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A CHARACTERISATION OF THE ABSOLUTE QUASI-RETRACTS

IN A CLASS OF ACYCLIC CONTINUA

V.N. AKIS AND D.W. CURTIS

The class of quasi-retracts of AR's (AQR's) was first considered

by Stallings, who observed that every AQR has the fixed point

property. More recently, it has been shown that the class of

AQR's is closed with respect to the operations of taking cones,

suspensions, or products with AR's , and that no AQR separates

a Euclidean space. In this paper we show that every AQR is

acyclic, and we obtain a simple, direct characterization of the

AQR's in a certain class of acyclic continua.

1. Quasi-retracts of AR's

The class of almost continuous functions was introduced by Stallings

[70] for the purpose of studying the fixed point property. A function

f: Y •*• Y is said to be almost continuous if, for every neighbourhood U

of the graph Y(f) in Y x Y , there exists a map (continuous function)

g: Y •* Y such that T(g) £ U . Stallings observed the following:

1) If Y is a Hausdorff space with the fixed point property, then

in fact every almost continuous function f:Y-+Y has a fixed point; and
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2) If g: Y -*• Y is continuous and /: Y -*• Y is almost continuous,

then the composition gf is almost continuous.

It follows that, if Y is an AR (compact metric) and q: Y -*• Y

is an almost continuous function for which q(Y) is compact and

2
q = q i then q(Y) has the fixed point property. We call such a

function q a quasi-retraction, and say that the compactum X = q(Y)

is a quasi-retract of Y .

Stallings asked the following question, which he attributed to

Borsuk: Is every acyclic planar continuum a quasi-retract of a disk? An

affirmative answer would imply that every acyclic planar continuum has the

fixed point property, thus solving a long-standing problem. This question

went unanswered until 1981, when Akis [7] observed that, if X is a quasi-

retract of Y , then the cone C(X) is a quasi-retract of C(Y) . Hence,

if X is a quasi-retract of a disk D ( or any AR ), then C(X) is a

quasi-retract of C(D) , and therefore both X and C(X) have the fixed

point property. Earlier, Knill [7] had shown that, if X is the disk

with spiral (Figure 2a), then C(X) does not have the fixed point

property. Thus, X cannot be a quasi-retract of a disk.

Despite the negative answer to the Borsuk-Stallings question, quasi-

retractions may yet be useful, in conjunction with other techniques, for

attacking the problem concerning the fixed point property of acyclic

planar continua. For example, it was shown independently by Bell [3] and

by Sieklucki ['] thet, if there exists an acyclic planar continuum X

without the fixed point property, then X must contain an indecomposable

subcontinuum in its boundary. If it could be shown that such continua

are quasi-retracts of disks, the problem would be solved.

Furthermore, the study of quasi-retracts of AR's can lead to

other interesting results in fixed point theory. For instance, it was

shown in [7] that, if X is a quasi-retract of Y , then the product

X x E with any AR is a quasi-retract of Y x E . Thus, for X a

quasi-retract of an AR , not only do the spaces X and C(X) have the

fixed point property, but so also does the product of X with any AR .

The following proposition is a particularly useful tool for

identifying quasi-retracts:
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PROPOSITION 1.1. ill. Let Y = YQ £ YJ £ ... be a nested sequence

of compacta, with n Y = X , such that for each n there exists a

retraction r : Y •+ Y with r (Y - \ Y ) c_ X . Then X is a quasi-

retract of Y .

Proof. Let q: Y -*• X be the function defined by

q = lim r r 7 . .. r> . Then for each neighbourhood .U of T(q) in
n-Xo

Y x y 3 Y(r r . . . rJ £ U for large n . Thus q is a quasi-

retraction.

Before proceeding further, we should note the following topological

invariance property for quasi-retracts of AR's :

PROPOSITION 1.2. [/]. Let X £ 7 and X' £ Y' , where Y and Y'

are AR's 3 and X is homeomorphic to X' . Then X is a quasi-retraat

of Y if and only if X' is a quasi-retraat of Y' .

DEFINITION. A compaction X is an absolute quasi-retract (AQR) if

it is homeomorphic to a quasi-retract of the Hilbert cube Q .

By (1.2), any compactum which imbeds as a quasi-retract of some AR

is an absolute quasi-retract, and is in fact a quasi-retract of every AR

in which it imbeds.

In this paper we characterise the absolute quasi-retracts in a

certain class of acyclic continua with the fixed point property, which

includes many interesting planar examples. We need the following general

result, which will also be used to show that every AQR is an acyclic

continuum:

PROPOSITION 1.3. (see [2]). Let q: Y •*• Y be a quasi-retraction of

an AR , with X = q(Y) . Then for each neighbourhood U of Y(q) in

Y x Y j there exists a map g: Y •* Y such that T(g) c u and g\x = id .

Proof. Let \:Y*Y*I->-Y be an equiconnecting map for Y , that

is, Xiyj, y2> 0) = y1 , \(y2, y2, 1) = y2 , and \(y, y, t) = y for all

H-,3 y2' y e ̂  a n d t e I (see [5]) • Let £„ denote the diagonal in

X x X . Since Av c V(q) c U there exists an open neighbourhood W of

A^ in Y x Y such that for each (w, w') e W and tel, (w, \(w,w',t))

e V .
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Consider V = W u (Y \ X) * Y ; note that V is a neighbourhood

of T(q) in Y x Y . By our hypothesis on q , there exists a map

/: Y •* Y with T(f) £ U n V . Then {(x, fix)) : x e X] £ W , and by

continuity of f there exists a neighbourhood G of X in Y such

that {(y, f(y)) : y € G } c_ W . Let a: Y •* I be a Urysohn map with

o.(X) = 0 and a(Y \ G) = 1 .

We now define the desired map g: Y •* Y by the formula

g(y) = \(y, f(y), a(y)) . Clearly, g\x = id . For any y e Y \ G , we

have (y3 g(y)) = (y, f(y)) e U . And for y e G } we have (y, f(y)) eW,

which implies that (y, g(y)) = (y} \(y, f(y), u(y))) e U . Thus

r (g) £ U .

Rosen [S] has shown that if a compactum X £-Ji is the quasi-retract

of an n-cell, then X does not separate M . A stronger result is

readily obtainable from (1.3):

COLLARY 1.4. Every AQR can be imbedded in Q as the intersection

of a nested sequence of Hilbert cubes.

Proof. Let q: Q •*• Q be a quasi-retraction. We show first that

X = q(Q) has trivial shape, that is, every map /.• X •*• P into a

polyhedron is null-homotopic. Let F: N(X) -*• P be an extension of f

over some neighbourhood of X in Q . By (1.3), there exists a map

g: Q -»- N(X) with g\X = id . Then the extension Fg: Q ->• P of f is

null-homotopic, and so is f . Chapman's shape-complement theorem [4]

shows that every trivial shape compactum can be imbedded in Q as the

intersection of a nested sequence of Hilbert cubes.

2. Characterizing the AQB's in a class of acyclic continua

Let 5 be the unit circle in the complex plane, and let K denote

an AR . Let e; LOj <*>)•*• S be the covering map defined by e(t)=e

For a map X: 5 -*• K , let X = Xe: [0} °>) -*• K , and define the continuum

X(\) £ 10, «] x K by

X(\) = {(t, \(t)) : 0 <, t < »} u {»} x K .

Thus, X(\) may be considered as the disjoint union [0, •*>) u K , with

the topology defined by the collection of basic open sets {U : U is open
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in 10, »;} u {V u [X 2(V) n (N, »;] : 7 is open in K and N < »} .

Each XCX>) is acyclic, since it is the intersection of a nested

sequence of AR's in 10, °°] x K . Also, each X(\) has the fixed point

property (in fact, the product of X(\) with any AR has the fixed

point property). Note that for nonconstant X , X(\) is not an AR , or

even locally connected. In what follows, we obtain a partial answer to

the general question:

When is X(X) an AQR?

PROPOSITION 2.1. If X; 5 •* K factors through an arc, then X(\)

is an AQR .

Proof. Let a: S •+ I and a: I -*• K be maps such that X = ca s

and assume that a(S) = I . Let M be the mapping cylinder of a . We

consider M as the disjoint union M = (10, <*>) x I) u K (where {<»} x T

is identified with a(I) in K ) . Since K is an AR , so is M .

Define a = ae: \-0, <*>)-*•!, and let G be the graph of a . Then

G u K c M is homeomorphic to X(\) . Choose an increasing sequence {t }

in [0, «; such that tQ= 0 , a(tj) = a(t3) = ... = 1, " C t ^ = *(t4)

= .. . = 0 3 and t •*• <*• . Set MQ = M and

M1 = MQ \ {(t, y) : 0 <t <tj , a(t) < y < 1} . For each n I 1 , set

M2n = M2n-1 N {{t> *> : *2«-2 ^ * * *2«' 0 5 J/ < aft; and

G u K = nM. is an 4g/? by (1.1) .

DEFINITION. X map ia: S -*• K is free if there exists a map 9: 5 •+• S

such that a) and to9 have disjoint graphs.

THEOREM 2.2. Let as: S •*• K be a free map. Then for any map •

ty: S •+ S , the continuum X(uty) is an AQR if and only if ty is

inessential.

Proof. If t|< is inessential, it factors through an arc, and there-

fore X(u>\l>) is an AQR by (2.1).

Now suppose that IJJ is essential. To show that X(i>i\ji) cannot be an

AQR , we first construct an AR space M which serves as a compact
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mapping cylinder for u = ice: LO, <*>) ->• K 3 and which contains a copy of

X(unji) . We may assume that deg i|i = m > 0 . Let H = {(t, y) : 0 < t < °° ,

0 £ y £ mt} . Take M = H u K , with the topology defined by basic open

sets of the following types:

1) open sets U in H ; and

2) sets V u {(t, y) : t > N and G>(y) e V] , for V

open in K and N < °° .

Since M is a compact Hausdorff space with a countable base, it is

metrisable. For each y < °° , let M = (H n L03 <*>) x [(7̂  y~\) u X . Note

that W is topologically the mapping cylinder of ulLO, y] 3 hence an

Aff . Since M admits arbitrarily small deformation retractions onto the

subspaces M , M is itself an AR (see [6], Theorem 5.3).

There exists a map ip; LO, <») •+ 10, <*>) such that e$ = \pe ; we may

assume without loss of generality that ty(0) = 0 . Since deg ty = m ,

tyd + 1) = i>(t) + m for all t . Choose a i 1 such that ma > ^(t)

for all 0 £ t < 1 . Let G = {(a + t, %(t)) : t z 0} c_ H . Then

G u K £ M is homeomorphic to X(mii) , so if X(urp) is an 4$i? , there

exists a quasi-re traction of M onto G u K .

Let £ = {(t, y) :a + l±t<<»,y= m(t - a - 1) c # } . Note that

£ n G = (̂  .

Since (u is free, there exists a map 9: S -»• 5 j necessarily of

degree 1 , such that u and o>8 have disjoint graphs. Let

61- [0j <*>) -»• [Oj »j be a map such that e? = 9e .

Let p: S -*• LOj m) denote the projection onto the second coordinate.

Define F c M x M to be the closure of the subset

{(w, z) e H * L : B(p(w)) = p(z) or, p(io) = 0 and 0 < pCz^ < 6COJ } .

Then F c M x L u (K x K \ &) . Thus, the graph of any quasi-retraction

of M onto G u K is disjoint from F .

Assuming the existence of such a quasi-retraction we then obtain by

(1.3) a map f:M + M with Y(f) n F = 0 and /|G u K = id . Note that

the quotient space D = M/K = Hu {«>} is topologically a disk, with K
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a+1

FIGURE 1

corresponding to a boundary point °° . Since f\K = id , f induces a

map <(>: D -*• D with §(<») = °° . For each t 2. 0 , consider the arc

A = (la + t, <*>) U {•»} c D , Note that <J> fixes the endpoints of

A , and for the point s, in L such that p(z ) = Qty(t) , z, is not

in $(A.) u A. . Let y, denote the element of ir1(D \ {z,}) determined

by combining the maps id\A. and <t>\A .

For t = 0 , p(<$>(A.) n I) c (Q(0), <*>) , and it follows that y. is

nontrivial. On the other hand, for all sufficiently large t, y, is

trivial. To see this, consider the arc A, = (A, n H) u m\h(t) c. M . We

have diam (A* u f(A.)) •*• 0 as *-»•«, while the distance between s

and uty(t) remains bounded away from 0 . Thus for large t , the subset

A u / M J contracts to a point in M \ {z.} , which implies that y, is

trivial. But since each of the subsets {t : y. is trivial} and
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{t : X. is nontrivial} is open, this contradicts the connectedness of
u

IO} <*>) . Thus X(taty) cannot be an AQR if u is free and ijj is

essential.

COROLLARY 2.3. For every free map m: S + K, X(m) is not an AQR.

In particular, neither the disc with a spiral (Figure 2a), nor the

triod with a spiral (Figure 2b) , is an AQR .

FIGURE 2

COROLLARY 2.4. For any map X: S •*• K such that X(S) is a simple

closed curve, X(\) is an AQR if and only if X: S ->• X(S) is

inessential.

Proof. The inclusion map X(S) c>. K is free, hence the result

follows immediately from (2.2).

It follows from (2.4) that the spaces shown in Figures 3a and 3b are

AQR's while the space shown in Figure 3c is not.

Let B = {(r, Q) : r < 1} be the unit disc in the plane, with

S = dB , and consider the triod

T = {(r, Q) : r s. 1 , 6 = 2n-n/3 for some integer n} .

To each map X: S •+• T we may associate a map X; S -*• S defined as follows:

1) X agrees with X over X" CdT) ;

2) for each subarc J c S such that

X(J) n 31" = XOJ) = {p} , X(J) = {p} ; and
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FIGURE 3

3) for each subarc J c S such that J n X (ZT) = 3J

and \(dj) = {p} <?} j |̂<̂  is a homeomorphi sm onto the

subarc of S corresponding to {p3 q} .

We say that X: S •*• T is boundary inessential if the associated map X

is inessential. Note that it is quite easy to ascertain whether X is

boundary inessential.

DEFINITION. The map X: S ->• T is simple if, for every arc J c S

such that \(J) n 331 = 0 , \(J) is an arc.

It is easily seen that the continuum X(\) is planar if and only if

X is simple.

COROLLARY.2.5. For any map X: S •* K such that X(S) is a triod

and X: S -*• \(S) is simple, X(X) is an AQR if and only if X is

boundary inessential.

Proof. We may consider that \(S) = T as described above. Define

a map to: S •*• T as follows:

1) md, rni/3) = (0, 0) if n is odd ;

2) u(l} rni/3) = (1, mi/3) if n i s even; and

3) u i s one-to-one over each arc

{(1, d) : rnt/3 < 6 < (n + l)v/3} .
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Note that u is a free map. Clearly, every simple map A; S •+ T factors

through u> , that is, there exists a map \ji: S ->• S such that A = wifi .

Moreover, the map ij< is homotopic to the associated map X; S ->• S .

Thus, X(\) is an AQR if and only if A is boundary inessential.

It follows from (2.5) that the space shown in Figure 2b is not an

AQR , while the spaces shown in Figure 4 are AQR's.

CONJECTURE. The corollary holds without the requirement that A be

simple.

FIGURE 4

3. A question

The disc with a spiral (Figure 2a) is essentially the only known

example of a planar continuum with the fixed point property, whose cone

fails to have the property. (All other known examples are modifications

of this one) . It was this observation that prompted our consideration of

the continua X(X) of Section 2. The result in (2.4) implies that if a

continuum X is the disjoint union of a disc with a ray which approaches

its boundary "inessentially", then the cone C(X) has the fixed point

property; a similar statement follows from (2.5), with the disc replaced

by a triod. The following question naturally arises: if X is the

disjoint union of a disc (or a triod) with a ray which approaches its

boundary "essentially", can C(X) have the fixed point property? In

particular, if X is the continuum in Figure 2b, or the continuum in

Figure 3c, does C(X) have the fixed point property?
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