x) for x ∈ T , then there exist i ∈ �δ
and j ∈ C(i) such that Tk ∩ Tj �= ∅ and Ti ∩ Tδ(x) �= ∅. The number of intersections of sets
of the form (Ti)i∈�δ was estimated in the proof of Lemma 17, and from this we can deduce
that Nδ,ε0(x) ≤ 16Cδ uniformly in x. Consequently, for r ∈ [ε0δn+1, ε0δn), the bound at (15)
implies that

µα(BR(x, r)) ≤ c(Mα)−1rαCδn sup
i∈�δn

Mα
i .

On recalling the conclusions of Lemmas 11 and 18, we are able to deduce, from this bound, that,
for s < α, lim supr→0 r

−sµα(BR(x, r)) = 0 for every x ∈ T , P-a.s. The result is subsequently
obtained by applying [10, Proposition 4.9].
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